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Abstract—In the last two decades, a great amount of effort
has been put in researching automated debugging techniques
to support developers in the debugging process. However, in
a widely cited user study published in 2011, Parnin and Orso
found that research in automated debugging techniques made
assumptions that do not hold in practice, and suggested four
research directions to remedy this: absolute evaluation metrics,
result comprehension, ecosystems, and user studies.

In this study, we revisit the research directions proposed by the
authors, offering an overview of the progress that the research
community has made in addressing them since 2011. We observe
that new absolute evaluation metrics and result comprehension
techniques have been proposed, while research in ecosystems
and user studies remains mostly unexplored. We analyze what is
hard about these unexplored directions and propose avenues for
further research in the area of fault localization.

Index Terms—Software Fault Localization; Debugging; Liter-
ature Survey.

I. INTRODUCTION

Software systems are complex and error-prone, likely to
expose failures to the end user. When a failure occurs, the
developer has to debug the system to eliminate the failure.
This debugging process can be described in three phases: fault
localization, fault understanding, and fault correction [1]. This
process is time-consuming and can account for 30% to 90%
of the software development cycle [2]–[4].

Traditionally, developers use four different approaches to
debug a software system, namely program logging, assertions,
breakpoints and profiling [5]. These techniques provide an
intuitive approach to localize the root cause of a failure, but,
as one might expect, are less effective in the massive size and
scale of software systems today.

Therefore, in the last decades a lot of research has been
performed on improving and developing advanced fault lo-
calization techniques [5] such that they are applicable to the
software systems of today. Specifically, the most prominent
techniques are spectrum-based fault localization (SBFL) tech-
niques. SBFL techniques pinpoint faults in code based on
execution information of a program, also known as a program
spectrum [6]. It does this by outputting a list of suspicious
components, for example statements or methods, ranked by
their suspiciousness. Intuitively, if a statement is executed
primarily during failed executions, then this statement might
be assigned a higher suspiciousness score. Conversely, if a

statement is executed primarily during successful executions,
then this statement might be assigned a lower suspiciousness
score.

While advanced fault localization techniques have proven
to be able to pinpoint faults in code, many studies have
ignored their practical effectiveness [7]. This issue was raised
in 2011 in a study by Parnin and Orso [1], in which they
perform a preliminary user study and show evidence that many
assumptions made by advanced fault localization techniques
do not hold in practice. For example, many studies adopt a
metric that is relative to the size of the codebase to evaluate the
performance of a debugging technique. If a faulty statement
is assigned a rank of 83, while the total lines of code amounts
to 4408, then the evaluation metric suggests that the developer
has to inspect 1.8% of the codebase, which appears as a
positive result. However, Parnin and Orso observed in their
user experiment that developers were not able to translate the
results into a successful debugging activity [1].

In this paper, we seek to understand the response of the
software fault localization (SFL) research community with
regard to Parnin and Orso’s pioneering study, in which multi-
ple directions are proposed for future research in the area of
fault localization. To that end, we conduct a literature survey
analyzing papers that build upon Parnin and Orso’s study.
We assess the progress that has been made since the original
study appeared, identify areas that are still open, and give
recommendations for future research regarding the practical
use of fault localization.

II. BACKGROUND

To set the scene for our study, we first provide an overview
of the four most studied software fault localization techniques
and identify existing surveys on such techniques.

Today’s most important fault localization techniques can
be grouped into four categories: slice-based, spectrum-based,
model-based, and information retrieval-based techniques. The
first three techniques are discussed because most research
has been performed on them compared to other techniques
[5]. We discuss information retrieval-based fault localization
techniques because they are inherently designed to work on
natural languages, which can be useful in providing more
context to developers when using SFL techniques in practice.
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A. Slice-based Techniques

Static slicing was first introduced by Weiser [8], where
irrelevant components of a program are removed from the
original set of components to obtain a reduced executable
form. This creates a smaller search domain for the developer
to locate a fault.

