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Abstract—Network Function Virtualization (NFV) is an
emerging solution that aims at improving the flexibility, the
efficiency and the manageability of networks, by leveraging
virtualization and cloud computing technologies to run network
appliances in software. Nevertheless, the “softwarization” of
network functions imposes software reliability concerns on future
networks, which will be exposed to software issues arising from
virtualization technologies. In this paper, we discuss the chal-
lenges for reliability in NFVIs, and present an industrial research
project on their reliability assurance, which aims at developing
novel fault injection technologies and systematic guidelines for
this purpose.
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I. INTRODUCTION

The landscape of communication networks presents many
different actors such as cloud service providers, enterprise
networks, content delivery networks, mobile users, which
are demanding more and more performance, reliability and
security. To meet these needs, modern networks deploy a
wide range of network appliances (middleboxes) to provide
advanced services such as intrusion detection and preven-
tion systems, application-level firewalls and gateways, traffic
shapers, and several others [1]. From one side, middleboxes
introduce valuable benefits in term of provided functionalities,
but from the other side they constitute an important fraction of
the OPerational EXpenditures (OPEX) and CAPital EXpendi-
tures (CAPEX) for telecom operators. In fact, middleboxes are
usually based on proprietary hardware and software, and are
tailored only for some specific function. Thus, middleboxes
are costly, have limited flexibility, are energy-inefficient, are
difficult to manage and to troubleshoot [2], and their failures
have a strong impact on network performance and availability
[3].

Network Function Virtualization (NFV) [4], [5] is an
emerging solution to overcome these problems. According to
the ETSI Industry Specification Group for NFV, established
by leading telecoms network operators, NFV exploits IT
virtualization technologies to turn network equipment (i.e.,
middleboxes) into virtual entities. Virtualized Network Func-
tions (VNFs)1 will be implemented in software and will run on
commodity hardware located in already-existing data centers,
network nodes and even in end-user premises. By doing that,
network operators can reduce costs, improve efficiency, reduce
time-to-market, and provide more advanced services [6].

1NFV indicates the technology for virtualizing network functions, VNF
indicates the virtual entity that performs a network function.

Beyond others, cloud computing technologies are the most
important enablers for NFV, and represent a critical block
of the NFV infrastructure (NFVI) on which VNFs are de-
ployed. Virtualization technologies, such as hypervisors and
containers, allow to abstract physical computing resources
(e.g., CPUs, network and storage devices) in order to achieve
efficiency and elasticity (e.g., by dynamically allocating re-
sources to VNFs), and to easily manage and orchestrate VNFs
throughout their lifecycle (creation, deletion, migration, etc.).

It can be easily seen that the “softwarization” of network
functions imposes software reliability concerns on future net-
works. While off-the-shelf hardware components are expected
to fail and to be easily replaced, with very low configuration or
management efforts, software (and, in particular, virtualization
technologies) will represent the weak point for NFV, raising
new questions like:

• What are the risks of leveraging on virtualization
technologies in NFV infrastructures?

• How can we predict and mitigate the impact of faults
arising from virtualization technologies?

The European Union, to meet the needs of telecom oper-
ators and service providers, added the certification of security
and reliability of cloud systems among the high-priority topics
of the Horizon 2020 research program [7]. The aim is to en-
courage the development of proof-of-concepts, best practices,
test suites and benchmarks to assure cloud resiliency.

In this paper, we discuss the challenges for reliability in
NFVIs, and present an industrial research project on their
reliability assurance, which aims at developing novel fault
injection technologies and systematic guidelines for this pur-
pose. The paper is organized as follows: Section II provides
background on NFV; Section III details the context, objectives
and challenges of our reliability evaluation project; Section IV
discusses existing fault injection tools and techniques for cloud
systems; Section V closes the paper with future directions of
the project.

