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Abstract — In this paper, we address the problem of dataset 

quality in the context of Machine Learning (ML)-based critical 

systems. We briefly analyse the applicability of some existing 

standards dealing with data and show that the specificities of the 

ML context are neither properly captured nor taken into ac-

count. As a first answer to this concerning situation, we propose 

a dataset specification and verification process, and apply it on 

a signal recognition system from the railway domain. In addi-

tion, we also give a list of recommendations for the collection 

and management of datasets. This work is one step towards the 

dataset engineering process that will be required for ML to be 

used on safety critical systems.    

Keywords—datasets, certification process, machine learning 

I. INTRODUCTION 

Datasets are the main inputs for machine learning (ML) algo-

rithms. Hence, compliance of an ML system to its intended 

function obviously strongly depends on the quality of those 

data. 

Quality is defined by the ISO9000 as “the degree to which a 

set of inherent characteristics of an object fulfils require-

ments” [1, Sec. 3.6.2] or, according to the DO-200B [2], 

“[the] degree or level of confidence that the data provided 

meets the requirements of the user”. 

In this paper, we make explicit those “inherent characteris-

tics”, explain their relations to the system requirements, and 

show how to verify them on a train signal recognition system 

application.  

Ensuring the quality of a ML system dataset is difficult, in 

particular because the relation between the characteristics of 

the data and their effect on the compliance of the ML system 

to its requirements is notoriously complex and difficult to es-

tablish. Even worse, the set of characteristics itself is difficult 

to establish, as we will illustrate later on our use case.    
Various sets of data quality characteristics or dimensions 

have been proposed in standards or in the literature [2],[3]. 

Among them, we can mention: Accuracy, Accessibility, Con-

sistency, Relevance and Fitness, Timeliness, Traceability, 

Usability. Some quality dimensions can be universal like Ac-

curacy or context specific like Timeliness.  
These quality dimensions (and the associated quality man-

agement activities) have initially been developed in the con-

text of statistical studies or forecasting. ML brings a whole 

new set of difficulties since those data are not only used to 

extract information but to build a model that will be used to 

process other data and determine the behaviour of a system, 

and more specifically, the behaviour of a critical system sub-

mitted to a certification process.  

The objective of certification is to demonstrate that a system 

satisfies some high-level objectives, such as, in the aeronau-

tical domain, those stated in the CS 25.1309 [4]. Demonstra-

tion of compliance usually rely on detailed industry standard 

recognized by the certification authorities as acceptable 

means of compliance. However, existing means of compli-

ance (e.g., ED-12/DO178C [5], ED-79/ARP4754 [6], etc.) 

have been designed for “classical” systems based on explicit, 

deterministic implementations. Those means of compliance 

need to be complemented to address ML methods based on 

statistical reasoning. In addition, classical methods usually 

place the emphasis on the processing of data (by software or 

hardware), not on the data themselves. Generally, data are in-

puts processed by the system (acquired via sensors), parame-

ters of the system (e.g., configuration parameters, calibration 

data, etc.), or databases used by the system (e.g., navigation 

databases, obstacle databases, etc.). Those data may deter-

mine more or less strongly the behaviour of the system, but 

they do not describe the logic of this behaviour, as it is the 

case for machine learning. To some extent, data in ML play a 

similar role as binary code in classical systems. Therefore, 

existing means of compliance need to be revised to address 

this new role of data, possibly relying on existing practices 

(see Section III).   
Therefore, we propose in this paper a workflow (i.e., activi-

ties and artefacts) to address the question of dataset quality in 

the context of the development of a ML-based certified sys-

tem. This workflow is organized around the following main 

artefacts: 
 A Dataset Definition Standard (DDS),  

 A Dataset Requirement Specification (DRS) 
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 A Dataset Verification Plan (DVP) 

In the following, we describe those artefacts and the overall 

workflow that produces and consumes them. We illustrate 

them in our concrete use case.  

The rest of the paper is organized as follows: Section II gives 

an overview of related works in the general context and in the 

context of machine learning; Section III presents the existing 

practices about data quality in the aeronautical and railway 

domains, and analyse how these practices relate to the prob-

lem of data quality for ML; Section IV briefly introduces our 

use case; Section V presents our workflow and illustrates its 

application in our use case; finally, section 0 concludes the 

paper.   