Due to the fact that static slices include every statement that
can possibly affect the variables of interest, a constructed slice
may still contain statements that are not useful for locating a
bug. To deal with this problem, Korel and Laski proposed
dynamic program slicing [9]. In dynamic slicing, a slice is
constructed based on the execution information of a program
for a specific input.

B. Spectrum-based Techniques

A spectrum was first introduced by Reps et al. [6]. A
program spectrum consists of execution information from a
perspective of interest. For example, a path spectrum may
contain simple information such as whether a path has been
executed, also known as the hit spectrum. This kind of
information was used to tackle the Y2K problem by Reps
et al. [6] by comparing multiple path spectra to identify paths
that are likely date-dependent.

With this in mind, Collofello and Cousins [10] performed
one of the first studies where multiple path spectra are used
to localize faults in code. Collofello and Cousins proposed
a theory, called relational path analysis, which requires a
database that stores correctly executed paths according to test
cases that pass successfully. Then, by contrasting a failing
execution with the database, execution paths can be pinpointed
that are likely to contain the fault.

Collofello and Cousins’ work formed the basis for hit
spectrum-based fault localization. To formalize their idea,
we define the finite set C = 〈c1, c2, . . . , cM 〉 of M system
components, and the finite set T = 〈t1, t2, . . . , tN 〉 of N
system transactions, such as test executions. The outcomes
of all system transactions are defined as an error vector
e = 〈e1, e2, . . . , eN 〉, where ei = 1 indicates that transaction ti
has failed and ei = 0 otherwise. To keep track of which system
components were executed during which system transactions,
we construct a N × M activity matrix A, where Aij = 1
indicates that component cj was hit during transaction ti.
Given these definitions, SBFL techniques compute statistics
such that the suspiciousness score of a system component can
be computed.

A popular SBFL technique to compute the suspiciousness
score of each system component is Tarantula, proposed by
Jones et al. [11]. Tarantula was developed to visualize fault
localization results based on suspiciousness scores to improve
the developer’s ability to locate faults.

C. Model-based Techniques

Model-based software fault localization is an application
of model-based diagnosis (MBD). MBD was first introduced
by Davis [12] and was primarily intended for fault diagnosis

in hardware, such as faulty gates in electrical circuits. Sub-
sequently, various studies [13], [14] have refined this area.
The underlying theory assumes that there exists a model that
defines the correct behavior of a system. Faults are diagnosed
when the actual observed behavior differs from the specified
behavior.

In 1999, Mateis et al. [15] performed the first study where
MBD is applied to Java, an imperative programming language.
As opposed to models for physical systems, software programs
written in an imperative language seldom come with a com-
plete and up-to-date behavioral model. Therefore, for software
systems, the model is generated from source code based on the
semantics of the programming language. However, this model
can be faulty as the source code is likely to contain bugs.
Hence, expected results from a test case and its execution are
used together with the generated model to diagnose bugs [16].

D. Information Retrieval-based Techniques

Information retrieval (IR) has been most apparent in web
search engines but has recently been applied to SFL. The pur-
pose of IR is to retrieve relevant documents given a query [17].
In IR-based SFL (IRBSFL), bug reports are used as a search
query and source code represents the document collection.
To retrieve relevant documents, IRBSFL techniques make use
of retrieval models, that essentially return documents that are
most similar to the search query. Specifically, retrieval models
define how documents and queries are characterized such that,
ultimately, the representation of a document and query can
be compared to find the most relevant documents. The five
generic retrieval models that are used to perform SFL are
[18]: Vector Space Model (VSM) [19] , Smoothed Unigram
Model (SUM) [18], Latent Dirichlet Allocation (LDA) [20],
[21], Latent Semantic Indexing (LSI) [22], [23], Cluster Based
Document Model (CBDM) [18].

E. Surveys on Software Fault Localization

Several literature surveys [5], [24] have been performed to
help the community get a better understanding of all advances
made in SFL.