II. NFV BACKGROUND

A. Use Case Scenarios

In principle, all network functions and nodes may be
considered for virtualization but, in order to span the scope
of technical challenges, NFV ISG selected a set of relevant
use case scenarios [8], such as:

• Network Functions Virtualization as a service: NFV
infrastructure, platform and even a single VNF in-
stance can be provided as a service by a Service
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Fig. 1. VNF-FG scenario

Provider, based on models similar to the cloud com-
puting service models [9];

• Virtualization of Mobile Core Network and IMS: the
mobile networks and the IP Multimedia Subsystems
are populated with a large variety of proprietary hard-
ware appliances, which costs and complexity can be
reduced introducing NFV;

• Virtualization of Mobile base station: mobile operators
can apply NFV in order to reduce costs as well as
continuously develop and provide better service to
their customer;

• Virtualization of the Home Environment: Installation
of new equipment can be avoided in the home en-
vironment with the introduction of VNFs, reducing
maintenance and improving service provision;

• Virtualization of CDNs: Content Delivery Networks
use cache node to improve the quality of multimedia
services, but it comes with lots of disadvantages (e.g.,
waste of dedicated resources) that could be mitigated
by NFV;

• Fixed Access Network Functions Virtualization: virtu-
alization supports multiple tenancy in access network
equipment, whereby more than one organizational
entity can either be allocated, or given direct control
of, a dedicated partition of a virtual access node.

In all the scenarios, service providers run VNF instances
inside an NFV Infrastructure (NFVI)2. It provides the capabil-
ity or functionality of an environment in which both virtualized

2As mentioned before, a NFV is the technology for making a network
function virtual, namely a VNF. The NFVI, instead, represents the environment
in which more than one VNF may execute.

and non-virtualized network functions can be connected into
a service chain, i.e. VNF Forwarding Graph (VNF-FG)[8].
The NFVI includes common elements of cloud computing
such as physical computing, network and storage resources
and resource pooling mechanisms. Fig. 1 shows an example
of a VNF-FG commonly encountered where packet traverse
a VNF implementation of a router, a Deep Packet Inspection
and a Firewall, with the possibility of adding to the service an
Instruction Prevention System or a WAN Optimization Con-
troller. Every VNF is mapped through the virtualization layer
to a pool of VMs. Each VNF could be replicated on several
VMs and placed on different hardware or even sites, while the
Management and Orchestration (M&O) component decides
which VNF instance a specific request should be forwarded
to.

B. The NFVI Architecture

The NFV ISG is defining a potential architecture of the
NFVI, to support the deployment and execution of VNFs [10].

The NFVI is part of a framework whose architecture is
depicted in Fig. 2. The NFVI Domain includes the three
primary domains of the NFVI, i.e.:

• Compute (and Storage) Domain: it provides the
COTS computational and storage resources;

• Hypervisor Domain: it mediates the resources of
the compute domain to the VMs of the software
appliances providing an abstraction of the hardware;

• Infrastructure Network Domain: it provides several
communication channels between entities of all the
domains and it is the mean of remote deployment of
VNFs.
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Moreover, the framework comprises the NVF Application
Domain that hosts VNFs, and the M&O Domain that controls
and manages software appliances running on the infrastructure.

The inter-domain communication requires a container in-
terface which is the environment within a host function is
configured and/or programmed in order to provide a virtualized
function. The identified inter-domain interfaces are:

• NFVI Container Interfaces: it is provided by the
infrastructure to host VNFs. The applications may
be distributed and the infrastructure provides virtual
connectivity which interconnects the distributed com-
ponents of an application.

• Virtual Network Container Interface: the interface
to the connectivity services, provided by the infras-
tructure. This container interface makes the infrastruc-
ture appear to the NFV applications as instances of
these connectivity services.

• Virtual Machine Container Interface: it is the pri-
mary hosting interface on which the VMs run.

• Compute Container Interface: it is the primary
compute hosting interface on which the hypervisor
runs.

