
Empirical Notes on the Interaction Between
Continuous Kernel Fuzzing and Development

Jukka Ruohonen
University of Turku, Finland

Email: juanruo@utu.fi

Kalle Rindell
SINTEF Digital, Norway

Email: kalle.rindell@sintef.no

Abstract—Fuzzing has been studied and applied ever since
the 1990s. Automated and continuous fuzzing has recently been
applied also to open source software projects, including the Linux
and BSD kernels. This paper concentrates on the practical aspects
of continuous kernel fuzzing in four open source kernels. Accord-
ing to the results, there are over 800 unresolved crashes reported
for the four kernels by the syzkaller/syzbot framework. Many
of these have been reported relatively long ago. Interestingly,
fuzzing-induced bugs have been resolved in the BSD kernels more
rapidly. Furthermore, assertions and debug checks, use-after-
frees, and general protection faults account for the majority of
bug types in the Linux kernel. About 23% of the fixed bugs in the
Linux kernel have either went through code review or additional
testing. Finally, only code churn provides a weak statistical signal
for explaining the associated bug fixing times in the Linux kernel.

Index Terms—Linux, BSD, crash, software vulnerability

I. INTRODUCTION

Fuzzing is essentially a software testing technique that
supplies invalid or random input to a software system with
the goal of crashing the system. It has long been an important
technique for improving software security (see [1] for a
comprehensive review of the history and associated literature).
Recently, fuzzing of operating system kernels has received
considerable attention [2], [3], [4], [5]. Another recent trend
has been the adoption of frameworks for continuous and
automated fuzzing of various open source projects. Despite of
these advances, only little research has been done for better un-
derstanding the practical software engineering aspects; fuzzing
is not only about finding crashes, but also about debugging,
fixing, and triaging bugs that may have serious security impli-
cations. These practical aspects provide the motivation for the
present work—as well as its contribution. In fact, the paper
is presumably the first to examine the software engineering
aspects of the recently introduced continuous kernel fuzzing
frameworks for the Linux and BSD operating system kernels.

While a “major goal of fuzzing and any bug discovery effort
is to find as many bugs as possible” [6], this goal is only
a part of the larger picture. The bugs found should be also
understandable and fixable with a reasonable amount of effort.
Given time and resource constraints, then, the benefits from
fuzzing should be evaluated also against the “costs related to
finding and fixing security related bugs” [7]. There are a couple
of important words embedded to the previous quotation: costs
and security. In commercial software development the costs

involved often refer to concrete money. Although “the cost per
defect is always less than the cost of a security compromise”,
such monetary aspects imply different business calculations,
including considerations about the return on investment and
the total cost of ownership [8]. Indirect costs are present also
in open source software development. If there is a shortage of
human resources and time—as is typically the case in most
open source software projects, prioritization is often necessary
in case a fuzzer outputs a large amount of crashes that may
be difficult and time-consuming to understand and debug.
Security is the obvious criterion for a prioritization; crashes
with a clear security impact should have a priority. However,
it is far from being straightforward to determine whether a
fuzzing-induced crash has explicit security implications.

Analogous cost-benefit-security issues have recently
sparked a lively debate in the open source community [9].
The debate has also touched the question about whether
Common Vulnerabilities and Exposures (CVEs) should be
mass-filed for the crashes found by the automated frameworks
that are nowadays continuously fuzzing many open source
projects. The CVE allocation question implicitly carries also
another tenet: the Linux kernel development culture has a
long history in explicitly or implicitly hiding security issues
in commit messages [10]. Historically many security bugs in
the Linux kernel have also lacked CVE identifiers [11], which
has made triaging and prioritization even more burdensome
for many stakeholders, including Linux distributions [12].

Even though CVEs are not the topic of the present work, the
practical focus is still maintained: the paper’s goal is to explore
bug fixing times, bug types, and related software engineering
aspects in the context of continuous kernel fuzzing. To this
end, three research questions are examined about crashes
and bugs triggered by syzkaller—a hybrid kernel fuzzing
framework developed by Google and associates [13]. The
dataset is based on the corresponding syzbot online dashboard
for tracking the crashes triggered by syzkaller [14]. Although
the primary focus is on the Linux kernel, also three BSD
kernels are briefly examined with respect to bug fixing times.

