
HAL Id: hal-03270744
https://hal.science/hal-03270744

Submitted on 25 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static and Verifiable Memory Partitioning for
Safety-Critical Systems

Jean Guyomarc’H, Jean-Baptiste Hervé

To cite this version:
Jean Guyomarc’H, Jean-Baptiste Hervé. Static and Verifiable Memory Partitioning for Safety-Critical
Systems. 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISS-
REW), Oct 2020, Coimbra, Portugal. pp.79-84, �10.1109/ISSREW51248.2020.00041�. �hal-03270744�

https://hal.science/hal-03270744
https://hal.archives-ouvertes.fr


Static and Verifiable Memory Partitioning for
Safety-Critical Systems

Jean Guyomarc’h
Krono-Safe

Université Paris-Saclay / CNRS / SATIE
Massy, France

jean.guyomarch@krono-safe.com

Jean-Baptiste Hervé
Krono-Safe

Massy, France
jean-baptiste.herve@krono-safe.com

Abstract—Multitasking enables multiple tasks to be executed
on the same hardware, and spatial partitioning aims at en-
forcing a strong isolation between them: tasks must not access
memory regions for which they were not granted permission.
This behavior is enforced at run-time by memory protection
schemes enabled by dedicated hardware components. Today,
memory protection is widely implemented on a great diversity of
systems, mostly with dynamic requirements (e.g. variable number
of tasks). Safety-critical systems must comply with high level of
certification to ensure minimal probability of failure and are
subject to stringent requirements on the embedded executable,
which makes memory protection mandatory, but requires impor-
tant certification efforts. This paper presents a method for the
generation of static and verifiable memory partitioning schemes
towards safety-critical systems, aiming at reducing certification
costs without compromising safety properties.

Index Terms—static memory protection, spatial partitioning,
certification of safety-critical systems

I. INTRODUCTION

Multitasking enables for different tasks to share the same
hardware execution context. It allows a modularization into
independent entities that may communicate with each other,
effectively allowing a distributed development. However, with-
out spatial isolation, this approach incurs security and safety
issues, as tasks would be free to read, write and execute data
and code of other tasks. Spatial partitioning is a technique
contributing to fault containment: tasks then can only access
memory addresses which permissions were explicitly granted,
effectively reducing the impact of a task failure on the overall
system. As such, memory partitioning can be found in indus-
trial domains with safety considerations such as avionics [1]
or automotive [2].

Because of the hazards that may be caused by the failure
of safety-critical systems, the process of developing these
systems is complex and costly, with a relatively high time-
to-market [3]. To minimize the risk of failure, static and
immutable approaches are preferred to dynamic behaviors,
because they can be analyzed more in-depth and verified off-
line. Spatial partitioning is widely used today, and has received
much attention for dynamic systems spawning tasks on-the-fly.
However, purely static approaches that are well-suited towards
safety-critical systems seem to have received less interest.

This paper contributes to reduce certification efforts of
safety-critical systems, by presenting an automated and

portable method enabling static and verifiable spatial parti-
tioning schemes through configurable memory positioning and
the generation of precomputed memory protection tables to be
embedded in the certified binary. The generated artifacts would
be subject to a validation process, which can be automated by
appropriate tooling, in conformance with certification docu-
ments.

After detailing in Sec. II the background context and review-
ing related work, we present in Sec. III a method performing
off-line spatial partitioning. We then describe in Sec. IV an
implementation of this method applied to an industrial use-
case leveraging the NXP QorIQ P2020 platform before we
conclude in Sec. V.

II. BACKGROUND AND RELATED WORK

Spatial partitioning has been extensively documented in the
literature for more than forty years to isolate tasks and ensure
they do not perform illegal inter-task accesses [4]. It is a by-
default option proposed by most modern operating systems
over a wide range of devices, as long as they have built-
in hardware support. Because this paper focuses on static
approaches with a fixed set of tasks, systems with dynamic
requirements are out of the scope of this paper, but for
completeness, a review is presented by Achermann in [5]. We
assume the execution of tasks to be controlled by a privileged
kernel.

Hardware-assisted memory partitioning is mostly imple-
mented by Memory Protection Units (MPU) or Memory
Management Units (MMU). Assuming a proper configuration
by software, their ability to raise hardware exceptions when
invalid memory accesses are detected at run-time enables
them to enforce security and safety requirements [1]. MMUs
are usually more complex than MPUs because they aim at
providing more elaborate functions such as virtual addressing
and the notion of memory pages. Our work can be applied
to both components, regardless of the memory model (flat or
with virtual addressing).