Recently, Wong et al. [5] published a comprehensive lit-
erature survey where the body of literature comprises studies
published from 1977 to November 2014. The fault localization
techniques are categorized into eight groups, namely slice-
based, spectrum-based, statistics-based, program state-based,
machine learning-based, data mining-based, model-based and
miscellaneous techniques. Further, Wong et al. discussed sev-
eral metrics and fault localization tools that are proposed since
1977 and concluded their survey by addressing nine critical
aspects in fault diagnosis. This work differs from Wong et al.
in that we mainly focus on the improvements in SFL regarding
its practical issues.

Souza et al. [24] presented a fault localization survey, where
they addressed the shortcomings of current SBFL techniques
to be applied in industry. The authors do this by addressing five
aspects of fault localization: techniques, faults, benchmarks,
testing information, and practical use. Although Souza et al.



focused on the practicality of SBFL, which is similar to this
survey, we also survey studies that propose SFL ecosystems.

III. PARNIN AND ORSO’S STUDY

In this section, we first highlight the essence of Parnin
and Orso’s study [1]: “Are Automated Debugging Techniques
Actually Helping Programmers?”. Then, we generalize Parnin
and Orso’s research directions.

A. Summary

Parnin and Orso performed a preliminary user study to
examine the usefulness of a popular automated debugging
technique in practice to gain insight on how to build better
debugging tools. An additional goal was to identify promising
research directions in this area.

The authors defined the following hypotheses and research
questions.

• Hypothesis 1: Programmers who debug with the assis-
tance of automated debugging tools will locate bugs faster
than programmers who debug code completely by hand.

• Hypothesis 2: The effectiveness of an automated tool
increases with the level of difficulty of the debugging
task.

• Hypothesis 3: The effectiveness of debugging when using
a ranking based automated tool is affected by the rank of
the faulty statement.

• Research Question 1: How do developers navigate a list
of statements ranked by suspiciousness? Do they visit
them in order of suspiciousness or go from one statement
to the other by following a different order?

• Research Question 2: Does perfect bug understanding
exist? How much effort is actually involved in inspecting
and assessing potentially faulty statements?

• Research Question 3: What are the challenges involved in
using automated debugging tools? What issues or barriers
prevent their effective use? Can unexpected, emerging
strategies be observed?

Their experiments involved 34 developers divided into four
experimental groups: A, B, C, and D. Each participant was
assigned two debugging tasks — debug a failure in Tetris
(easy) and NanoXML (difficult) — and each group had to
use Tarantula [11] for one of the tasks or both. During the
experiment, the authors recorded a log of the navigation
history of the participants that used Tarantula and made use
of a questionnaire in which participants were asked to share
their experience and issues.

In the analysis of the results, Parnin and Orso categorized
the participants as low, medium, or high performer. The
average completion time of the high performers in group A is
significantly shorter than the average completion time of the
high performers in group B for Tetris, and thus Hypothesis 1
is supported but limited to experts and simpler code. For
Hypothesis 2 and Hypothesis 3 no support was found.

Based on the recorded logs and questionnaires, the authors
found that developers do not linearly traverse the ranked list,
produced by Tarantula. Instead, the participants exhibited some

form of jumping between ranked statements, searched for
statements in the list to confirm their intuition, or skipped
statements that did not appear relevant. In addition, the
recorded logs showed evidence that perfect bug understanding
is not a realistic assumption. On average, developers spent ten
additional minutes on searching the diagnosis report after the
first encounter with the faulty statement. Regarding Research
Question 3, the participants indicated that they prefer more
context, e.g. runtime values, or different ways of interacting
with the data.

Besides the hypotheses and research questions, Parnin and
Orso made several observations and derived research implica-
tions as follows.

• Observation 1: An automated debugging tool may help
ensure developers correct faults instead of simply patch-
ing failures.

• Observation 2: Providing overviews that cluster results
and explanations that include data values, test case infor-
mation, and information about slices could make faults
easier to identify and tools ultimately more effective.