The structure of the paper’s remainder is straightforward.
Namely: the opening Section II outlines the research design,
including the research questions examined and a brief motiva-
tion for these; Section III presents the empirical results; and
the final Section IV concludes with a few remarks about the
answers reached, limitations, and directions for further work.

ar
X

iv
:1

90
9.

02
44

1v
1 

 [
cs

.S
E

] 
 5

 S
ep

 2
01

9



II. RESEARCH DESIGN

A. Research Questions

Three research questions are examined. The first is:
• RQ.1: (a) How long does it take to fix kernel bugs

triggered by kernel fuzzing, (b) and do the bug fixing times
vary across Linux, FreeBSD, NetBSD, and OpenBSD in
terms of empirical cumulative distribution functions?

This question is easy to justify. Bug fixing times are a
classical topic in software engineering. Although not all bugs
found by fuzzing are security bugs, previous results generally
indicate that also security bugs often take a surprisingly long
time to fix in many different contexts [15], [16]. Some bugs
are never fixed even though these have been recognized as
vulnerabilities [17]. No universal explanation is known for
these and related results. Numerous different explanations
are offered in the literature: some build on bug triaging
aspects and different incentives for vendors, bug reporters,
and developers [15], [18]; others stem from bug severity,
testing, architectural flaws, dependencies, code complexity,
and code churn [19], [20]; some are related to problems in
vulnerability disclosure and associated coordination, including
the allocation of CVEs for the vulnerabilities [16], [21]; and
so forth. Whatever the explanations may be, the first research
question is worth asking to better understand the time delays
associated with continuous fuzzing and automated testing in
general. As for the corollary question RQ.1b, the four kernels
mentioned again constitute a classical setup in empirical
software engineering [22]. Given the different history of the
four kernels and their different development cultures, a basic
hypothesis is that the three BSD kernels differ from the Linux
kernel also in terms of fixing times for fuzzing-induced bugs.

The second research question examined adds more context:
• RQ.2: (a) What types of bugs have been found in the

Linux kernel through kernel fuzzing, (b) and how often
the already fixed bugs have been reviewed and tested?

The types of crashes triggered are generally interesting.
Many of these are specific to the C programming language and
kernel development. These are relevant also for deducing about
the potential security implications. By using the Common
Weakness Enumeration (CWE) framework as a reference, the
examples include such security-related bug classes as NULL
pointer dereference (CWE-476), double frees (CWE-415),
uninitialized variables (CWE-457), use-after-free (CWE-416),
out-of-bounds reads (CWE-125) and writes (CWE-787), time-
of-check-time-of-use (CWE-367), and various different dead-
lock and race conditions (CWE-366, CWE-667, and CWE-
833, among others). Many of these bug classes have also
been typical to the Linux kernel throughout the decades [23].
Given that code reviews are extensively used in the Linux
kernel development [24], it can be expected that also crashes
reported by syzbot are at least sometimes reviewed and tested
by developers other than a given committer or a subsystem
maintainer. Thus, both RQ.2a and RQ.2b are worth asking.

The third research question launches a small probe into the
potential explanations behind the bug fixing times in Linux:

• RQ.3: Do the average bug fixing times in the Linux kernel
vary (a) according to bug types (RQ.2a), (b) according
to whether these have been reviewed and tested (RQ.2b),
and (c) do these further correlate with code churn?

This question is again easy to motivate with the help of the
noted literature on (security) bug fixing times. For instance,
different memory management bugs (such as CWE-415 and
CWE-416) could be assumed to yield faster fixing times
compared to stalls and deadlocks that are usually difficult
to debug especially in the kernel development context. In
general, a similar rationale applies to the coordination of
CVE identifiers and vulnerabilities in general [16]. Of course,
testing and reviewing take time, and thus RQ.3b implies a
clear-cut hypothesis. Finally, code churn in RQ.3c refers to
commit-by-commit churn (such as files modified or lines of
code added) that inevitably occurs when fixing bugs. The
Linux kernel is also famous for the extensive amount of
code churn [23]. Furthermore, different churn metrics have
been used for predicting bug-prone classes, files, or commits,
including cases where the bugs have been identified as vulner-
abilities [25], [26], [27]. This background justifies also RQ.3c.