Brygier et al. [6] state that the PikeOS microkernel con-
figures the MMU statically at boot-time in a way that it
cannot be re-configured during the nominal execution of their
system. It is not explained whether the memory protection
configuration tables are computed on-line during boot or if



they were precomputed (in that case, the process of generation
is undocumented). Similarly, Perret et al. [7] also claim that
their system makes use of a static MMU configuration at boot-
time only. But they also do not explain how this configuration
is generated.

The closest work to ours seems to be described in papers
from Camier et al. [8] and Louise et al. [9], who mention
that spatial partitioning of their real-time kernel OASIS is
performed by loading MMU configuration tables that are
statically generated at compile-time. However, the generation
process is not explained. Similarly, David et al. [10] claim
to have invented a system making use of similar tables, but
without providing any detail on their generation.

To the best of our knowledge, no method aiming at auto-
matically performing precomputed, static and verifiable spatial
positioning for safety-critical systems has been documented in
the literature.

III. METHOD

We present in this section an automated, compiler-agnostic
and portable method to generate certifiable executables with
static spatial partitioning that embed their own precomputed
memory protection configuration as verifiable binary data.

A. Leveraging qualified toolchains

Toolchains are mostly composed of a compiler that converts
a source file (probably written using the C programming
language) into binary object files, and a linker that generates
a single binary executable from input object files and a linker
script that describes the final layout of the executable. Safety-
critical systems usually rely on qualified toolchains, that have
been chosen by industrials in the certification process and
cannot be substituted with third-party components. As such,
the method we propose uses exclusively unmodified off-the-
shelf toolchains for compilation and link operations. The
following assumptions on the toolchains are made in this
paper:

1) the linker must be configurable through the use of linker
scripts, or an equivalent feature. In the rest of this
paper, we assume linker scripts are used to control the
execution of the linker.

2) The compiler and linker must be independent programs
that can be called separately. Although this is not a
strict requirement, it makes the method easier to describe
and probably simplifies the industrial process as well,
by avoiding the propagation of source code throughout
different entities.

3) The linker is deterministic: it always produces the same
output for a fixed and ordered set of inputs.

B. Identify hardware requirements

Because memory protection is implemented by diverse
hardware components, they may induce various additional
constraints on memory partitioning. These usually consist
in alignment requirements: a range of memory addresses to
be protected with specific permissions may be aligned with

respect to hardware-dependent requirements. The following
examples illustrate this diversity:

• the MPU on single-CPU Cortex-M3 requires protected
addresses to be aligned to a multiple of the size of the
protected region;

• the MPU of the MPC5777M microcontroller by NXP
allows arbitrary range size support without alignment
constraints;

• the MMU of the T1042 and P2020 platforms by NXP al-
lows to protect pages aligned on powers of four kilobytes
(the size of a page must be 4n kB with n ∈ [1, 11]).

The identified hardware constraints (e.g. alignment,
MPU/MMU, page levels) have a direct influence on the
next steps of the method that are detailed in the next sections.

C. Memory positioning configuration

Memory positioning consists in placing objects of interest
at specific memory addresses, effectively enabling to group
together objects to be protected with the same permissions.
It may also be used to take full benefit of the hardware
capabilities, such as core-local memories, but this side-effect
of memory positioning is not detailed as it is out of the scope
of this paper.

Linker scripts enable to perform memory positioning by
instructing the linker, during the link operation on how input
sections belonging to input object files are to be integrated
to output sections in the final binary. Positioning may be
explicitly performed by the application designer by specifying
where objects must be placed; but because this is a tedious
process, it is more convenient to consider a higher level of
abstraction.

In this section, we briefly present an abstracted view of
memory positioning tied with memory protection require-
ments, which together enable a concise descriptive view of
spatial partitioning.

1) Groups: it is often needed to aggregate multiple input
sections in one output section. For example, placing all input
sections containing read-only constants of a set of objects in
one output section. Every object involved in the application
shall belong to one or more groups, effectively describing po-
sitioning relations between input sections and output sections.

2) Domains: as hardware memory descriptors may be in
small amount (especially when an MPU is used), it may be
convenient to group together output sections with the same
memory permissions. As such, a domain is a collection of
adjacent output sections that share the same memory permis-
sions.

3) Regions: represent the available hardware memories, and
as such describe a fixed-size range of physical addresses. They
specify the final memory layout by containing the domains
presented earlier.