C. Reliability Requirements

NFV ISG has identified manifold requirements, including
requirements on resiliency of VNFs [11], [12]. Telecom Opera-
tors are concerned by the availability of their products and the
user-perceived dependability because (1) unreliable services
are likely to be discarded by users and (2) the total costs of
system failures can be tremendous. Potential causes of VNF
failures are:

• Hardware Faults: the use of COTS servers is a source
of faults in the NFVI, that may negatively affect the
VNFs running on them;

• Software Faults: at various levels, such as host OS,
hypervisor, VM, or the VNF instance itself;

• Operator Faults: mistaken operations and configu-
ration, e.g. capacity planning, VM deployment and
migration.

The NFV framework should be able to achieve resiliency
in spite of these faults. NFV requirements will focus primarily
on specific aspects introduced by NFV, and not on aspects of
the network functions interfaces, protocols and management
that are identical whether the implementation is physical or
virtual.

The NFV framework needs to provide the necessary
mechanisms to allow VNFs to be recovered after a failure.
Fault-tolerance mechanisms, such as VNF redundancy, fault
isolation, recovery after a failure and transparency, should
guarantee the required service continuity. The NFV M&O
component should be responsible for controlling these and
other mechanisms, thus it is vital that it does not become a
single point of failure. Above all, the NFV framework shall
provide the necessary mechanisms to achieve the same level of
service availability for fully and partially virtualized scenarios
as for existing non-virtualized networks.

III. RELIABILITY EVALUATION PROJECT

Our project aims to give Telecom Operators the opportunity
to evaluate the reliability of an NFVI. In order to achieve
this, we focus on two complementary tasks. On one hand,
we will produce techniques and tools for reliability evaluation
of NFVI. On the other, we will formulate methodologies and
guide lines for practitioners to use these techniques and tools
properly and with valuable results.

NFVI implementations will exploit the off-the-shelf prod-
ucts already present in the cloud-computing market, so NFVI
reliability depends strictly on the reliability these products can
provide. The virtualization technologies we will consider as
actual enablers for NFVI are:

• VMware vSphere [13], a family of mature commer-
cial products for the whole life-cycle management
of hypervisor-based VMs, including high-availability
mechanisms;

• Linux Containers [14], an emerging open-source
project that enhances the Linux kernel, which runs
guest applications in “containers”, by abstracting hard-
ware and OS resources (e.g., CPU time, filesystems,
network interfaces, etc.) and isolating them.

In the context of business-critical scenarios, intense testing
activities are of paramount importance to guarantee that new
systems and their built-in fault-tolerance mechanisms are be-
having as expected, and thus to assure a high level of reliability.
Ensuring that the system behaves properly in the presence
of a fault is a problem that requires something more than
traditional testing. Fault Injection is the process of introducing
deliberately faults in a system, with the goal of assessing the
impact of faults on performance and on continuity of service,
and the efficiency (i.e., coverage and latency) of its fault-
tolerant mechanisms.

According to resiliency and service continuity requirements
of the NFV framework, as discussed in the previous sections,
NFV should be able to provide mechanisms to allow network
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functions to be recreated, and to assure a desired level of
performance and of service continuity as mandated by SLAs.
Fault Injection Testing is a systematic approach to assure, with
quantitative evidence, that such requirements are satisfied.

Considering the architecture of NFVIs, the application of
reliability evaluation approaches is not straightforward, since
there are several challenges that make the NFVI reliability
evaluation tool harder to design, and that will be taken into
account. Within these challenges, the most influential are listed
below:

• Black-box and complex nature of virtualization
technologies: the testing and the reliability evaluation
of NFVIs should be performed considering the lack
of information about internal structure, design and
implementation of virtualization technologies, that are
often provided by third parties (e.g., VMware);

• Lack of well-established reliability evaluation crite-
ria for NFVIs: since NFV is a technology still under
active development, it is not clear how the reliability of
NFVIs should be evaluated and, thus, proper measures
and metrics should be identified.

• Integration and interoperability: the integration and
the interoperability among COTS hardware and soft-
ware components increase the complexity of the in-
frastructure, and thus the set of faults we have to face
with;

IV. FAULT INJECTION IN CLOUD COMPUTING

As mentioned in the introduction, the NFV world is
strictly related to cloud computing technologies. Thus, based
on everything-as-a-service (XaaS) delivery model, a cloud
provider can develop Internet services, from security and
databases to storage and integration, no longer require leverage
on expensive specific-purpose hardware and on big initial
capital costs.