• Implication 1: Techniques should focus on improving
absolute rank rather than percentage rank.

• Implication 2: Debugging tools may be more successful
if they focused on searching through or automatically
highlighting certain suspicious statements.

• Implication 3: Research should focus on providing an
ecosystem that supports the entire tool chain for fault
localization, including managing and orchestrating test
cases.

B. Generalization

The first implication states that future research should
improve absolute rank instead of percentage rank. Percentage
rank is used in many studies to evaluate the performance of the
fault localization technique. However, percentage rank does
not scale with the size of a codebase. For example, when a
faulty statement is ranked on the 83rd position as a result of
the fault localization technique and the codebase consists of
8300 lines of code, the percentage rank is 83

8300×100% = 1%.
From this example, we can conclude that percentage rank is
not a practical evaluation metric for the software systems of
today, possibly consisting of millions lines of code, which is
also confirmed by the authors’ preliminary study. To observe
whether, and to what extent, the community has improved in
this area, we include all papers that adopt absolute evaluation
metrics.

Observation 2 and Implication 2 mention that future re-
search should focus on searching through suspicious state-
ments and providing more contextual information such that
it is easier for the user to interpret the fault localization
results. This implication has also been confirmed by Minelli
et al. [25], who performed an empirical study that strongly
suggests that the importance of program comprehension has
been significantly underestimated by prior research. In our
opinion, searching through the fault diagnosis is too specific,
and ultimately focuses on improving result comprehension.



Therefore, to generalize this implication, we include studies
in our survey that focus on result comprehension.

The third implication suggests future research to focus on
creating complete ecosystems. Therefore, in this survey, we
include work that propose or improve existing ecosystems.

Finally, Parnin and Orso mention that more research has
to be performed in the form of user studies, as they did
themselves. Hence, we give an overview of user studies in
the field of fault localization techniques.

IV. IMPACT OF PARNIN AND ORSO’S STUDY

In this section, we discuss the selection methodology and
give an overview of studies for each research direction pro-
posed by Parnin and Orso as discussed in Section III-B. In
Table I, an overview of studies is provided sorted by the year
of publication, indicating the problems that each study tackles.

A. Selection

In this survey, the initial body of literature comprises work
that refer to Parnin and Orso’s study, amounting to 104
published studies on Scopus1 at the time of writing. These
papers were obtained with Scopus because it only consists
of peer-reviewed papers. Next, papers that are not written in
English or accessible are removed from the set of literature.
Finally, we read the abstract and relevant sections that refer
to Parnin and Orso of each study, and we determined if it
attempts to solve one of the observations or implications made
by Parnin and Orso. This results in a body of literature of
19 papers. Studies, that mention Parnin and Orso’s work but
do not consider their findings, referred to Parnin and Orso’s
study for various reasons: (1) Parnin and Orso’s findings are
mentioned as a potential threat to validity, (2) the authors are
referred to as related work.

B. Absolute Evaluation Metrics

Jin and Orso [28] proposed F3 that extends BugRedux,
a technique for reproducing failures observed in the field,
with fault localization capabilities. In their study, the authors
evaluate F3 using wasted effort, indicating the number of non-
faulty components that have to be inspected on average before
a faulty component is found in the diagnostic report. In their
study, the authors use the following formula to compute wasted
effort.

wasted effort = m+ n+ 1

where m is the number of non-faulty components that are
assigned a strictly higher suspiciousness score than the faulty
component, and n is the number of non-faulty components
that are assigned an equal suspiciousness score as the faulty
component. Note that the formula used to compute wasted
effort can vary. For example, Laghari et al. [37] compute
wasted effort as follows.

wasted effort = m+ (n+ 1)/2

The wasted effort is also used in [26], [31], [39], [40].