II. RELATED WORKS 

Many authors have discussed data quality dimensions [3], 

[7]–[11]. A comprehensive presentation of data quality is 

proposed in [3], from which the definitions of the following 

data quality dimensions are taken:   
 Accuracy:  a measure of the correctness of the content of 

the data (which requires an authoritative source of refer-

ence to be identified and accessible) 

 Accessibility: refers to how easily data can be accessed; 

the awareness of data users of what data is being collected 

and knowing where it is located 

 Consistency: determines the extent to which distinct data 

instances provide non-conflicting information about the 

same underlying data object 

 Timeliness: data are up to date (current) and information 

is available on time 

 Traceability: the lineage of the data is verifiable,  

 Usability: refers to the extent to which data can be ac-

cessed and understood 

 Relevance: refers to the extent to which the data meet the 

needs of users. Information needs may change and is im-

portant that reviews take place to ensure data collected is 

still relevant for decision makers. 

These data quality dimensions can be used in different con-

texts such as statistical analysis or software system certifica-

tion. For this reason, their importance and impact and even 

definition can vary depending on the domain of application. 

An interesting study of the relation between data and safety 

in the context of automotive application is found in [12]. The 

authors explore the impact of data quality in a critical system. 

In this work, data is classically a software input.  In the con-

text of ML, particularly with Deep Learning (DL), new diffi-

culties arise:  

 Training datasets may be part of the system specification, 

or possibly, the specification itself 

 Small biases on data can have nearly unpredictable con-

sequences on the system behaviour 

 The overall system performance is assessed, at least pri-

marily, on datasets.  

                                                           
1 The "ARINC 424" navigation database. 

Several recent works focus on the question of data qualities 

for Machine Learning, including [13] which proposes a sur-

vey of the literature complemented by a series of interview 

with data scientists concerning data quality models for Ma-

chine Learning,  or [14] which propose a framework to man-

age the data quality lifecycle in this context. Our work ex-

ploits those results by proposing a curated list of recommen-

dations (the DDS, see Section V.B) that could form the basis 

for a future standard dedicated to dataset management for 

safety critical ML systems. 

III. STANDARDS AND DATASETS 

Developing standards and regulations for ML-based certified 

systems is an on-going effort. In particular, there is currently 

no agreed standard and no regulation on datasets applicable 

to such systems. However, in a different but similar context, 

datasets have been used for a long time in a certified environ-

ment. This is for instance the case of the navigation data used 

to guide aircrafts. Hereafter, we present the standard that is 

applicable to such data. 

A. Data quality in the aeronautical domain: the ED-

76A/DO-200B 

In aviation, aeronautical data are managed according to a pro-

cess defined in ED-76A/DO-200B [2] entitled ‘Standards for 

Processing Aeronautical Data’.  

The ED-76A/DO-200B is applicable to aeronautic databases 

used by ground or airborne systems that may have an effect 

on safety. A typical example is the Navigation System Data 

Base1 [15] used by Flight Management Systems. It shall be 

noted that compliance to the DO-200B does not say anything 

about the data themselves; it only provides “guidance and re-

quirements for data processing activities that may occur be-

tween data origination and end use” [2]. 

This standard is recognized as an acceptable means of com-

pliance with aviation safety regulations for providers of data 

services. Even if this standard is not directly applicable to 

Machine Learning, we propose here a short description of the 

proposed process, in order to explain how data are usually 

managed in a certified environment. 

According to ED-76A/DO-200B, the compliance of data with 

the requirements is demonstrated based on: 
 A definition of Data Quality Requirements (DQRs), 

 A definition of Data Processing Requirements (DPRs), 

 A definition of Quality Management Requirements 

(DMRs). 

DATA QUALITY REQUIREMENTS (DQRS) 

In the context of the ED-76A/DO-200B, the data quality re-

quirements cover the following qualities: accuracy, resolu-

tion, assurance level (confidence that the data is not cor-

rupted), traceability, timeliness, completeness, and format. 