B. Data

The dataset is based on a snapshot collected in 30th of June
2019 from the syzbot online dashboard [14]. In general, syzbot
refers to the software engineering or automation layer for the
syzkaller fuzzer. Together with compiler instrumentation, this
template-based and coverage-guided fuzzer relies on different
kernel sanitizers (see [28] and [29] for gentle introductions to
the technical details). The notable kernel sanitizers include
(but are not limited to) the KASAN (KernelAddressSANi-
tizer), KMSAN (KernelMemorySanitizer), and KTSAN (Ker-
nelThreadSanitizer) implementations. While the technical de-
tails are interesting, the paper’s practical software engineering
focus warrants three additional remarks about the data used.

First, the three BSD kernels are examined only with respect
to RQ.1. The reason is simple: due to different version
control and bug tracking systems, it is unclear how well the
BSD systems have so far been integrated into the syzbot
infrastructure. (Revealingly, a few fixed bugs in the BSD
kernels also miss links to the corresponding commits in the
online dashboard.) The same point applies to the reporting
functionality embedded to the infrastructure. For the Linux
kernel syzbot tries to also automatically report the crashes
to the respective subsystem maintainers [28], but a similar
functionality seems absent for the BSD kernels. A further
point can be made with respect to RQ.2b; the code review
practices differ between the Linux and the BSD kernels [24],
and, thus, direct comparability is problematic. Second, RQ.3b
and RQ.3c are examined only with respect to already fixed
bugs in the Linux kernel. The reason is again practical: while
syzbot tries to bisect the crashes to the specific commits that
introduced the bugs behind the crashes, it remains unclear how
well the bisection functionality works in practice. Therefore,
the already fixed bugs provide a more robust data source
because manual (human) evaluation has been present. Third,



there are one-to-many relations between commits and fuzzing-
produced crashes; a single commit may fix multiple bugs.
To deal with the issue, the evaluation of RQ.2b and RQ.3
operates at the bug-level. On one hand, this choice is justifiable
because it avoids aggregation that a commit-level analysis
would necessitate; on the other hand, some of the commit-
based values are replicated across multiple observations.

C. Methods

The first two research questions are examined with de-
scriptive statistics. The classical Kolmogorov-Smirnov test
is used for evaluating the question RQ.1b. The identifica-
tion of bug types for RQ.2 and RQ.3 is based on simple
string matching that is easy to apply thanks to the more
or less structured format outputted by the (Linux) kernel
sanitizers [28]. Regarding RQ.2b and RQ.3b, the evaluation is
based simply on searching the reviewed-by, tested-by,
and reviewed-and-tested-by character strings from
the lower-cased commit messages, as outputted by git’s
format=%B command line option. As for RQ.3c, it is worth
remarking that operationalization of code churn metrics varies
from a study to another [25], [26]. Therefore, it seems also
justified to use git’s shortstat option for the commit logs.

Two classical regression methods are used for RQ.3. First,
the average (mean) bug fixing times across the bug types iden-
tified are checked with analysis-of-variance (ANOVA). The
corollary questions entail a choice about a suitable regression
estimation strategy. In addition to ordinary least squares, the
typical choices in the domain include Poisson regression and
its variants, quantile regression, and survival analysis [16]. The
survival approach is used in the present work by using the
Cox’s classical proportional hazards regression model [30],
which, however, is closely related to the Poisson regression
in applied research [31]. In terms of computation, the car
package is used for the ANOVA checks [32], and the standard
R functions coxph and cox.zph for the Cox’s regression.

III. RESULTS

A. Bug Fixing Times (RQ.1)

The question about bug fixing time delays can be ap-
proached with two metrics: (a) “days-since-reported” (DSR),
that is, the days passed after syzbot first reported the still open
crashes, and (b) “time-to-fix” (TTF) difference available by
subtracting the days passed since the closed bugs were fixed
from the DSR values. This operationalization is common in
the domain [21]. The corresponding empirical cumulative dis-
tribution functions are shown in Fig. 1 and Fig. 2, respectively.

Quite a few fuzzing-generated crashes are still unresolved
for all four kernels. Some of these are also relatively old:
the medians for the pending crashes are 136 days for Linux,
51 days for FreeBSD, 53 days for NetBSD, and 119 days
for OpenBSD. If a year is used as a threshold for long-lived
bugs [33], there are as many as 80 long-lived bugs (crashes) in
the Linux kernel but none in the three BSD kernels. Provided
that some of these assumably have security implications, the
results are enough to remark that implicit risks are present for

0 100 200 300 400 500 600

Open bugs (crashes)

Days since reported

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

Linux (n = 708)
FreeBSD (n = 62)
NetBSD (n = 31)
OpenBSD (n = 27)

Fig. 1. Pending Bugs (Crashes) Across Four Kernels

0 100 200 300 400 500

Closed bugs

Time-to-fix (days)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

Linux (n = 1344)
FreeBSD (n = 19)
NetBSD (n = 19)
OpenBSD (n = 59)

Fig. 2. Bug Fixing Delays Across Four Kernels

TABLE I
TWO-SAMPLE KOLMOGOROV-SMIRNOV TESTSa

.