1https://www.scopus.com/

Lo et al. [32] proposed an approach to combine multiple
spectrum-based fault localization techniques, namely Fusion
Localizer. In their study, the authors investigate multiple
approaches to score normalization, technique selection, and
data fusion, resulting in twenty variants of Fusion Localizer.
In the evaluation of the proposed Fusion Localizer variants, the
authors make use of accuracy at n (acc@n), which indicates
the number of bugs that can be diagnosed when inspecting the
top n components in the ranked list. This metric is also used
in [33].

Le et al. [38] proposed a new automated debugging tech-
nique, called Savant, that employs learning-to-rank, using
changes in method invariants and suspicious scores, to di-
agnose faults. To evaluate Savant, the authors make use of
three absolute rank-based metrics, namely acc@n, wef@n,
and MAP. Wasted effort at n (wef@n) is a variation of
wasted effort that computes the wasted effort within the top n
components of the ranked list. The Mean Average Precision
(MAP) [46] metric is widely used in information retrieval.
MAP is computed by computing the mean of the average
precisions (APs), that is computed as follows:

AP =
1

M

N∑
i=1

P (i)rel(i)

where M is the number of total faulty program components,
N is the total number of components in the ranked list, P (i)
is the precision at the ith component in the diagnosis report,
and rel(i) is a binary indicator indicating whether component
i is faulty, i.e. relevant. The precision at position k (P (k)) is
computed as follows:

P (k) =
number of faulty components within top k

k
Finally, MAP is computed by averaging the average precisions
of each produced ranked list.

Laghari et al. [37] also make use of wef@n to evaluate the
performance of their proposed technique: patterned spectrum
analysis. In their study, they use method call patterns, which
are obtained by adopting the closed itemset mining algorithm
[47], as hit-spectrum to perform SBFL.

Wen et al. [43] proposed an IRBFL technique, called Locus.
Locus is able to locate bugs at both the software change and
source file level — the latter is a common granularity used in
IRBFL techniques. It leverages the information of bug reports,
source code changes, and change history to localize suspicious
hunks. In the evaluation of Locus, the authors made use of
three metrics: Top@n, MRR, and MAP. Top@n reports how
many bugs are diagnosed in the top n suspicious code entities,
and is therefore identical to acc@n. The Mean Reciprocal
Rank (MRR) [48] is another metric used in information
retrieval to evaluate the performance. The formula of MRR
is as follows:

MRR =
1

Q

Q∑
i=1

1

ranki

where Q is the number of queries, i.e. the number of performed
fault diagnoses, ranki is the position of the first true positive

https://www.scopus.com/


TABLE I: Overview of studies surveyed in this work.

Year Author Title Eva
lua

tio
n metr

ic

Resu
lt

co
mpre

he
ns

ion

Eco
sy

ste
m

User
stu

dy

2013 Campos et al. [26] Entropy-based test generation for . . . •
2013 Gouveia et al. [27] Using HTML5 visualizations in . . . • • •
2013 Jin and Orso [28] F3: fault localization for field failures •
2013 Pastore and Mariani [29] AVA: supporting debugging with . . . • •
2013 Qi et al. [30] Using automated program repair . . . •
2014 Liu et al. [31] Simulink fault localization: an . . . •
2014 Lo et al. [32] Fusion fault localizers •
2014 Wu et al. [33] CrashLocator: locating crashing . . . •
2014 Zuddas et al. [34] MIMIC: Locating and . . . •
2015 Wang et al. [35] Evaluating the usefulness of . . . •
2016 Kochhar et al. [36] Practitioners’ expectations on . . . •
2016 Laghari et al. [37] Fine-tuning spectrum based fault . . . •
2016 Le et al. [38] A learning-to-rank based fault . . . •
2016 Li et al. [39] Iterative user-driven fault localization • •
2016 Li et al. [40] Towards more accurate fault . . . •
2016 Wang and Huang [41] Weighted control flow subgraph to . . . •
2016 Wang and Liu [42] Fault localization using disparities . . . •
2016 Wen et al. [43] Locus: locating bugs from software . . . • •
2016 Xia et al. [44] “Automated Debugging Considered . . . •
2016 Xie et al. [45] Revisit of automatic debugging via . . . •

diagnosed component. This metric evaluates the ability to
locate the first faulty component.

