
Managing Service Dependency for Cloud
Reliability: The Industrial Practice

Tianyi Yang∗, Baitong Li∗, Jiacheng Shen∗, Yuxin Su†, Yongqiang Yang‡, and Michael R. Lyu∗
∗Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR.

Email: {tyyang, btli, jcshen, lyu}@cse.cuhk.edu.hk
†School of Software Engineering, Sun Yat-Sen Univeristy, Zhuhai, China. Email: suyx35@mail.sysu.edu.cn

‡Computing and Networking Innovation Lab, Huawei Cloud, Shenzhen, China. Email: yangyongqiang@huawei.com

Abstract—Interactions between cloud services result in service
dependencies. Evaluating and managing the cascading impacts
caused by service dependencies is critical to the reliability of
cloud systems. This paper summarizes the dependency types in
cloud systems and demonstrates the design of the Dependency
Management System (DMS), a platform for managing the service
dependencies in the production cloud system. DMS features the
full-lifecycle support for service reliability (i.e., initial service de-
ployment, service upgrade, proactive architectural optimization,
and reactive failure mitigation) and refined characterization of
the intensity of dependencies.

Index Terms—cloud computing, software reliability, AIOps,
service dependency

I. BACKGROUND AND MOTIVATION

Modern cloud systems, including Huawei Cloud, are often
constructed from a complex and large-scale hierarchy of dis-
tributed software modules.The common practice is to develop
and deploy these software modules as cloud microservices
that collectively comprise multiple cloud services [1], e.g.,
resource allocation, virtual network management, and virtual
machine management. Different microservices serve different
functionalities. The microservices communicate through well-
defined APIs and respond to external requests as a whole
through service invocations.

Such an architecture benefits scalability, robustness, and
agility but also complicates system reliability engineering.
However, the interactions between services cause dependen-
cies, resulting in the cascading impact on the system. Despite
various fault-tolerance mechanisms introduced, it is still possi-
ble for minor anomalies to magnify their impacts and escalate
into system outages. When a cloud service or microservice
enters an anomalous status, the anomaly can cascadingly prop-
agate through the service-calling structure, causing a degraded
user experience or even a service outage [2].

The cascading impacts hinder system operation and mainte-
nance, deteriorating customer satisfaction. For instance, during
the initial service deployment or service upgrade, all the
services it relies on should be ready. During the failure
mitigation and recovery, the cascading impact will slow the

This work was supported by Key-Area Research and Development Program
of Guangdong Province (No. 2020B010165002), Key Program of Fundamen-
tal Research from Shenzhen Science and Technology Innovation Commission
(No. JCYJ20200109113403826), and the Research Grants Council of the
Hong Kong Special Administrative Region, China (CUHK 14210920).

Engineer Specification

Configuration Files

OpenTracing

Manual Update

Configuration Parser

AID

Data Source
Dependency Analysis

Initial Service 
Deployment

Service 
Upgrade

Architectural
Optimization

Failure 
Mitigation

Application Scenarios

Fig. 1. The architecture of DMS.

recovery. Therefore, evaluating and managing the cascading
impacts caused by service dependencies is crucial.

II. KEY INNOVATIONS

This paper classifies the dependency types in cloud systems
and demonstrates the design of the Dependency Management
System (DMS), an end-to-end platform for managing the ser-
vice dependencies in the production cloud system. DMS sup-
ports the full-lifecycle support for service reliability, i.e., initial
service deployment, service upgrade, proactive architectural
optimization, and reactive failure mitigation. DMS integrates
our previous study on the aggregated intensity of service
dependency [2] to characterize the degree of cascading impacts
and provides a refined characterization of dependencies. In
addition, DMS also features automatic configuration parsing
and multi-source dependency fusion for practicality.

III. DEPENDENCY TYPES

The dependency relations in a cloud system are diverse.
In Huawei Cloud, we categorize the dependencies according
to the architectural level, i.e., service-level dependencies and
microservice-level dependencies.

1) Service-level dependency: If the dependency is between
two cloud services, we call it a service-level dependency.
Service-level dependency can be further divided into the
following three subtypes, i.e., deployment dependency, run-
time dependency, and operational dependency.

Deployment dependency indicates dependency during the
deployment of a cloud service. The deployment phase may
rely on some cloud services to create and configure resources.
For example, the elastic computing service depends on the
API management service to register public APIs. The elastic
computing service also depends on the block storage service
to allocate the required resource.

ar
X

iv
:2

21
0.

06
24

9v
1 

 [
cs

.D
C

] 
 2

8 
A

ug
 2

02
2



Service run-time dependency indicates the dependency
required for the cloud service to run normally. When a cloud
service is running, it may rely on other cloud services. For
instance, the relational database service runs on the virtual
machines created and managed by the elastic computing
service. Many services (e.g., the Kubernetes service) require
the API management service to expose APIs to customers.
The distinction between deployment dependency and run-time
dependency lies in the timing of the impact. If the failure of
the dependent service only impacts the deployment phase, the
dependency is a deployment dependency. If the impact of the
failure affects the run-time functionality, the dependency is a
run-time dependency.