Virtualization is an enabling technology to set up a cloud
computing infrastructure. Virtualization allows to abstract
physical resources (e.g., CPUs, network devices, storage de-
vices, etc.) in order to share and to provide resources, making
a physical machine as a soft component to use and manage
very easily. Virtualization software is used to run one or more
so-called Virtual Machines (VMs) (a software abstraction of a
physical machine) on a single physical machine, providing the
same functionalities as if they were more physical machines.
This virtualization software is named Hypervisor, which is
responsible of executing and managing multiple VMs in order
to synchronize the access to the CPU, memory and other I/O
resources of the physical machine.

Therefore, to assure the reliability of cloud systems, it is
necessary to assess the reliability of the virtualization environ-
ment as a whole, focusing both on VMs and on the Hypervisor,
as well as on the Cloud Management Stack software that
orchestrates them (such as the well-known OpenStack frame-
work [15]) to efficiently manage cloud infrastructures. In this
section, we present an overview of related studies that adopt
fault injection to assure a high-level of reliability of cloud
systems, focusing on Virtual Machines (subsection IV-A),

Cloud Management Stack (subsection IV-B), and Hypervisors
(subsection IV-C).

A. Fault Injection Testing of Virtual Machine

D-Cloud [16] is a dedicated simulated test environment,
based on QEMU for virtualizing physical machines, and on
Eucalyptus cloud computing system for managing these VMs.
D-Cloud adopts QEMU to emulate hardware faults, by inject-
ing various typical faults into the guest OS.

DS-Bench Toolset [17] is a framework (it includes D-
Cloud) that computes dependability metrics of the overall sys-
tem under test (SUT), using various benchmark programs, by
injecting anomaly loads; furthermore, it provides the evidence
for the assurance case based on the benchmark results.

D-Cloud considers hardware faults in memory, hard-disk
and network devices. It performs fault injection by simulating
data corruptions in the emulated devices. The fault types
include the corruption of individual sectors of the disk (e.g.,
the sector was damaged by head crash), of packets sent through
the network (e.g., loss or bit corruption of a packet), and of
memory cells. Moreover, it can simulate an unresponsive or
slow hard disk and network devices.

B. Fault Injection Testing of Cloud Management Stack

A systematic study on fault resilience of OpenStack [15]
is reported in [18]. Openstack is one of the most important
open cloud computing software, that controls compute, storage
and networking resources in a whole data center, managed
and provisioned through a web-based dashboard, command-
line tools or a RESTful API. The proposed framework injects
network faults targeting communications among OpenStack’s
services like compute, image and identity services, but also
database, hypervisor and messaging services. The authors
evaluate the framework on two OpenStack versions, identifying
bugs, such as timeout between services communication, or lack
in period checking of service liveness (VM creation API has
completed its job?) and so on, more described in the next
sections.

PreFail [19] allows to deal with a very high number
of injection experiments, that arises from the ”combinatorial
explosion” of multiple injections. The PreFail tool allows
the tester to control fault injection using pruning policies,
which select the combinations of faults to be injected during
experiments. The policies offered by PreFail are oriented
towards selecting a small set of faults, and to maximize the
efficiency of fault injection tests. This goal is reached by letting
the user to specify a pruning policy.

Netflix [20] is developing the The Simian Army [21], a
set of tools (named monkeys) that allows to inject faults into a
cloud computing platform, specifically built within AWS [22].
Simian Army’s ”monkeys” for assessing resiliency are manifold
and they allow to:

• randomly terminate virtual instances (i.e., virtual ma-
chines) in the production environment (Chaos Mon-
key);

• cause an entire data center (e.g., an Amazon availabil-
ity zone (AZ)) to go down (Chaos Gorilla);
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• bring down an entire region, made up of multiple data
centers (Chaos Kong);

• inject faults that simulate partially healthy instances
(Latency Monkey).

