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Abstract—Cyber-Physical System (CPS) represents systems
that join both hardware and software components to perform
real-time services. Maintaining the system’s reliability is critical
to the continuous delivery of these services. However, the CPS
running environment is full of uncertainties and can easily lead
to performance degradation. As a result, the need for a recovery
technique is highly needed to achieve resilience in the system,
with keeping in mind that this technique should be as green as
possible. This early doctorate proposal, suggests a game theory
solution to achieve resilience and green in CPS. Game theory has
been known for its fast performance in decision-making, helping
the system to choose what maximizes its payoffs. The proposed
game model is described over a real-life collaborative artificial
intelligence system (CAIS), that involves robots with humans to
achieve a common goal. It shows how the expected results of the
system will achieve the resilience of CAIS with minimized CO2

footprint.
Index Terms—Green, Resilience, Cyber-Physical System, On-

line Learning, Game Theory.

I. INTRODUCTION

A Cyber-Physical System (CPS) is known for its het-
erogeneous components and the collaboration between its
physical parts and the software controllers to perform real-time
services. Studies that handle CPS are dramatically increasing.
Each study handles one or more non-functional property of
the system, like security [1], performance [2], reliability [3],
and resilience [4] to mention a few. The systems complexity
varies from one system to the other, like decoders [1], power
systems [5], smart vehicles [6], smart spaceflight [7], to smart
robots that interact with the human [8], and list goes on.

Working robots especially collaborative artificial intelli-
gence systems (CAIS) are one of the CPS types, where the
human and robot are working together to achieve a common
goal [9]. In these systems, online learning done by the robot
through monitoring the human is normally combined to help
the human achieve the goal. The specialty of this type of
CPSs, specifically human involvement, raises many challenges
to study. The risk of working in the same physical space, the
need to reduce human interaction as much as possible, and
reduce wrong and unexpected movement of the robot, and
other more, are all challenges to be addressed in CAIS.

Game theory is the study of two or more adversaries
who play to choose the best action from their perspective to
maximize their payoffs, through a reliable solution model for
fast decision-making [10, 11].

This early doctorate proposal studies the system reliability
by discussing the system resilience and ability to recover
performance degradation caused by uncertainty in the online
learning and classification process. Moreover, it proposes a
green resilience by considering minimizing the CO2 footprints
while recovering the system. The research proposes a game
theory based solution, that considers green and resilience as
adversaries where they can make decisions based on their own
interests.

The rest of this doctorate proposal includes state of art done
until now for green and resilience in CPS, then a description
of the technical problem and the proposed solution using
game theory is in the proposal section. The conclusion with
future work and the doctorate timeline are discussed in the
last section.

II. STATE OF THE ART
1This work defines a cyber-physical system (CPS) as an

“employed system to provide complex real-time services by
controlling the system physical parts through the system
computational algorithms based on the monitored environment
input”.

Resilience: Resilience has various definitions based on its
fields, like psychology, psychiatry, computer science, and other
fields. This proposal focuses on resilience for CPS. The fast
ability to detect and recover from performance faults, is one
definition, another one describes resilience as the system’s
ability to stand against extreme disasters. Moreover, another
study has described two properties of CPS resilience, internal
autogenous resilience that refers to the system’s ability to
detect and process faults and attacks, and external resilience,
which is the maintenance of a safe operation within the system
surrounding environment.

This proposal discusses the internal resilience of CPS, and
it refers to resilience as “the ability of the system to detect
performance degradation and perform one or more actions to
first mitigate the degradation and finally return to the original
state in the fastest time possible”.

Several studies focus on achieving resilience in CPS dif-
ferent components of the system, like using a hierarchical
multi-agent framework to insure an accepted performance
rate in case of any physical disturbance and cyber attacks.

1All references from the state-of-the-art have been omitted for space
reasons, please refer to the following repository for the full version of the
references “https://bit.ly/3wvJXjv”
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On the other hand, a tri-optimization model was used to
identify the threat’s capabilities to handle resilience against
malicious threats in the power grid CPS. Another research
has addressed resilience in a food industrial CPS by modeling
each component as a smart machine equipped with a set of
recovery services, through sensor Data API that collects data
acquired from the physical side to monitor its behavior, and an
Operator to detect abnormal conditions and pushing recovery
actions to on-field operators.