These concepts are illustrated in Fig. 1, where groups are
shown by the mapping of input sections to output sections
in the final binary. Three execution contexts are presented:
kernel, task A and task B. In this example, the kernel may
not access any running task, so all the sections related to task



.data

.bss

.rodata

.text

ob
je

ct
1

.data1

.data2

.textob
je

ct
2

.data1

.data2

.data3

.rodata

.bss

ob
je

ct
3

...

.task_A_text

.task_A_data

.task_A_bss

.task_A_rodata

.task_A_shared

...

no access execute no access

no access read-only no access

no access read-write read-only

no access read-write no access

Kernel Context Task A Context Task B Context

input sections output sectionsgroups

domain a

domain b

domain c

domain d

region R

Fig. 1. Illustration of memory positioning where the input sections of three objects used by the task A are mapped to the output sections constituting the final
binary. The arrows indicate the positioning strategy specified by groups. For example, the section .data2 of object 3 is to be contained within the section
.task_A_shared of the binary. On the right of output sections are shown examples of different memory permissions to be applied depending on which
context is running, described by four domains (a, b, c and d). For example, the output section .task_A_shared can be accessed in read-write when task
A is running, read-only when task B is running, and cannot be accessed at all by the kernel. All these domains are placed in one physical memory region R.

A are tagged as no access when the kernel runs. Similarly,
task B shall not access data or code owned by the task A, at
the exception of a shared data area that task B may only read.
When task A runs, the traditional permissions model is applied
on its own code and data. It can be seen that several output
sections are covered by one domain (domain b) when they are
to be protected with the same permissions. This allows to use
less memory descriptors at run-time, saving performance.

D. Automated binary generation process

The ultimate goal of the method is to generate an object
file containing memory protection tables providing ranges of
addresses to be protected. For obvious security and safety
reasons, these tables must contain their own memory protec-
tion configuration, so the memory protection policy cannot
be altered at run-time. These can be referred to from other
object files through the definition of a symbol. This enables
the executable to embed these information with a simple link
operation, without requiring post-link modifications, leverag-
ing the use of qualified linkers. However, as explained later,
generating such tables may be challenging.

Because this method relies on an off-the-shelf linker, the
link operation is considered atomic: addresses and sizes are
only known at the end of the link operation. Because the
linker may perform link-time optimizations, such as relax-
ation, which may affect the size of output sections, the sizes
cannot be reliably determined before linking has completed.
This is especially problematic to describe memory pages
of variable size: depending on the hardware, they may be
required to be aligned on their size, which is unknown until
the link operation has finished. This makes it impossible to
specify proper alignment constraints to the linker. Assuming
that all pages have the same size avoids this problem, but
forces suboptimal memory paging. In the general case, this
causes a cyclic dependency between the object defining the

protection tables and the binary that contains them, because
the tables require addresses and sizes, and memory positioning
is constrained by sizes, which are only known after the link
has completed.

Purely static positioning (i.e. specifying physical addresses
in the linker script) would remove this dependency, because
addresses and size bounds would be known before the link.
However, it requires manual intervention and a possibly te-
dious trial and error process in case of link failures. The
method we propose manages to automatically and systemat-
ically break this cycle to generate a binary containing exact
self-describing tables.

Fig. 2 illustrates the overall method, which is iterative and
convergent. A generator is a program to be written depending
on hardware constraints and the syntax of the linker script. It
processes memory positioning configuration and, if available,
the binary generated by a previous iteration. Of course, the
binary is unavailable for the first iteration. Then, it generates
a linker script and an object file by calling a compiler from
the toolchain (for example the C compiler) on a generated
source file. These generated files are then used as-is by the
linker so an executable binary can be generated. When the
embedding of self-describing tables is complete, the binary
shall be ready for validation, otherwise a new iteration must be
performed. Trivial requirements may allow to greatly simplify
the generation process, we focus here on a more general case.

Before the first link can happen, protection tables must
be generated, so the linker can find the symbol pointing to
them. Otherwise, the symbol would be undefined, and the
link would fail. To allow the first link to complete, a dummy
symbol must be generated. It would point to meaningless data,
resulting on an binary that would malfunction if executed. This
binary would be taken as an input of the next iteration. At the
n+ 1 iteration, the generator is able to extract addresses and



sizes from the binary produced at iteration n, by using binary
analyzers such as LIEF [11]. These additional information pro-
vide the generator with more context to instantiate protection
tables that would be linked during this iteration. The process
ends when the data structures produced by the generator hold
every address and sizes of domains to be protected, included
themselves.