Qi et al. [30] analyzed the effectiveness of automated
debugging techniques from the perspective of fully automated
program repair. The automated program repair process can be
divided into three phases: fault localization, patch generation,
and patch validation. With this in mind, the authors proposed
the NCP metric, the number of candidate patches that are
generated in the patch generation phase. Intuitively, a well-
performing fault localization technique would require a lower
number of generated candidate patches because the faulty
component is ranked higher in the diagnosis report.

To summarize, we observe that studies in software fault
localization have adopted absolute evaluation metrics since
Parnin and Orso’s study, namely wasted effort, accuracy at
n, wasted effort at n, mean average precision, mean reciprocal
rank, and the number of candidate patches. Moreover, wasted
effort is slowly becoming the standard to evaluate the fault
localization performance.

C. Result Comprehension

Gouveia et al. [27] implemented GZoltar, a plug-and-play
plugin for the Eclipse Integrated Development Environment
(IDE) that performs fault localization and visualizes the
suspiciousness of program components. Specifically, GZoltar
visualizes the results in three different ways: sunburst, vertical
partition, and bubble hierarchy. The authors found evidence
that the visualizations aid the developer in finding the root
cause of a bug, which we discuss in more depth in Sec-
tion IV-E.

Wang and Liu [42] presented an automated debugging tech-
nique using disparities of dynamic invariants, named FDDI.

FDDI uses a spectrum-based fault localization technique to
localize the most suspicious functions. Then, FDDI uses
Daikon to infer dynamic invariant sets for the passing and
failing test suites. Finally, FDDI performs a disparity analysis
between the two invariant sets and generates a debugging
report that comprises suspect statements and variables. The
variables are extracted from the disparity, which could assist
users in finding and understanding the root cause of a bug.

As mentioned in Section IV-B, Wen et al. [43] performed
fault localization based on software changes, resulting in a
list of suspicious change hunks. The advantage of outputting
change hunks is twofold. First, the time spent on bug triaging
is reduced because developers are linked to change hunks.
The authors showed in an empirical study that 70% to 80%
of the bugs are fixed by the developer who introduced the
bug. A possible explanation for this is that the developer, who
introduced the bug, is familiar with the code. Second, change
hunks consist of contextual lines (unchanged lines), changed
lines, and a corresponding commit description, providing
the developer with contextual information to understand the
diagnosed change hunks.

Wang and Huang [41] proposed the use of weighted control
flow subgraphs (WCFSs) to provide contextual information on
the suspicious components in the diagnosis report. The WCFSs
are constructed from the execution traces collected during the
execution of the test suite, which are also used to construct the
activity matrix for SBFL. For each suspicious component in
the diagnosis report, the authors allow the developer to display
the associated WCFS. This enables the developer to navigate
or search the diagnosed components in a more natural manner.

Li et al. [39] proposed an SFL technique, named Swift,
that involves the developer in the fault localization process.



Swift performs SBFL but instead of displaying a ranked
list, it guides the developer through the diagnosis report by
showing the developer a query for the most suspicious method.
The query consists of the input and output of the method
invocation, which the developer has to validate by marking
it as correct or incorrect. Then, the fault probabilities are
modified accordingly and Swift generates a new query for the
next most suspicious method.

Zuddas et al. [34] proposed a prototype tool, called MIMIC,
that identifies potential causes of a failure. MIMIC is able to do
this by performing four steps: execution synthesis, monitoring
points detection, anomaly detection, and filtering. The output
of MIMIC does not simply consist of suspicious statements
but, instead, provides code locations, their supposedly correct
behavior model, and the actual values that violate the gener-
ated behavioral model. In an empirical study, the authors show
that MIMIC can effectively detect failure causes.