Hierarchical-based solutions were proposed to enhance re-
silience by having a distributed resilience manager that utilizes
the concept of management hierarchy, which ensures faster
fault recovery. In the same context, another research has
proposed an automated framework to guarantee resilience in
CPS. The framework is based on a hierarchical contract-based,
where it monitors the system components’ non-functional
properties through Assume Guarantee (A-G) contracts, and it
refines these contracts to lower-level ones based on the I/O
dependencies between the system components. This structure
allows the framework to identify the root programmatic con-
tract, then apply a multi-objective optimization problem to
search for the optimal parameters of each lower-level contract.

Most of the approaches consider the physical part of the
system and depend on the sensor’s input to determine the
system status to study the resilience of CPS facing malicious
attacks like data injection.

A recent survey discussing CPS resilience has exposed
several research gaps that need more investigation. The survey
shows that there is a lack of research done on systems that
involve humans to improve CPS resilience (e.g. CAIS), and
shows the need for more studies that consider quantitatively
CPS modeling.

Green: Information technological systems (IT-systems) are
responsible for storing, displaying, transforming, and trans-
ferring information, and CPS is one of these systems. Green
is defined in these systems as “the efficient usage of energy
with minimizing adverse effects”, and CO2 emission footprint
is one of the known direct and indirect negative effects of
CPS, during development and application. To measure CO2

footprint, CodeCarbon is a Python lightweight package that
estimates the CO2 footprint coming from cloud/local comput-
ing resources. It can wrap the overall computation code and
gives the estimation based on the geographical location of the
system under testing.

More work has been made to discuss green in CPS and its
effect on resilience. A recent study has studied the effect of
green infrastructure (GI) location on sewer system resilience.
However, their results were to motivate the placement impor-
tance of the GI in the sewer network. Other works were focus-
ing on the effect of green strategies on the business/financial
growth and resilience of the organization, talking about the
greenhouse gas consumption for smart cities, and the effect on
the cities’ resilience, or discussing the manufacturing material
for designing components that supports CPS, although these
studies do not discuss the effect of computational processes
on energy consumption. A new three-objectives optimization
solution to address the number of facilities needed for a meat
supply chain, to maintain the system economics, green, and

resilience (eco-greslient), by optimizing the output from a
fuzzy AHP (analytical hierarchy process) that determines the
resilience pillars (robustness, agility, leanness, and flexibility)
weights has been presented by recent research. Another work
has addressed the pattern that causes Google Tensor Process-
ing Unit (TPU) error of activating sequences in the systolic
array, which leads to a minimal loss in prediction accuracy,
however, low-voltage operation, which is critical to reducing
the energy adverse like CO2.

This research proposes the use of CodeCarbon [12] to give
a quantitative status of the computational CO2 footprint to
monitor the Green Resilience CPS.

III. PROPOSAL

Case Study: This proposal adopts a real-life CPS case that
involves a robotics arm responsible for categorizing objects
based on their colors and placing them in the corresponding
boxes. The arm learns the corresponding box of each color
during an online learning process, where a human operator
picks the objects and places them in their boxes while the robot
monitors through a visual machine learning classifier. This
special type of CPS is called Collaborative AI systems (CAIS),
which are robotic systems that collaborate with humans in
a shared physical space to achieve common goals [9]. The
classifier is monitoring the object to be classified by sub-
scribing to an RGB camera installed above the conveyor belt
(conveyor hereinafter) and streams the object image. Secondly,
it monitors the human operator’s movements by subscribing to
a Kinect camera that detects the human skeleton and streams
it. The classifier learns with structured heterogeneous data
sources associated with features (object color, conveyor speed,
and object spatial) to yield category labels as an output.

Fig. 1 shows the online classification workflow. The online
classification starts when the RGB camera streams new image
data. The streamed image might be empty, so the robot arm
discards the image and stays idle. If the image is not empty, the
classifier runs a similarity check with previous images data,
in case the image is not similar to previous images, it sends
the image to the unclassified queue (learning mode, the human
operator either classifies it or discards it). Then it classifies the
object image and sends the image to the unclassified queue in
case it is not confident about the prediction, while if it is
confident it streams the results to the robot arm controller to
move and place the object in the corresponding box, based on
the previous learning. The confidence level of the classification
is a quantitative estimation of the prediction made by the
classifier [13]. In the case of misclassification by the robot
arm, the human can validate the robot’s action and correct
the classifier. Miss classifying the object’s color can be a
result of many uncertain circumstances, like (I) the object
color is still not classified by the human operator. This is
due to the online learning process and the unknown set of
classes, (II) the object color is faded, which leads to wrong
classification of the object. and (III) a problem in the light
above the camera, causing noise in the object color and thus
a wrong classification of the object. All these circumstances
lead to performance degradation in the system, and even a
failure to achieve the system goal. Hence, we need a solution
to maintain the system’s resilience and green.