Operational dependency is the dependency required by the
manual and automatic operations. For example, the elastic
computing service relies on the cloud monitoring service to
monitor the entire cloud system. This subtype of dependency
usually indicates weak cascading impacts because the core
functionalities will not be affected.

2) Microservice-level dependency: Apart from the depen-
dency between cloud services, the microservices of one
cloud service also closely interact with each other, which
causes microservice-level dependency relations. We divide the
microservice-level dependency into composed-of dependency,
run-on dependency, and microservice run-time dependency.
The dependency relation between a cloud service and the
microservices that comprise it is the composed-of dependency.
The composed-of-dependency indicates the static architecture
of the cloud system. The dependency relation between a
microservice’s instance and the underlying run-time envi-
ronments (e.g., virtual machine, container) is the run-on
dependency. The run-on dependency reflects the run-time
architecture of the cloud system. Lastly, similar to the service
run-time dependency, the microservice run-time dependency
is the dependency from the caller microservice to the callee
microservice when running. The microservice-level dependen-
cies complement the service-level dependencies so that the
granularity of dependency management can be refined.

IV. DEPENDENCY MANAGEMENT SYSTEM

This section elaborates on the architecture of DMS demon-
strated in Figure 1. We will introduce the data sources, the
dependency analysis, and the application scenarios of DMS.

A. Data Source and Dependency Analysis

The dependency information is collected from different
sources. Distributed tracing helps automatically acquire the
service run-time dependency, microservice run-time depen-
dency, and operational dependency. By parsing the configu-
ration files and querying the service orchestrator, DMS can
obtain the composed-of dependency and run-on dependency.
The engineers must report the deployment dependency of the
cloud services within their duties. Lastly, DMS fuses all the
dependencies for subsequent applications.

Specifically, for the microservice run-time dependency, the
DMS system further analyses the intensity of dependency. Our

previous work, AID [2], achieves the analysis of intensity.
Specifically, given the run-time traces, AID represents the
status of each cloud service with a multivariate time series
aggregated from the traces. AID calculates the similarities
between the statuses of the caller and the callee microservices.
Finally, AID aggregates the similarities to produce a unified
value as the intensity of the dependency. The reliability
engineers will categorize the intensity into different levels by
referring to the output of AID and their domain knowledge.

B. Application Scenarios

In Huawei Cloud, DMS serves hundreds of cloud services.
DMS provides the engineers with full-lifecycle service relia-
bility assistance based on the refined dependency relations.

1) Initial Service Deployment: According to the configured
service type and dependency type, etc., DMS can automati-
cally discriminate between the compulsory and optional cloud
services. Engineers can utilize such information to assure the
correct deployment of the new service.

2) Service Upgrade: During the service upgrade, the sys-
tem is more vulnerable to new errors introduced by new
versions. Hence, avoidance of multi-point failure becomes
crucial. Before upgrading a microservice, the DMS system
will check the status of the cloud services and microservices
it depends on. This application scenario helps avert multi-point
failures affecting changes.

3) Architectural Optimization: Service failures are in-
evitable, but DMS can prevent the failures from affecting
other services by optimizing improper dependencies. DMS
assists in the discovery of unnecessary strong dependency
on key cloud services. If a critical service or microservice
depends on another service with high intensity, DMS will
remind the engineers to check the necessity of the dependency.
If dependencies are not required, the development team must
reduce the intensity of dependency to improve the robustness
of crucial cloud services. Since the deployment of DMS, more
than ten unnecessary dependencies have been discovered by
DMS and optimized by the development team.

4) Failure Mitigation: DMS also assists in the mitigation
of cascading failures. During a cascading failure, DMS can
provide the latest intensity of dependency to On-Call Engi-
neers (OCEs) so as to diagnose service failures efficiently. In
addition, when a cascading failure occurs, OCEs can limit the
traffic to critical cloud services and recover the dependencies
marked as “strong” first. By doing so, the service disruption
can get under control. Once a critical failure occurs, the
dependencies marked as “strong” will be treated with high
priority. The failure mitigation records show that DMS has
reduced the time for system recovery by over 60%.

REFERENCES

[1] AWS, “Aws well-architected framework,” 2020. [Online]. Available:
https://docs.aws.amazon.com/wellarchitected/latest

[2] T. Yang, J. Shen, Y. Su, X. Ling, Y. Yang, and M. R. Lyu, “AID: efficient
prediction of aggregated intensity of dependency in large-scale cloud
systems,” in 36th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2021,November 15-19, 2021. IEEE, 2021.

https://docs.aws.amazon.com/wellarchitected/latest

	I Background and Motivation
	II Key Innovations
	III Dependency Types
	III-1 Service-level dependency
	III-2 Microservice-level dependency


	IV Dependency Management System
	IV-A Data Source and Dependency Analysis
	IV-B Application Scenarios
	IV-B1 Initial Service Deployment
	IV-B2 Service Upgrade
	IV-B3 Architectural Optimization
	IV-B4 Failure Mitigation


	References