DATA PROCESSING REQUIREMENTS (DPRS) 



  

In order to ensure that data are processed in a way that pre-

serves the DQRs, data processing requirements are also de-

fined. These requirements include the following aspects: 

 Definition of the data processing procedure 

 Data configuration management 

 Competency management 

 Tool qualification 

 Cybersecurity 

QUALITY MANAGEMENT REQUIREMENTS (QMRS) 

Quality management requirements ensure that data meets the 

agreed DQRs and that the relevant data processing proce-

dures are indeed applied. These requirements define how 

DQRs and compliance with data processing procedures are 

checked (using quality reviews, audits and controls for exam-

ple). 

B. Data quality in the railway domain: the EN50128  

For railway systems, a relevant standard is the EN50128 [16]. 

The latest version of this standard does not really cover the 

case of the introduction of ML techniques in railway systems. 

It simply and briefly mentions IA techniques as a possible 

means to forecast and correct defaults, and determine mainte-

nance action [16, Sec. D.1]. In addition, this only concerns 

SIL0 systems (i.e., system with the less demanding Safety In-

tegrity level).  

The case for the data used to configure a software application 

is addressed in  [16, Sec. 8], “Application data development”. 

The objective of the data development process is (i) to obtain 

the data correctly from the concerned installation and the ver-

ification of the behaviour of the system, and (ii) to evaluate 

the development process used to produce those data. This 

process is based on a preparation plan that ensures that the 

application data are “complete, correct and compatible with 

each other and with the application”. Techniques for prepar-

ing the data are recommended depending on the level of SIL 

[16, Sec. A], Table A.11, but the recommendations remain 

very general. Nevertheless, it is worth noting that formal 

proof is highly recommended for the verification of data used 

in SIL3 and 4 systems.  

[17] gives an interesting example on how such formal verifi-

cation can be performed on configuration data representing 

the geographical arrangement of track equipment, but it is 

worth noting that – in this case –  data show a strong level of 

organization that facilitate the mathematical expression, and 

then verification, of properties (for instance, the graph of “ar-

eas” must be strongly connected). 

C. Other domains 

A comprehensive analysis of all standards being out of the 

scope of this paper, we will simply mention the SOTIF [18], 

a standard focused on some of the concerns raised by the use 

of ML for road vehicles. This standard proposes a series of 

measures to address hazardous behaviours resulting from 

“limitations of the implemented functions”, including limita-

tions due to “the inability of [a] function to correctly compre-

hend the situation to operate safely” such as the one that can 

be encountered for “functions that use machine algo-

rithms”. However, the standard remains at system level, and 

does not provide any specific recommendation about the data 

collection process, besides stating that “the data collection 

and learning system to be developed according to safety 

standards, with attention given to reducing hazards such as 

unintended bias or distortion in the collected data” [18, Ap-

pendix G].  

 

D. Applicability to ML datasets  

The general approach proposed in the ED-76A/DO-200B or 

EN50128 standards is overall relevant and applicable to the 

datasets of a ML-based certified product. In particular, defin-

ing data quality, data processing, quality management re-

quirements, and verification procedures are necessary in or-

der to ensure that the datasets actually have the expected qual-

ity attributes. 
However, it shall be noticed that the datasets considered in 

both the ED-76A/DO-200B and EN50128 also show signifi-

cant differences with respect to the datasets used in ML, in 

particular:  

 The datasets concerned by the ED-76A/DO-200B or 

EN50128 are inputs of some data processing activity 

(e.g., computation of an aircraft trajectory, management 

of the state of some track side signalling. Even if those 

data may strongly determine the actual behaviour of the 

system, the set of possible behaviours is still described 

by some software or hardware description code. In prac-

tice, some properties on the system may be verified by 

the sole analysis of the code, without even considering 

the actual data. In the case of ML, the actual behaviour 

is largely determined by the data used to train the model. 

 The set of requirements with which the datasets con-

cerned by the ED-76A/DO-200B or 

EN5128 must comply can be fairly easily expressed. In-

deed, it derives from the requirements applicable to the 

function. For instance, the precision of the geographical 

locations of runways and taxiways on an airport map is 

completely determined by the required precision of the 

trajectory and the algorithms used to compute this trajec-

tory.  