Fig. 1. Online Classification Workflow.

TABLE I
THE GRESILIENCE GAME PAYOFFS MATRIX

p2
p1 a1 a2

a1 A, b C, d

a2 D, c B, a

The online learning of the system, the heterogeneous data
sources, or the human operator can cast several challenges
for both the resiliency and greenery of the system. From the
green side, the system will require different movements and
computational power, leading to more energy consumption and
more CO2 footprint. On the other side, the system perfor-
mance will be affected when a new unclassified object arrives,
which might lead to a late response from the arm and the
object will pass the picking area on the conveyor. The desired
solution must trade-off between the CO2 emission footprints
and the time to recover from the underperformance situation.
Proposed Solution: The goal of this CAIS, is helping the
human to achieve automatic classification of coming objects
based on their color with less human interference as possible.
The proposed solution suggests to extends the current online
classification workflow by reading a second image data in case
the classifier’s confidence level about the prediction of the
object class is not high, and in this case, there is a need to
slow down the conveyor to be able to pick it up within the
picking area. If the second image led to a higher confidence
level about the second image prediction, the robot will pick
the object up and place it in the box, and the human will
always have the ability to revert the step and teach the correct
classification. Otherwise, if the new image still did not cause
a confident prediction, the robot will leave it to the human
to classify it but without moving the arm. This means we
can choose between two actions to perform by the robot arm.
Recover the system and automatically classify the object, or
leave the object for the human to be classified. The two robot
arm actions after slowing down the conveyor are (a1) Ask the
arm to classify the object, and (a2) Ask the human to classify
the object.

Both (a1) and (a2) have different approaches to achieve
the system goal. The first action is concerned about fast
recovery (resilience) by the system and the second action
is concerned about energy and minimizing CO2 footprint

(green). Therefore, the proposed solution is to achieve a green
resilient solution, where in case of uncertainty the system will
make a decision based on each property preference (player
preference), assembling a game theory solution. Game theory
has been widely adopted to achieve fast decision-making in
finite strict games of online learning [11, 14].

Game theory is “the study of rational decision-making
between players who seek the best payoffs for their own
interest” [10]. The game players, player resilience (p1) and
player green (p2) are taking decisions to maximize their own
preferences or in other words their utility functions [15].

The game played by p1 and p2 is similar to the Battle of
Sexes a coordination game between two players that also has
the elements of conflict, and each player’s decision affects
the other [16]. This proposal introduces a new game named
The Gresilience Game, in this game, the human and robot
arm both have a common goal to classify a set of objects
based on their color, and they are collaborating in an online
learning environment, where the human teaches the robot how
to classify the objects. However, during the learning process,
the robot will automatically classify objects, that it already
learned, but in case of uncertainty, the robot faces some
challenges in reaching a high confidence level (ϵ hereinafter,
where ϵ ∈ [0, 1]) of classification about the object’s color
and deciding whether it should leave the classification to the
human, or react and recover. The system in this situation is
facing a dilemma because it wants to maintain its performance
and move the arm to classify the object, which maximizes the
system’s resilience. However, if it does and makes a mistake
this means wasting more time as the human needs to validate
and correct that movement, and also more CO2 footprint from
the extra energy of the wrong movement.

The system founds itself in a situation of choosing between
being resilient and having less human interaction, where both
players go with a1, or being green by choosing a2 and leaving
the human to do the job. However, the situation is not that
simple, because choosing a1 by both players means that we
can trust the classifier’s decisions and there will be no need
for the human to correct it, or in other words, the value of ϵ
is high (ϵ ≈ 1). On the other hand, when the value of ϵ is
low (ϵ ≈ 0), then we cannot trust the classifier’s decisions
and it is better to ask the human to do the job, and thus
choose a2 by both players. But when the value of ϵ is almost
in the middle (ϵ ≈ 0.5), then choosing between a1 and a2
becomes a not straightforward move. The Gresilience Game
is a probability distribution game that has two pure strategy
Nash equilibria (PSNE), where both players choose the same
action, and a mixed strategy Nash equilibrium (MSNE) based
on the probability of each player’s action [15, 17].