Days-since-reported (see Fig. 1)

Linux FreeBSD NetBSD OpenBSD

Linux 0.566 0.530 0.315
FreeBSD 0.387 0.556
NetBSD 0.481

Time-to-fix (see Fig. 2)

Linux FreeBSD NetBSD OpenBSD

Linux 0.410 0.536 0.404
FreeBSD 0.368 0.168
NetBSD 0.250
a The values shown refer to D-statistics; underlined values denote p ≥ 0.05.

running Linux kernels—though, explicit risks remain difficult
to state; even when security consequences have been verified
to be present, potential for exploitation is a different question.

When turning to the TTF values, however, it seems that
many of the already fixed bugs have been fixed relatively
posthaste. The median TTF is 38 days for the Linux kernel
and below 20 for all BSD kernels. A plausible but hypothetical
explanation is that crashes that are straightforward to interpret
and debug yield also fast bug fixes, whereas the still open
crashes may refer to particularly complicated “heisenbugs”.
The shapes of the empirical distributions for the TTF values
are also visually similar for all four kernels, although the much



higher amount of bugs for Linux distorts the image due to
a few bugs that have taken a long time to fix. The unequal
sample sizes warrant also some caution for interpreting the
Kolmogorov-Smirnov test results in Table I. Nevertheless,
the null hypotheses about equal distributions remain in force
(p ≥ 0.5) for the BSD kernels with respect to TTF but not
DSR. Although a closer examination can be left for further
work, a potential explanation may relate to the large amount
of code shared between FreeBSD, NetBSD, and OpenBSD.

B. Bug Types (RQ.2)

The summary fields outputted by syzbot can be used to
group the types of bugs found from the Linux kernel into nine
groups. The relative share of each type is shown in Table II.
Debug checks (WARNING) constitute the most common type.
Also assertions (BUG) are quite frequently triggered together
with use-after-free issues. The relatively large amount of
general protection faults is explained by the use of x86-based
Qemu virtual machines for the actual fuzzing. Interestingly,
there exists also some variance between the open crashes and
the already closed bugs in terms of the nine bug types listed.

TABLE II
BUG TYPES IN LINUX (% ACROSS BUG TYPES)

Open Closed Both

WARNING 18.9 18.9 18.9
Use-after-free 14.6 18.2 16.9
General protection fault 13.4 15.4 14.7
BUG 12.6 12.9 12.8
Out-of-bounds read/write 11.4 15.4 14.1
Deadlock/stall 3.4 2.9 3.1
Uninitialized value 5.2 6.2 5.8
NULL pointer dereference 1.3 0.8 1.0
Other 19.2 9.3 12.7∑

100.0 100.0 100.0

TABLE III
REVIEWED AND TESTED COMMITS (% WITHIN BUG TYPES)

Reviewed Tested Both

WARNING 11.4 9.8 21.3
Use-after-free 17.2 12.7 29.9
General protection fault 12.6 8.2 20.8
BUG 20.2 9.2 29.5
Out-of-bounds read/write 9.6 9.1 18.8
Deadlock/stall 5.1 2.6 7.7
Uninitialized value 4.8 4.8 9.6
NULL pointer dereference 27.3 0.0 27.3
Other 20.8 9.6 30.4

About 23% of the commits for the fixed bugs have been
either reviewed or tested by other developers. This rate seems
sensible; a much higher share is presumably present for com-
mits that introduce new features or make large restructurings.
Some of the bugs behind the crashes may be simple enough to
fix without code reviews. However, there exists some variance
across the nine bug types. This observation can be seen from
Table III, which shows the share of reviewed and tested

commits within each bug category. While fixing uninitialized
variables may not necessitate reviews or testing, the low
amount of reviews for deadlocks and stalls is a little surprising.