In the case of the dataset used by ML, this link also ex-

ists, but is much more difficult to establish formally since 

the “algorithm” itself derives from the data.  

 The completeness of the databases considered in ED-

76A/DO-200B or EN5128 is generally easy to define and 

verify because the completeness criterion can be ex-

pressed in simple and clear terms such as “all runways 

and taxiways of all airport in France”, “all track signals 

in this areas”, etc. Things are much more complicated 

when considering ML datasets since the input space is 

usually infinite, and strict completeness must be replaced 

by some statistical criterion (sampling criterion). 

 Finally, in ML, the dataset may even be considered as 

part of the specification (or even the complete specifica-

tion) of the system in the specific cases where the behav-

iour can only be specified by means of a series of (input, 

output) pairs.  

 



  

 

 

IV. THE RAILWAY USE CASE  

To illustrate our approach, we have considered an Automatic 

Signal Processing system (ASP). An ASP is aimed at recog-

nizing the state of a light signal applicable to the train, a task 

that is currently performed by train drivers. The reader can 

find in Harb et al. [19] a large public dataset illustrating this 

use case. 

The ASP shall remain vision-based in order to limit the im-

pact on the infrastructure, and limit the cost of its deployment. 

In our study, the ASP uses ML-based algorithm. 

This use case shows two interesting properties with respect to 

the objective of our study: it implements a fairly simple task 

(recognizing a light signal) and it operates in an open and 

weakly structured environment. 

Before describing the system architecture, an overview of the 

principles of railway signalling is proposed. 

A. Railway Signalling Principles 

In the railway field, signalling establishes a link between 

some infrastructure elements (track, bridges, etc.) and the 

rolling stock (trains) [20]. Signalling has a dual role. On the 

one hand, it plays a significant role on safety by authoriz-

ing/forbidding/stopping the movements  of trains, protecting 

the passengers and workers, etc. On the other hand, it allows 

the efficient operation of traffic by regulating trains. It actu-

ally is one of the most important component for the railway 

system [21]–[23]. This system is considered to be SIL 4 

which is roughly equivalent to a DAL A in the aeronautical 

domain.  

For safety reasons, trains must be separated by a minimum 

interval of time, or headway (see Figure 1). This parameter is 

a key input in calculating the overall route capacity of any 

transit system. Thereby, a system requiring large headways 

causes more empty spaces than passenger capacity, which 

lowers the total number of passengers or cargo quantity trans-

ported through a given length of line. The role of light signals 

is to ensure the minimal headways that both ensures safety 

and maximizes the line capacity.   

B. ASP description  

Figure 2 (left) describes the driver’s actions when the train is 

approaching a signal [24]. The ASP shall perform the same 

tasks. For operational reasons, the ASP shall work in weather 

conditions and lines contexts that are both very complex and 

variable. In addition, the signal can be occluded or damaged. 

Figure 2 (right) gives an overview of the system architecture. 

The machine-learning algorithm under consideration is de-

picted by the black box.  

The input of the algorithm is one RGB image and one box 

that bounds the signalling equipment to process. For each im-

age, the system shall produce an estimation of the signal state.  

The ML algorithm is trained from images captured by a cam-

era installed on a real equipment.  

V. OUR PROPOSAL 

Considering that existing standards such as the ED-76A/DO-

200B or the EN50128 to ML Datasets only cover part of the 

problem, a new approach to develop datasets is needed. In 

this paper, we suggest to rely on three main documents: 

 The  Dataset Definition Standard (DDS), which ex-

presses general recommendations about the building 

of datasets 
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Figure 2. Overview of the ASP function (left) and Architecture (right).  
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Figure 1. Signalling principles 



  

 The Dataset Requirement Specification (DRS), 

which collects all requirements applicable to the da-

taset 

 The Dataset Verification Plan (DVP), which defines 

procedures to verify the compliance of the dataset 

with its specification.  

The content of these documents is respectively detailed in 

Sections B, C, and D below. Those documents are developed 

through a tight collaboration between various actors.  