The Gresilience Game payoffs are computed based on each
player’s preference and the selected action. Table I shows a
general form of the game payoffs matrix, where A > B >
C > D and small letters are used for readability. The matrix
shows two PSNE for choosing a1 by both players and choosing
a2 by both as well. A means the player has chosen his best
action, which allows him to utilize all the system factors
to achieve resilience and green. In contrast, B means that



although the player did not choose his best action, which
means he will not be able to utilize all the system factors,
he is still happy choosing a similar action as the other player.
On the other hand, C and D mean different actions chosen
by the players, which means worse utilization of the system
factors. The system factors are the needed time to classify the
object by the human (th), the needed time to classify it by
the arm (ta), the reduction of human interaction (h), and the
reduction of CO2 footprint (CO2). Equations Eq. (1) - (4)
show how to compute each payoff in regard to ϵ, noting that
the sign of a system factor simply indicates whether it is a
good or bad utilization by the chosen action for that player.

A = ϵ ∗ (th + ta + h+CO2) (1)

B = ϵ ∗ (th + ta +CO2 − h) (2)

C = ϵ ∗ (th +CO2 − h) (3)

D = ϵ ∗ (th +CO2 − ta − h) (4)

Now lets consider the MSNE of The Gresilience Game, where
we need to find the expected utility (EU ) for p2 of choosing
a1 denoted (EUp2.a1) and what is the EU for p2 to choose
a2 denoted (EUp2.a2). Then by setting these two expected
utilities to equal each other, we can calculate the MSNE for
p1. Eq. (5) shows that EUp2.a1 depends on the probability (σ)
of p1 choosing a1 times the payoff p2 gains when choosing a1
(c), added to the probability of p1 choosing a2 (1− σ) times
the payoff p2 gains when p1 choosing a2. The same steps are
followed to find EUp2.a2 in Eq. (6).

EUp2.a1 = σp1.a1
∗ b+ (1− σp1.a1

) ∗ c (5)

EUp2.a2 = σp1.a1
∗ d+ (1− σp1.a1

) ∗ a (6)

Next, to find the MSNE for p1, let Eq. (5) equals Eq. (6), and
by solving the formula, the value of σ is shown in Eq. (7),
where a + b − c − d ̸= 0 and positive since a − c > 0 and
b− d > 0 because a > c and b > d and so the summation is
also positive, and a − c is positive since a > c , and finally
a+ b− c−d > a− c because its the same as saying b−d > 0
by adding c and subtracting a from both sides, and it is the
same as b > d by adding d to both sides that always holds,
which means we have a valid MSNE probability for p1, and
thus, σp1.a1

∈ [0, 1].

σp1.a1
= (a− c)/(a+ b− c− d) (7)

σp2.a1
= (B − C)/(A+B − C −D) (8)

By following the same steps to find the MSNE for p2, Eq. (8)
shows the MSNE probability equation of p2 choosing a1,
where σp2.a1

∈ [0, 1]. Hence the payoff for p1 in a MSNE
is shown in Eq. (9), and p2 payoff is shown in Eq. (10).

p1msne
= (A+B − C −D) ∗ (σp1.a1

∗ σp2.a1
)

+ (C −B) ∗ σp1.a1
+ (D −B) ∗ σp2.a1

+B
(9)

p2msne
= (a+ b+ c+ d) ∗ (σp1.a1

∗ σp2.a1
)

+ (d− a) ∗ σp1.a1
+ (c− a) ∗ σp2.a1

+ a
(10)

The MSNE payoffs in both Eq. (9) and Eq. (10) shows
that even when the decision is not clear, the system will still
maintain its resilience and green when the system randomly
chooses based on the probability of the system a mix between
a1 and a2, which leads to maximizing the benefits from the
chance that robot arm may correctly classify the object and
reducing the time to recover and CO2 footprint.

IV. CONCLUSION AND FUTURE WORK

Conclusion: This doctorate proposal suggests a solution
using game theory to solve the trad-off between maximizing
resilience and recovering the system after a performance
degradation and maximizing green by minimizing the system
CO2 footprint, by considering both resilience and green ad-
versaries.

The proposed solution is reflected over a special type
of cyber-physical system, which is a collaborative artificial
intelligence system that involved both robots and humans, and
thanks to the cooperation toward a unique goal it made the use
of game theory more suitable.

Future Work: After implementing the proposed solution,
we will explore new methods based on optimization to address
the trade-off between green and resilience, and compare the
new model with the solution suggested by this proposal.
Additionally, more work will be done to extend the case study
to be able to classify the objects based on their shape, which
requires running other learners to predict the object shape. This
extension adds more complexity to online learning resilience
and green. In this context a discussion about how we can
utilize server-less cloud functionality to initiate what we call
on-demand learning to save energy consumption and reduce
CO2 footprint.

Timeline: This PhD kicked off in January 2022, and at the
time this proposal was created the work is still in the literature
review stage. Fig. 2 shows the timeline of the PhD, where the
expected date of defense is March 2025.
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