Application Sources

Application Objects

linkldscript

tables.o

generator

Memory
Positioning

Configuration

BINARY X
Validationcc

Fig. 2. Compiler-agnostic, hardware-specific method enabling the off-line
generation of a verifiable static memory configuration tables embedded within
the application binary. A cycle of link operations involving application objects,
a generated linker script and a generated object containing protection tables
ensures the generation of the binary with self-describing protection tables.

E. Verification strategy

Memory protection tables generated by the method pre-
sented in Fig. 2 can be seen as Parameter Data Items (PDI)
considered by the DO-178C airborne certification standard:
configuration data that influence the run-time behavior of the
system without modifying the executable object code [12].
Binary analyzers (e.g. ELF decoders) can retrieve information
from this table for validation purposes. These are used by
qualified tools, such as the (in-development) suite ASTERIOS
Checker described by Methni et al. [13] that verify the
correctness and the compliance of the PDI embedded in the
binary with the specification. This implies that the generator
itself does not need to be qualified, because its outputs are
verified with a qualified tool.

The correctness of the memory positioning can be estimated
by verifying that the resulting memory layout matches the
specifications as described by the positioning abstraction pre-
sented in Sec. III-C. Interestingly, this abstraction enables to
factorize validation algorithms; if portions are of course target-
specific, most work is actually target-agnostic. It effectively
simplifies the development effort of the checking tool.

The main benefit of this approach is to greatly reduce
certification efforts. Data that are generated off-line are less
costly to verify than developing run-time code that must be
fully-compliant with respect to certification processes. Also,
core parts of the checker tool can be re-used among a variety
of projects, reducing even more development efforts.

F. Portability

As previously stated, the method must be implemented for
a given hardware and a specific compiler. Its implementation

can then be reused on an arbitrary number of applications that
are built with this compiler and this hardware. This portability
property among applications allows significant reuse between
industrial projects that share the same hardware and compiler
base, including the validation strategy presented earlier.

To illustrate the genericity of the presented method, it
has been implemented at Krono-Safe for various hardware
platforms, including MPPA Coolidge by Kalray, MPC5777M
by NXP, QorIQ by NXP (P2020, T1042), Aurix TriCore TC-
39x by Infineon or STM32MP157 by ST. It supports several
off-the shelf compilers such as GCC, the Wind River Diab
Compiler or the Tasking compiler by Altium.

IV. USE CASE: SPATIAL PARTITIONING ON NXP P2020

In this section, we study one industrial use-case at Krono-
Safe: generating off-line static and verifiable tables describing
the memory protection of a safety-critical avionic applica-
tion on the NXP QorIQ P2020 platform. This application
relies on the ASTERIOS real-time kernel and its associated
toolchain, which are described in [13]. We detail how the
method presented in Sec. III has been implemented to generate
a certifiable executable embedding self-describing memory
configuration tables that can be validated off-line.

A. Toolchain

The Wind River Diab Compiler is the toolchain involved
in this use-case. The application sources are written in C and
compiled to object files by a C compiler named dcc. The link
operation, which can be driven by linker scripts, is performed
by the linker dld. The name of these programs is used later
in this section to refer to portions of the toolchain.

B. Hardware overview of the NXP QorIQ P2020 platform

The NXP QorIQ P2020 platform is based on e500v2 Pow-
erPC cores by NXP [14]. On this hardware target, memory
protection is implemented by a MMU through the software
configuration of Translation Lookaside Buffers (TLB). Each
core has two TLB arrays (named TLB0 and TLB1), with two
cache levels each. The level one caches are entirely hardware-
managed, and as such are out of the scope of this paper
because they cannot be directly controlled through software.
Level two caches are unified, meaning that they contain both
data and instruction pages. If the page size is fixed to 4 kB
for TLB0, they are of variable size for TLB1 (from 4 kB to
4 GB). It is required that pages must be aligned on their size.

MMU pages can be loaded into the TLB arrays through a
set of MMU Assist Registers (or MAS) that must be set to
appropriate values. After the MAS registers are configured,
calling the TLB write entry instruction (tlbwe) makes the
page load effective. Upon context switches, TLB entries are
evicted by triggering a Flash Invalidate of the TLB arrays
by writing a bit in a separate MMU control register. Entries
are used by different execution contexts, such as userland and
kernel. Userland is used to run user tasks with few privileges.
The kernel, which is responsible of changing memory protec-
tion upon context switches, runs with supervisor privileges.