A.Actors and responsibilities 

The construction and verification of the dataset requires the 

collaboration of three different experts: the application ex-

pert, the acquisition systems expert, and the machine learning 

expert.  
The application expert brings his knowledge of the use case 

at hand: operational scenarios, consequences of a system be-

haviour, operational conditions, certification standards, and 

usage of the field. Above all, he ensures the dataset represent-

ativeness. He has a fundamental role in the DRS production.   

The second expert is the Acquisition System expert. It is com-

mon to use “off-the-shelf” data or acquisition system to create 

a dataset, but it is a bad practice. The acquisition expert shall 

bring his knowledge about important parameters, equivalence 

classes, potential perturbations and their impact on the data, 

correct handling of the data (e.g. compression impact). He 

can anticipate consequences of the operational constraints. 

His role is very important in the DRS and DVP creation.   
Finally, the third expert is the Machine Learning expert. Ma-

chine learning expert’s role is to ensure that good practices in 

datasets creation are fully applied (e.g. no mix of data be-

tween training and testing which can easily occur in case of 

images coming from video acquisitions). For instance, he 

guarantees the statistical quality of the dataset: correct bias 

handling, dataset size, coherence of the annotation, etc. He 

brings the knowledge of the DDS requirements and can work 

to its adaptation to the application during the DRS construc-

tion.   

B. Dataset Definition Standard (DDS) 

The Dataset Definition Standard [25] collects generic recom-

mendations stemming from the machine learning field. All of 

those recommendations have a positive effect on the quality 

of the dataset, and the relevant artefacts and procedures in the 

development of a critical system shall comply with all these 

recommendations. 

In the following, we present some elements of our DDS. 

However, defining such a standard is a significant and diffi-

cult work which should ideally be carried out jointly by the 

machine learning community and by standardization bodies. 

DDS extends the classes of requirements given by ED-

76A/DO-200B about data quality  [26, Sec. 2.3] and data pro-

cessing procedures  [26, Sec. 2.4] to take into account the 

specificities of Machine Learning.  

Requirements on data qualities are extended to cover issues 

such as  

 Representativeness and biases  

 Reliability (e.g., absence of outliers) 

 Redundancy and consistency 

 Etc. 

The set of procedures are also extended to address   

 The data collection process (e.g., the size of the da-

taset w.r.t  the complexity of the model)  

 The annotation process, in order to ensure an ade-

quate labelling of data in supervised learning  

 The data protection process, in order to prevent the 

unexpected alteration of data during the data pre-

processing phases 

 The constitution of the learning, validation, and test 

datasets, in order to maintain the quality of the per-

formance assessment 

 Etc. 

The DDS contains generic requirements applicable to the de-

velopment of any ML-based system. Genericity is achieved 

by abstraction, i.e., statement of general rules (e.g., splitting 

of datasets) or by exhaustion (coverage of all types of data 

that can be encountered in embedded systems). To be applied 

in a specific use case. This is done in the DRS (see next sec-

tion).   

The document is organized according to the data quality at-

tributes. For each of them, we  

 define the attribute:  

“[DEF-21.1] [...] A sample is said to be representative if 

it contains key features with the same distribution of the 

actual population […]”  

 

 express the objectives and explain why it is relevant 

from a safety perspective :  

“[OBJ-21.1] […] The dataset used for the system devel-

opment shall be representative of the situations that will 

be encountered by the system in operation. Representa-

tiveness is required for the learning phase to capture cor-

rectly the expected behaviour of the system in operation. 

It is also required for the performance evaluation of the 

system to be significant. […], ” 

 

 state recommendations: 

“[REC-21-1] Acquisition of the data used to build the 

dataset must be done with an acquisition chain as close 

as possible to the one that will be used in operation. Any 

difference shall be justified and its effects on the learning 

process must be assessed. […]” 

 

“[REC-21.2] [...] Dataset is composed of independent 

and identically distributed data (i.i.d) […]” 

 

“[REC-21-3] The different classes that a system must 

discriminate must be represented in the dataset in the 

same proportion as in operations. Any difference must be 

justified (*) […]” 

(*) Some biases may be justified to orient the system to-

wards safety, or for fine grain performance analysis. 

 

“[REC-21-4] The dataset shall be large enough to allow 

performance estimations with the appropriate confidence 



  

 

 

level. The size of the dataset may be estimated according 

to bounds derived from Bernstein Inequalities (see e.g., 

[27]).”  