C. Regression Analysis (RQ.3)

The bug fixing times for the crashes reported by syzbot for
the Linux kernel tend to vary across the nine bug types for
the open crashes (DSR) but not for the already fixed bugs
(TTF). This observation can be seen from Table IV. While the
null hypotheses about equal means are rejected for both with
plain ANOVA, the Leneve’s test indicates heteroskedasticity
across the bug types; therefore, the Welch’s ANOVA shown
in the third column provides a better estimator [34]. Due
to the unequal sample sizes and different operationalization,
comparing the two cases does not make much sense, however.
The observation regarding TTF nevertheless provides a good
motivation to proceed into the more formal regression analysis.

TABLE IV
BUG FIXING TIMES AND BUG TYPES IN LINUX (p-VALUES)

n ANOVA Levene’s test Welch’s ANOVA

DSR 708 < 0.001 < 0.001 < 0.001
TTF 1344 < 0.001 0.021 0.084

The Cox’s regression relies on the proportional hazards
assumption. A violation of the assumption typically shows
itself visually when two or more (Kaplan-Meier) survival
curves drift into opposite directions, cross each other, or
something alike. A formal test is also available, and problems
are indicated by the test implemented in the R’s cox.zph
function. To adjust for the problems, the deadlock/stall class
was merged with general protection faults (cf. Table II), and
the variables for reviews and tests (cf. Table III) were unified
into a single variable. With this merging, the conventional
p < 0.05 threshold is not crossed for the TTF case of interest.
As can be further noted from Table V, the unified “faults and
deadlocks” variable still indicates some potential problems,
but the TTF model fitted seems sufficient for interpretation.

Thus, according to the final results in Table V, none of
the coefficients for the reclassified bug types are statistically
significant. All of the coefficients are also small in magnitude.
This observation conforms with the ANOVA results. The only
statistically significant coefficient is the one for the lines of
code modified. The sign of this coefficient is also as expected,
although also its magnitude is small. It can be also remarked
that the dataset contains one large commit, but the results do
not change much by excluding it.1 Although there may well
be some potential interactions between the variables, it seems
reasonable to tentatively conclude that only code churn seems
to provide a signal about potential explanations for the time-
to-fix values in the Linux kernel—yet even this signal is weak.

1 Identified by ab8085c130edd65be0d95cc95c28b51c4c6faf9d.



TABLE V
PROPORTIONAL HAZARDS ASSUMPTION (p-VALUES)

DSR TTF

Other (ref.) – –
WARNING 0.147 0.364
Use-after-free 0.434 0.847
Faults and deadlocks 0.001 0.038
BUG 0.001 0.396
Out-of-bounds read/write 0.180 0.125
Uninitialized value 0.722 0.240
NULL pointer dereference 0.162 0.727

Files modified – 0.215
Lines added – 0.371
Lines deleted – 0.146

Neither reviewed nor tested (ref. ) – –
Reviewed, tested, or both – 0.829

Global test 0.001 0.052

TABLE VI
COX’S REGRESSION RESULTS (TTF)

Coef. p-value

Other (ref.) – –
WARNING -0.091 0.406
Use-after-free -0.073 0.508
Faults and deadlocks -0.058 0.599
BUG 0.040 0.737
Out-of-bounds read/write 0.088 0.444
Uninitialized value 0.227 0.112
NULL pointer dereference -0.002 0.994

Files modified 0.040 0.042
Lines added -0.001 0.313
Lines deleted -0.001 0.600

Neither reviewed nor tested (ref. ) – –
Reviewed, tested, or both -0.127 0.064

IV. DISCUSSION

A. Conclusions

This short exploratory paper examined three questions. The
answers to the questions can be summarized as follows:

• The answer to RQ.1 is two-fold: on one hand, many
bugs particularly in the BSD kernels are fixed relatively
quickly; on the other hand, there are over 800 open
crashes for the four kernels examined, and many of
these have been reported relatively long ago. In terms of
the already fixed bugs, the fixing times are also similar
between the BSD kernels. Much more crashes and bugs
have reported for the Linux kernel, which partially also
explains the observation that some of these are quite old.

• Regarding RQ.2, the bug types are typical: assertions
and debug checks (BUG and WARNING), use-after-frees
(CWE-416), and general protection faults account for the
majority of bugs in the sample. About 23% of the fixed
bugs in the Linux kernel have went through code review
and/or testing. This low amount is a small surprise.