Kernel entries must be loaded at any time because in case
of an interruption or a system call, the code will branch
directly in the exception vectors, without a chance to load other
descriptors, effectively preventing the system from triggering
kernel code. As such, these entries are loaded to the TLB1
array with a special bit set: IPROT (invalidation protected),
to prevent their invalidation.

C. Identification of run-time data

As the TLB arrays are rather different (fixed versus variable
page size, set/way and fully associative, number of available
entries), the usage that the kernel has of each TLB arrays are
different.

1) Run-time data required by TLB0: as the TLB0 array has
a fixed page size of 4 kB, and a large number of entries (512),
one memory domain will be covered by several 4 kB pages.
So, we need to generate several page descriptors per domain.
As it is set/way associative, we need to know the final address
of each page to know in which set it will be loaded by the TLB
array. Only then, we can compute the index of the way to be
used for each page, knowing the pages that would already be
loaded when we load the new one. The information needed by
the operating system to load the appropriate page descriptors
upon context switches are to be stored as pre-computed, read-
only data structures:

• the start address of the domain;
• MAS2 indicators such as write-through, cache-inhibited;
• MAS3 permission attributes;
• the number of 4 kB pages to create;
• for each page to be created, the Entry Select value, which

is the index of the way in the set.
2) Run-time data required by TLB1: as the TLB1 array

has fewer available entries, but supports variable page size,
one domain can be protected by one page. We will change
the size of the page to match the size of the domain. The
following run-time information are required by the operating
system:

• the start address of the domain;
• MAS2 indicators such as write-through, cache-inhibited;
• MAS3 permission attributes;
• the TSIZE value, which is given by the size of the

protected domain. The final page size is computed as
4TSIZE kB.

• The Entry Select value, which is the index of the entry
within the TLB array.

• The value of the IPROT flag, to prevent eviction of
entries.

D. Generating the spatial descriptors

The final spatial descriptors are expected to contain the
exact addresses, size and entry select values of all the memory
domains, including themselves. It is indeed mandatory that
memory protection cannot be overridden at run-time by rogue
code execution. Because the TLB arrays may have different
page sizes and because they have to be aligned on their size,
off-line generation of spatial descriptors is laborious. Some

information, such as size boundary addresses are unknown
until a link operation.

A possible implementation of the generic method proposed
in Sec. III would be to perform a chain of four link operations.
This is illustrated in Fig. 3, which shows the four different
steps, that are detailed below.

1) Determining the size of application domains: Before a
link can occur, protection tables must be generated, because
some object files refer to the symbol indicating where pro-
tection tables are defined. But because these cannot be fully
generated until a link has been completed, empty tables are
instead generated (in the object empty.o). This effectively
allows the required symbol to be defined, enabling the initial
link to complete. The resulting binary is of course ill-formed
and cannot be used as-is, because protection tables are mean-
ingless. However sizes of output sections (and therefore of
domains) can be deduced from an analysis of the binary. At
the end of this first link, the following information can be
deduced from a binary analysis:

• the size of each domain covered by the TLB0;
• the number of TLB0 entries;
• the size of each domain covered by the TLB1 (with the

exception of protection tables) ; and
• the number of TLB1 entries.
2) Determining the size of all domains: Thanks to the first

link, the exact count of descriptors for TLB0 and TLB1 are
known. This enables to generate hollow protection tables that
are properly sized (in the object hollow.o). Their contents
is still meaningless, but the linker will allocate the required
amount of memory to hold the final protection tables. The
resulting binary is still ill-formed, but it can be inspected to
retrieve the exact size of every domain.

3) Determining the address of all domains: Because the
result of the second link gives all the sizes, it is now possible
to generate a linker script that align domains on their own size,
which enables to freeze the spatial partitioning of the domains.
The protection tables are still hollow at this point, because the
addresses of domains are still unknown. The resulting binary
enables to retrieve the exact addresses of every domain.

4) Generating the final binary: The result of the third link
enables to populate protection tables with meaningful values
because all the addresses and sizes are known. The fourth
link is performed by replacing the hollow tables with the final
tables. Since the final tables are placed at the same address
than the hollow tables and because they have the same size, the
other domains shall remain untouched. A final inspection on
the resulting binary allows to verify that this assertion holds.
The final binary is then processed by ASTERIOS Checker (at
least partially, because this tool is under development) to verify
its memory layout respects the specifications of the system.