Pastore and Mariani [29] proposed AVA, a fault localization
technique that generates an explanation about why diagnosed
components are considered suspicious. It does this by compar-
ing execution traces to a finite state automaton (FSA), which is
commonly inferred from successful program executions. The
suspicious components are detected using KLFA [49]. KLFA
is also able to classify the difference between the actual and
expected behavior according to a set of defined patterns, e.g.
delete, insert, replace, etc. The classification and the suspicious
components are then displayed to the developer such that the
developer is able to determine whether a suggested component
is truly faulty.

To summarize, several studies have focused on improving
result comprehension in software fault localization. However,
most studies evaluate their approach with a case study, rather
than with a study involving actual users.

D. Ecosystems

As mentioned in Section IV-C, Gouveia et al. [27] have
developed the GZoltar toolset, which is available as an Eclipse
plug-in. The toolset localizes faults by employing a spectrum-
based fault localization technique, namely Ochiai [50], that
takes as input the coverage information of executed test cases.
By performing SBFL the toolset produces a ranked list of sus-
picious program components. In addition, as a response to the
findings of Parnin and Orso [1], the authors have improved the
plug-in by extending the toolset with visualization capabilities.

Another tool that was created as a response to Parnin and
Orso’s findings is AVA. AVA [29] consists of two main com-
ponents: the AVA-core library and the AVA-Eclipse Eclipse
plug-in. The AVA-core library implements an API that can be
invoked from third-party programs to generate interpretations
from anomalies. The Eclipse plug-in provides the developer
with a GUI in Eclipse to perform debugging using AVA.

We observe that the SFL research community has not yet
put a lot of effort in creating tools that can be used by
developers. Therefore, we suggest that more effort should be
spent on developing tools that facilitate automated debugging
techniques.

E. User Studies

To verify the effectiveness of the visualizations generated
by GZoltar in practice, Gouveia et al. [27] performed a user
study. The experiment involved 40 participants divided into
two groups: a control group that is only allowed to make use
of the default debugging tools provided by the Eclipse IDE and
a test group that has to use GZoltar for debugging. The user
experiment showed evidence that the mean time of completing
the debugging task of the test group is significantly shorter
than the mean time of the control group. In fact, the test group
took on average 9 minutes and 17 seconds less than the control
group to find the injected fault.

Xie et al. [45] reproduced a similar user study to Parnin
and Orso’s work [1] that differs in the size of involved
participants and debugging tasks, namely 207 participants and
17 debugging tasks. The experiments are performed on a
platform, called Mooctest, that is able to localize faults, track
user behavior such as mouse position, and analyze produced
logs. The main finding of the user study is that, regardless
of the accuracy, spectrum-based fault localization does not
reduce time spent in debugging a fault. Also, inaccurate fault
localization results may even lengthen the debugging process.
Based on these results, the authors corroborated the findings
of Parnin and Orso — more research should be performed on
result comprehension.

Kochhar et al. [36] performed a user study by means of a
survey involving 386 practitioners from more than 30 coun-
tries. In the survey, the authors found that practitioners have
high thresholds for adopting automated debugging techniques.
A comparison between the expectations of practitioners and
the state-of-the-art fault localization techniques showed that
research should primarily focus on improving reliability, scal-
ability, result comprehension, and IDE integration, such that
practitioners’ expectations can be met.

Wang et al. [35] evaluated IR-based fault localization tech-
niques by means of an analytical study and one involving
human subjects. In the analytical study, Wang et al. showed
evidence that the performance of IRBFL techniques is deter-
mined by the quality of bug reports. However, the authors
also found that a large portion of the bug reports does not
contain enough identifiable information, and therefore IRBFL
techniques are less effective in the majority of cases. In
the user experiment, the authors found evidence that IRBFL
techniques are helpful when bug reports do not contain rich
information but are unlikely to be effective otherwise.