• The answer to RQ.3 is clear: the bug types, code reviews,
and additional testing do not seem to provide a solid

statistical explanation for the bug fixing times in the
Linux kernel. In fact, only one metric for code churn (files
modified) seems to provide a weak statistical signal.

Particularly the answer to RQ.3 is interesting: simple expla-
nations for the bug fixing times do not seem plausible. This
result provides a motivation for further empirical research.

B. Limitations

Four limitations can be briefly noted. The first is conceptual:
the crashes reported by syzbot may or may not equate to
unique bugs. In other words, a single bug may be responsible
for multiple crashes [5], [35]. Therefore, comparisons like
the one in Fig. 1 should be interpreted with care. More
generally, false positives and reproducibility are typical issues
for automated continuous fuzzing [2]. The second limitation
is empirical: bugs found via fuzzing should be compared to
“conventional” bugs found and reported by humans as well
as other types of automated kernel testing. To patch this
limitation, comparisons such as the one in Table III might
be augmented with a random sample of other commits, for
instance. The third limitation is longitudinal: only a snapshot
limited to an early period of continuous kernel fuzzing was
analyzed. The last limitation is methodological: inference with
statistical significance should be approached with caution.

C. Further Work

Fuzzing has been extensively studied ever since the 1990s.
In recent years kernel fuzzing has received particular attention.
While also the potential benefits from machine learning have
been considered, the considerations have concentrated on
technical aspects, such as coverage, seed selection, and input
generation [36]. Very little work has been done on the practical
software engineering side. This side includes questions about
prioritization, cost-benefit analysis [8], maintenance, and vul-
nerability tracking. Addressing these questions is not about
strict verification, but more about providing heuristics for
helping developers to analyze, fix, triage, and prioritize crashes
reported by continuous fuzzing techniques. In this regard, three
avenues for further empirical work seem worthwhile.

First, the answer to RQ.3 allows to hypothesize that fixing
bugs found by fuzzing may differ from more general bug fix-
ing. If further research shows that there indeed is a difference,
also practical improvements are easier to justify. Second, more
research is required for providing hints to determine whether
a crash has security implications. The crash dumps provide
a good data source for this task. In addition to the general
literature on mining of crash dumps, stack traces, and related
outputs [35], [37], some recent work has also been done for
automatically determining whether fuzzing-triggered crashes
are exploitable based on the associated crash dumps [38].
Third, mining of commit messages may provide further in-
sights about security implications. There is also some work
for mapping textual information to CWEs [39], for instance.
Further data mining may also help at explaining the bug
fixing times; indeed, both stack traces [37] and (security) bug
severity [19] have been observed to correlate with fixing times.



REFERENCES

[1] C. Chen, B. Cui, J. Ma, R. Wu, J. Guo, and W. Liu, “A Systematic
Review of Fuzzing Techniques,” Computers & Security, vol. 75, pp.
118–137, 2018.

[2] C. Carabas and M. Carabas, “Fuzzing the Linux Kernel,” in Proceedings
of the Computing Conference. London: IEEE, 2017, pp. 839–843.

[3] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna, “DIFUZE: Interface Aware Fuzzing for Kernel Drivers,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS 2017). Dallas: ACM, 2017, pp.
2123–2138.

[4] H. Han and S. K. Cha, “IMF: Inferred Model-Based Fuzzer,” in
Proceedings of the Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS 2017). Dallas: ACM,
2017, pp. 2345–2358.

[5] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels,” in
Proceedings of the 26th USENIX Security Symposium. Vancouver:
USENIX, 2017, pp. 167–182.

[6] M. Zhao and P. Liu, “Empirical Analysis and Modeling of Black-Box
Mutational Fuzzing,” in Proceedings of the 8th International Symposium
on Engineering Secure Software and Systems (ESSoS 2016), Lecture
Notes in Computer Science (Volume 9639), J. Caballero, E. Bodden,
and E. Athanasopoulos, Eds. London: Springer, 2016, pp. 173–189.

[7] A. Takanen, “Proactive Security Testing and Fuzzing,” in Highlights
of the Information Security Solutions Europe 2009 Conference (ISSE
2009), N. Pohlmann, H. Reimer, and W. Schneider, Eds. The Hague:
Springer, pp. 312–319.