V. CONCLUSION

We have presented a compiler-agnostic method contributing
to the spatial partitioning of certifiable executables, which has
been developed at Krono-Safe and implemented on a variety of
hardware platforms. It features the generation of precomputed



ldscript generator

objects dld empty.o

BINARY
• TLB0 entries
• TLB0 sizes
• TLB1 entries

ldscript generator

objects dld hollow.o

BINARY

• TLB0 entries
• TLB0 sizes
• TLB1 entries
• TLB1 sizes

ldscript generator

objects dld hollow.o

BINARY • TLB0 addresses
• TLB1 addresses

ldscript generator

objects dld final.o

BINARY X
Validation

User configuration
• Memory permissions.
• Memory attributes (e.g. cacheable).
• Positioning heuristic configuration (optional).

dcc

dcc

dcc

dcc

1)

2)

3)

4)

Fig. 3. Four-links process using the Wind River Diab compiler, implementing
the generic method illustrated in Fig. 2. It enables the generation of an
executable containing self-describing memory protection tables. Each link and
compile operations are performed by off-the-shelf compilers. The objects on
the left side are generated from the user application code, and are never
modified.

and static memory protection tables describing how a fixed set
of tasks are to be protected during the execution of a safety-
critical system. Because the executable binary to be certified
embeds self-describing tables, these can be verified off-line
with appropriate tooling, reducing the certification efforts for
equivalent run-time algorithms. As this method can be fully
automated, we believe it contributes to reduce certification
costs without compromising safety properties.

ACKNOWLEDGMENT

We would like to thank engineers from Krono-Safe who
indirectly helped contributing to this paper by their discus-
sions and implementations; François Guerret, Matthieu Texier,
Amira Methni and Jean-Marc Lacroix for their reviews.

REFERENCES

[1] J. Windsor and K. Hjortnaes, “Time and space partitioning in spacecraft
avionics,” in 2009 Third IEEE International Conference on Space
Mission Challenges for Information Technology. IEEE, 2009, pp. 13–
20.

[2] D. Haworth, T. Jordan, A. Mattausch, and A. Much, “Freedom
from interference for autosar-based ecus: a partitioned autosar stack,”
Automotive-Safety & Security 2012, 2012.

[3] L. Rierson, Developing safety-critical software: a practical guide for
aviation software and DO-178C compliance. CRC Press, 2013.

[4] J. H. Saltzer, “Protection and the control of information sharing in
multics,” Communications of the ACM, vol. 17, no. 7, pp. 388–402,
1974.

[5] R. Achermann, “On memory addressing,” Ph.D. dissertation, ETH
Zurich, 2020.

[6] J. Brygier and M. Oezer, “Safety and security for the internet of things,”
in 8th European Congress on Embedded Real Time Software and Systems
(ERTS 2016), TOULOUSE, France, Jan. 2016.

[7] Q. Perret, P. Maurere, E. Noulard, C. Pagetti, P. Sainrat, and B. Tri-
quet, “Temporal isolation of hard real-time applications on many-core
processors,” in 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2016, pp. 1–11.

[8] J. S. Camier, C. Aussagues, M. Lemerre, and V. David, “A Toolchain For
Designing And Implementing Efficient, Flexible And Safety-Critical Ap-
plications,” in Embedded Real Time Software and Systems (ERTS2008),
Toulouse, France, Jan. 2008.

[9] S. Louise, M. Lemerre, C. Aussagues, and V. David, “The oasis kernel:
A framework for high dependability real-time systems,” in 2011 IEEE
13th International Symposium on High-Assurance Systems Engineering.
IEEE, 2011, pp. 95–103.

[10] V. David and J. Delcoigne, “Security method making deterministic real
time execution of multitask applications of control and command type
with error confinement,” Nov. 20 2007, uS Patent 7,299,383.

[11] R. Thomas, “Lief - library to instrument executable formats,”
https://lief.quarkslab.com/, April 2017.

[12] R. RTCA DO-178 and EUROCAE, “Software Considerations in Air-
borne Systems and Equipment Certification,” RTCA DO-178C, 2011.

[13] A. Methni, E. Ohayon, and F. Thurieau, “ASTERIOS Checker : A
Verification Tool for Certifying Airborne Software,” in 10th European
Congress on Embedded Real Time Systems (ERTS 2020), Toulouse,
France, Jan. 2020.

[14] PowerPC e500 Core Family Reference Manual, Rev1, NXP, september
2011, with errata.