 

Note that those recommendations sometimes require to be in-

terpreted in the specific context of the system under design. 

 For instance, let’s take the following recommendation:  

“[REC-42-2] Redundancy shall be avoided between the val-

idation and test datasets. […]”.  

 In the context of the signal recognition system, the input is a 

series of images captured in sequence, but our algorithm pro-

cesses its inputs “image by image”, as if they were independ-

ent, uncorrelated. So, when splitting into train, validation, and 

test subsets, care shall be taken not to spread quasi identical 

images in the train and test subsets. If this recommendation is 

not applied, there is a risk for the tests to give over-optimistic 

performance assessment. 

 

The first version of the document contains around 50 recom-

mendations. Simple examples of the kind of rules found in 

the DDS are shown in Figure 3.  

C. Dataset Requirement Specification (DRS) 

The Dataset Requirement Specification (DRS) captures and 

refines the system requirements allocated to the dataset com-

ponent of the system.  The dataset specification also contains 

derived requirements, i.e. requirements that are not directly 

traceable to the system specification. This is the case of the 

DRS requirements deriving from the DDS (see Figure 3). 

Requirements assigned to the dataset must satisfy the usual 

properties of requirements, including validity, completeness 

(and representativeness), and innocuity.  

Validity 

To some extent, the dataset can be considered as an explicit, 

or enumerated, version of the high-level specification of the 

intended function (or of part of it). So, the dataset shall con-

tain a set of (input, output) couples that fully comply with the 

specification. In practice, this implies that all (input, output) 

pair must be validated with respect to the specification before 

being used in the training process. 

Completeness and representativeness  
The specification shall also be complete. In the case of a da-

taset, this boils down to being representative of all foreseea-

ble conditions (in particular, environmental conditions) that 

will be encountered by the system during its operational life.  

In our use case, for instance, it is explicitly required that the 

system will operate day and night. This is usually interpreted 

as “in any situation where the light level is in the range [X,Y] 

lumen”. The feature is the “light level”. (Note that this could 

also be interpreted as a range of elevations of the sun). So, 

“light level” must be one of the features to be specified in the 

DRS.   

But most features are not mentioned in the high-level speci-

fication. For instance, it is likely that the “phase of the moon” 

is not considered.  

So, the problem consists to define a systematic and (econom-

ically) reasonable process to identify the relevant features to 

be selected. 

The relevance criterion is hard to express because it basically 

depends on the effect of the feature on the Machine Learning 

algorithm. At the time the dataset is established, the algorithm 

may be neither chosen nor implemented yet, so it may be very 

difficult to estimate a priori if a given feature will play a role 

on the capability of the system to perform the intended func-

tion. Note that this means that it may be wise to refine the 

dataset specification conjointly to the refinement of the Ma-

chine Learning system… It is the role of the three experts de-

scribed above to anticipate relevant parameters and translate 

them in the DRS.   

The selection of features may first be based on field experi-

ence. For instance, a train driver “knows” – by   experience – 

that the speed of the train plays a significant role on the capa-

bility to recognize a signal. Contrast changes is another “fea-

ture” that may affect the performance of a human driver. 

Even though “speed” or “contrast changes” may play a much 

less significant effect on a Machine Learning component than 

on a human, it seems wise and safe to consider them in the 

list of “relevant” features. In practice, the DRS will specify 

C2 - Restricted
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Figure 3. Relation between DDS and DRS 



  

how the train speeds and how contrast changes shall be cov-

ered by the dataset. 

Conversely, other features not considered to play a role on the 

performance of a human (e.g. the temperature) may be very 

relevant for a Machine Learning algorithm.  

So, in order to minimize the risk of missing an important fea-

ture, we definitely need a systematic approach to identify 

them.  

The only input of our system is an image (i.e., a set of pixels), 

we propose to perform a systematic analysis to determine 

what, in the environment, may affect this image.  