[8] ——, “Fuzzing for the Masses,” Network Security, no. 8, pp. 4–6, 2008.
[9] J. Edge, “CVE-less Vulnerabilities,” 2019, Linux Weekly News (LWN),

available online in June 2019: https://lwn.net/Articles/791855/.
[10] J. Corbet, “Handling Kernel Security Problems,” 2008, Linux Weekly

News (LWN), available online in June 2019: https://lwn.net/Articles/
290227/.

[11] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen, “Mining
Bug Databases for Unidentified Software Vulnerabilities,” in Proceed-
ings of the 5th International Conference on Human System Interactions
(HSI 2012). Perth: IEEE, 2012, pp. 89–96.

[12] D. Vyukov, “syzbot and the Tale of Thousand Kernel Bugs,” in
Linux Security Summit, Vancouver, 2018, Available online in July
2019: https://events.linuxfoundation.org/wp-content/uploads/2017/11/
Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.
pdf.

[13] Google, Inc. et al., “syzkaller,” 2019, Available online in July: https:
//github.com/google/syzkaller.

[14] ——, “syzbot,” 2019, Data scraped in 30th of June 2019 from the online
dashboard at: https://syzkaller.appspot.com/.

[15] J. Ruohonen, “A Demand-Side Viewpoint to Software Vulnerabilities
in WordPress Plugins,” in Proceedings of the 23rd Conference on
the Evaluation and Assessment in Software Engineering (EASE 2019).
Copenhagen: ACM, 2019, pp. 222–228.

[16] J. Ruohonen, S. Rauti, S. Hyrynsalmi, and V. Leppänen, “A Case Study
on Software Vulnerability Coordination,” Information and Software
Technology, vol. 103, pp. 239–257, 2018.

[17] A. Gorbenko, A. Romanovsky, O. Tarasyuk, and O. Biloborodov,
“Experience Report: Study of Vulnerabilities of Enterprise Operating
Systems,” in Proceedings of the IEEE 28th International Symposium on
Software Reliability Engineering (ISSRE 2017). Toulouse: IEEE, 2017,
pp. 205–215.

[18] H. Hosseini, R. Nguyen, and M. W. Godfrey, “A Market-Based Bug
Allocation Mechanism Using Predictive Bug Lifetimes,” in Proceedings
of the 16th European Conference on Software Maintenance and Reengi-
neering (CSMR 2012). Szeged: IEEE, 2012, pp. 149–158.

[19] B. Chinthanet, R. G. Kula, T. Ishio, A. Ihara, and K. Matsumoto, “On
the Lag of Library Vulnerability Updates: An Investigation into the
Repackage and Delivery of Security Fixes Within The npm JavaScript
Ecosystem,” 2019, Archived manuscript, available online in July: https:
//arxiv.org/abs/1907.03407.

[20] A. Lamkanfi and S. Demeyer, “Filtering Bug Reports for Fix-Time
Analysis,” in Proceedings of the 16th European Conference on Software
Maintenance and Reengineering (CSMR 2012). Szeged: IEEE, 2012,
pp. 379–384.

[21] S. M. Muegge and S. M. M. Murshed, “Time to Discover and Fix
Software Vulnerabilities in Open Source Software Projects: Notes on
Measurement and Data Availability,” in Proceedings of the Portland In-
ternational Conference on Management of Engineering and Technology
(PICMET 2018). Honolulu: IEEE, 2018, pp. 1–10.

[22] D. Spinellis, “A Tale of Four Kernels,” in Proceedings of the Inter-
national Conference on Software Engineering (ICSE 2008). Leipzig:
ACM, 2008, pp. 381–390.

[23] N. Palix, G. Thomas, S. Saha, C. Calvès, G. Muller, and J. Lawall,
“Faults in Linux 2.6,” ACM Transactions on Computer Systems, vol. 32,
no. 2, pp. 4:1–4:40, 2014.

[24] P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey, “Peer Review
on Open-Source Software Projects: Parameters, Statistical Models, and
Theory,” ACM Transactions on Software Engineering and Methodology,
vol. 23, no. 4, pp. 35:1–35:33, 2014.

[25] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and
B. Spates, “When a Patch Goes Bad: Exploring the Properties of
Vulnerability-Contributing Commits,” in Proceedings of the ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM 2013). Baltimore: IEEE, 2013, pp. 64–74.

[26] N. Nagappan and T. Ball, “Use of Relative Code Churn Measures
to Predict System Defect Density,” in Proceedings. 27th International
Conference on Software Engineering (ICSE 2005). Saint Louis: IEEE,
2005, pp. 284–292.