Xia et al. [44] reproduced a similar user study to the work
of Parnin and Orso as well as Xie et al.. Their user study
involved 36 professionals and 16 real bugs from 4 reasonably
large open source projects. However, unlike Parnin and Orso
and Xie et al., Xia et al. show evidence that SBFL does reduce
time spent debugging.

To summarize, we observe that the research community has
performed a couple of user studies to understand the users’
needs. However, besides the mentioned user studies, almost
no study evaluates their technique with a user study, which



would be particularly useful in determining its effectiveness.

V. RESEARCH IMPLICATIONS

In Section IV, we observed that more studies are adopting an
absolute metric to measure the performance of SFL techniques.
In particular, we see that wasted effort is slowly becoming the
standard for SFL evaluation.

However, Parnin and Orso have shown that outputting an
accurate diagnostic report does not necessarily result in less
time spent on debugging since perfect bug understanding is
an assumption that does not hold in practice. Hence, we
conclude that more studies should focus on improving result
comprehension, i.e. in assisting the developer in making sense
of the SFL output.

Although there are a few studies that propose a solution
for better result comprehension, almost none of them evaluate
their solution with a user study. In case of GZoltar, its
visualizations are evaluated with a user study and the authors
have shown evidence that debugging with GZoltar reduces
time spent on debugging. However, while the debugging time
is reduced, no study has yet analyzed the debugging process
with an SFL tool in depth. For example, does a developer
run an SFL tool multiple times before fixing a bug? Or is
a bug fixed after the first analysis? How many suspicious
locations identified by an SFL tool are typically visited by
the developer? For what reasons? To answer such questions,
we need a theory describing successful use of software fault
localization techniques — developing such a theory calls for
extensive qualitative studies [51] with developers interacting
with such techniques.

To perform studies that focus on how to improve result
comprehension, we need tooling. Parnin and Orso have pointed
out that the SFL community needs to focus on tooling, but
in our survey we have not seen significant advancements in
this area. Although creating a tool requires a lot of effort,
we are not able to push forward SFL research if we do not
spend time on developing SFL tools. Therefore, we call for an
open source community for SFL tooling such that development
efforts can be distributed among researchers. Creating an open
source community for SFL also has the benefit that replication
studies are easier to perform and therefore allows comparisons
to be made. This tooling environment should also provide an
integrated, rich source of additional data that diagnostic tech-
niques can leverage. Using historical data to assess multiple-
fault prevalence [52] and constructing prediction models from
issue trackers to improve SFL diagnoses [53] are two examples
of work benefiting from such integration.

When tooling exists we are able to perform more user
studies. Since Parnin and Orso’s study, only five user studies
[27], [35], [37], [44], [45] have been performed. A possible
cause is that tooling does not yet exist and requires a lot
of effort to develop. However, user studies are essential to
fully understand how to improve the current state of SFL
techniques, and how to make SFL techniques being adopted
in the software development cycle.

VI. CONCLUSION

In the past two decades, substantial effort has been put
in improving software fault localization techniques. However,
Parnin and Orso were one of the first to perform a user study
and found that the assumptions made by SFL techniques do
not actually hold in practice. As an example, the common
assumption of perfect bug understanding does not hold in
practice. For this reason, Parnin and Orso suggested a number
of research directions which we generalized into absolute
evaluation metrics, result comprehension, ecosystems, and user
studies.

In our survey, we found that Since Parnin and Orso’s study,
the SFL research community is slowly adopting the abso-
lute evaluation metric. Furthermore, it has proposed several
techniques to improve result comprehension. Unfortunately,
substantially less effort has been put in developing ecosystems
and performing user studies, which play essential roles in
closing the gap between research and practice.

Based on these observations, we recommend the SFL re-
search community to focus on creating an ecosystem that
can be used by developers during debugging activities. Such
an ecosystem can serve as a framework for SFL such that
researchers can easily implement their techniques in the frame-
work and evaluate them in user studies. While current studies
mostly evaluate their SFL technique using absolute metrics,
actual adoption requires insights that can only be obtained
from user studies of automated debugging techniques used in
practice.
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