In practice, we have to consider the complete optical path go-

ing from the light source to the sensor, analyse the properties 

of all elements involved in this optical path and their relation 

to the image. This is illustrated on Figure 4 which shows the 

various components involved in the overall system, and their 

relations. For instance, the camera and the train are related by 

a mechanical link. The train and the track, the track and the 

ground, the signal and the ground are all related by mechani-

cal links. Those links must be analysed carefully to determine 

the features to be accounted for in the definition of the da-

taset.  
For instance, the bank angle of the track modifies the orien-

tation of the signal on the image, and so do the vibrations of 

the camera, the presence of rain, etc. All those features have 

to be integrated in the list of relevant features. 

Generally speaking, the analysis shall cover the acquisition 

chain but also all elements (electrical, mechanical, environ-

mental) that may have an impact on the image. 

Innocuity 

Besides being complete, the dataset shall not specify anything 

else but the intended function, or if it is not the case, demon-

stration shall be given that any additional function has no neg-

ative effect on safety.  

D.  Dataset Verification Plan (DVP)  

The Dataset Verification Plan (DVP) is used to demonstrate 

the compliance of a particular dataset with the DRS it is sup-

                                                           
2 See https://www.astropy.org.   

posed to implement. The DVP provides a verification proce-

dure for each requirement of the DRS. In some cases, the pro-

cedure can be implemented by a computer program and is 

then described by a pseudo code (or any convenient lan-

guage). In other cases, the procedure must be implemented 

manually and is then described as a sequence of actions.  
It is not rare that datasets are created in an iterative manner, 

hence applying regularly the DVP to the current iterations of 

the dataset helps to precisely measure the compliance of the 

dataset with its DRS.  
The DVP must be established before the dataset is actually 

created. Indeed, verification activities may require additional 

information besides the one that will be used for training 

(those metadata will be recorded with the data).  

In general, automatic processing for data quality verification 

is preferable, as it is not impacted by human factor and can 

be used iteratively on the dataset (allowing to measure dataset 

quality improvement). It can exhaustively parse the dataset, 

it is in general faster and cheaper. In case of automatic veri-

fication, DVP contains the verification code or pseudo code, 

parsing strategy, and error tolerance.  

Unfortunately, automatic verification is not always possible 

and some characteristics are verified manually. In this case, 

DVP contains a comprehensive description of the verification 

strategy, data sampling strategy, and decision criteria, inspec-

tors ‘skills and profiles, and verification tools. 

In the following, we provide one example of procedure in the 

context of our use case. It illustrates an automatic verification 

specification. In outdoor applications, like in automatic signal 

state classification, the sun elevation is of great importance, 

because it introduces great differences in the landscape ap-

pearance (e.g. shadows) and can have high impact on images 

quality (e.g. flare). The sun elevation histogram can be auto-

matically checked, for example using the Astropy2 package. 

This example illustrates how constants defined by the DRS 

are used by the DVP. It shows also the role played by the 

DVP in the acquisition system specifications (e.g. need of 

GPS and time acquisition). After the checking procedure, the 

decision criteria are clearly described.  
 

Train

Track Ground

Camera

Sun

Signal

SUD

Mechanical 
link

Environment

Atmosphere
Obstacles

Light

Optical 
link
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VI. CONCLUSIONS AND FUTURE WORK 

The appropriate building and management of datasets is a 

necessary condition to get confidence in a Machine learning 

based system. Learning from inadequate data (e.g. irrelevant, 

truncated, incomplete…) leads inevitably to an inadequate 

behaviour.  

We have seen that the data used for the training of ML sys-

tems are by nature very different from those considered in the 

current quality standards applicable to safety critical systems. 

Their domain, structure, and relation to the system behaviour 

strongly differ from those of the data contained in the data-

bases or set of configuration parameters concerned by those 

standards. Even though recommendations given by those 

standards are also applicable on ML datasets, they are defin-

itively not sufficient. 

In this paper, we have presented a first approach to engineer 

the dataset as an integral part the system under design. To-

wards that goal, we have proposed an approach and three ar-

tefacts – the Dataset Definition Standard, the Data Require-

ment Specification, and the Data Verification plan – used to 

specify and verify datasets and have applied this “approach” 

on an image processing use case in the railway domain.   

In the next phase, we plan to analyse some of the recommen-

dations given in the Dataset Definition Standard from a math-

ematical perspective (e.g., representativeness). 
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