[27] Y. Shin, A. Meneely, and L. Williams, “Evaluating Complexity, Code
Churn, and Developer Activity Metrics as Indicators of Software Vul-
nerabilities,” IEEE Transactions on Software Engineering, vol. 37, no. 6,
pp. 772–787, 2011.

[28] D. Vyukov, “syzbot: Automated Kernel Testing,” in Linux
Plumbers Conference, Vancouver, 2018, Available online in July
2019: https://www.linuxplumbersconf.org/event/2/contributions/237/
attachments/61/71/syzbot automated kernel testing.pdf.

[29] D. Drysdale, “Coverage-Guided Kernel Fuzzing with syzkaller,” 2016,
Linux Weekly News (LWN), available online in June 2019: https://lwn.
net/Articles/677764/.

[30] D. R. Cox, “Regression Models and Life-Tables,” Journal of the
Royal Statistical Society. Series B (Methodological), vol. 34, no. 2, pp.
187–220, 1972.

[31] P. W. Callas, H. Pastides, and D. W. Hosmer, “Empirical Comparisons
of Proportional Hazards, Poisson, and Logistic Regression Modeling of
Occupational Cohort Data,” American Journal of Industrial Medicine,
vol. 33, no. 1, pp. 33–47, 1998.

[32] J. Fox and S. Weisberg, An R Companion to Applied Regression.
Thousand Oaks: Sage, 2011.

[33] R. K. Saha, S. Khurshid, and D. E. Perry, “An Empirical Study of
Long Lived Bugs,” in Proceedings of the IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE).
Antwerp: IEEE, 2014, pp. 144–153.

[34] B. L. Welch, “The Generalization of ‘Student’s’ Problem when Several
Different Population Variances are Involved,” Biometrika, vol. 34, no.
1/2, pp. 28–35, 1947.

[35] M. A. Ghafoor and J. H. Siddiqui, “Cross Platform Bug Correlation
Using Stack Traces,” in Proceedings of the International Conference
on Frontiers of Information Technology (FIT 2016). Islamabad: IEEE,
2016, pp. 199–204.

[36] G. J. Saavedra, K. N. Rodhouse, D. M. Dunlavy, and P. W. Kegelmeyer,
“A Review of Machine Learning Applications in Fuzzing,” 2019,
Archived manuscript, available online in June 2019: https://arxiv.org/
abs/1906.11133.

[37] A. Schröter, N. Bettenburg, and R. Premraj, “Do Stack Traces Help
Developers Fix Bugs,” in Proceedings of the 7th IEEE Working Confer-
ence on Mining Software Repositories (MSR 2010). Cape Town: IEEE,
2010, pp. 118–121.

[38] G. Yan, J. Lu, Z. Shu, and Y. Kucuk, “ExploitMeter: Combining
Fuzzing with Machine Learning for Automated Evaluation of Software
Exploitability,” in Proceedings of the IEEE Symposium on Privacy-
Aware Computing (PAC 2017). Washington: IEEE, 2017, pp. 164–175.

[39] J. Ruohonen and V. Leppänen, “Toward Validation of Textual Infor-
mation Retrieval Techniques for Software Weaknesses,” in Proceedings
of the 29th International Workshop on Database and Expert Systems
Applications (DEXA 2018). Regensburg: Springer, 2018, pp. 265–277.

https://lwn.net/Articles/791855/
https://lwn.net/Articles/290227/
https://lwn.net/Articles/290227/
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/11/Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://syzkaller.appspot.com/
https://arxiv.org/abs/1907.03407
https://arxiv.org/abs/1907.03407
https://www.linuxplumbersconf.org/event/2/contributions/237/attachments/61/71/syzbot_automated_kernel_testing.pdf
https://www.linuxplumbersconf.org/event/2/contributions/237/attachments/61/71/syzbot_automated_kernel_testing.pdf
https://lwn.net/Articles/677764/
https://lwn.net/Articles/677764/
https://arxiv.org/abs/1906.11133
https://arxiv.org/abs/1906.11133

	I Introduction
	II Research Design
	II-A Research Questions
	II-B Data
	II-C Methods

	III Results
	III-A Bug Fixing Times (RQ.1)
	III-B Bug Types (RQ.2)
	III-C Regression Analysis (RQ.3)

	IV Discussion
	IV-A Conclusions
	IV-B Limitations
	IV-C Further Work

	References