Currently, Netflix developed only the Chaos Monkey [23]
and their related fault types. Fault injection is performed by
executing a script that simulates a specific type of fault.

C. Fault Injection Testing of Hypervisor

CloudVal [24] is a framework to test the reliability of hy-
pervisor within a cloud infrastructure. The framework provides
an injector (implemented using debugger-based techniques)
that allows to inject different type of faults like transient (soft)
faults, guest misbehavior, performance faults and maintenance
faults. This work is a starting point to develop a benchmark
for validating cloud virtualization infrastructures.

The CloudVal framework supports fault injection in the
KVM and Xen, both on the guest and host domains, and on the
core modules of the hypervisors (i.e., qemu-kvm and the KVM
kernel module for KVM [25]; qemu-dm and xenstored for Xen
[26]). The tests are performed to evaluate VMs guest/host
isolation and correlated hypervisor behavior, and the level
of maintainability. Finally, Virt-manager [27] (a libvirt-based
management system) is used by CloudVal for monitoring and
managing a system during fault injection experiments.

Table I shows a comparison between fault injection ap-
proaches and the related tools mentioned above.

D. Discussion

Concerning the reliability of cloud telecom networks, the
tools overviewed in this paper can be applied only to a
limited extent of NFVIs since they are not designed with
NFV scenarios in mind. We have identified the following
limitations of existing tools, and that will need to be tackled
in the development of a new Fault Injection Tool for NFVIs
as mentioned in the Section III:

• Injection of Software and Configuration faults. So
far, fault injection testing tool in cloud computing
systems has mostly been focused on the injection of
hardware faults (e.g. affecting CPU, memory, network
and disk) to assess the tolerance and robustness of
cloud systems to these faults. However, in an NFVI,
the use of third-party software components, such as
COTS virtualization technologies (e.g., VMware, Xen)
and cloud management software (e.g., Openstack), ex-
acerbates the overall complexity. Therefore, software
and configuration faults must be included in fault
injection testing, in order to predict and mitigate the
impact of such faults on NFVI.

• Black box virtualization technologies. The surveyed
tools focused on open-source virtualization technolo-
gies, such as the Xen and KVM hypervisors and
the OpenStack cloud management platform. Unfortu-
nately, performing the same on commercial off-the-
shelf software (e.g., VMware, very popular in the
virtualization panorama) is much more difficult, and

requires additional effort to analyze the internals of
the virtualization layer and to instrument it.

• Testing scenarios for NFVIs. NFV is a technol-
ogy that is still under active development. Thus, a
big challenge is to develop proof-of-concepts that
could demonstrate how, in practice, Fault Injection
can be applied to obtain useful measures for the
NFVI architect, such as measures for benchmarking
alternative components and designs for an NFVI under
development.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented an ongoing industrial research
project, that aims at investigating how to assess the risks
introduced by virtualization technologies for NFVI reliability.
Towards this goal, we plan to conduct the following activities:

• Failure Mode and Effects Analysis of virtualiza-
tion technologies in NFVIs: we need to analyze the
architecture of NFVI and its potential threats in order
to understand what can affect reliability. The FMEA
should consider not only hardware failures, but also
failures due to software and configuration faults that
can impact on virtualized resources (e.g., virtual CPU,
memory, network and storage);

• Definition of Key Performance Indicators and
Methodologies for NFVI reliability: we will define
measures for fault tolerance and performance, and
provide guidelines to allow reliability engineers to
systematically assess reliability by means of fault
injection testing;

• Design of novel Fault Injection Techniques: because
of the challenges in NFVIs (e.g., black-box technolo-
gies), the most advantageous injection target seems
to be represented by the interfaces of the Compute,
Hypervisor and Network domains. The errors and
corruptions to be injected should be defined on the
basis of the FMEA;

• Validation using NFV products and technologies:
we will conduct a proof-of-concept validation of the
fault injection approach on commercial NFV products,
based on virtualization technologies mentioned in the
paper (i.e., VMWare and LXC).
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