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Abstract—Safety-critical software in the air domain typically
conforms to RTCA DO-178C. However, latent failures might arise
based on assumptions underpinning the programming language
used to write the software, whereas the lack of empirical data may
constrain the selection of a promising but untested language. To
overcome this difficulty, we propose evaluation criteria drawn
from RTCA DO-178C, to help quickly review the potential
applicability of programming languages in the air domain. We
illustrate the constraints by using them to evaluate the suitability
of the Rust programming language.

Index Terms—Programming languages, software and system
safety.

I. INTRODUCTION

Aircraft are long running platforms. Their design and en-

gineering can take years, if not decades, with some aircraft

remaining operational for several generations. Software used

in the air domain is subject to certification, both at the

outset of an aircraft’s design and throughout its life. Such

certification requires compliance with a given standard. The

most commonly used standard for developing and certifying

safety-critical software in the air domain is RTCA DO-178C

[1]. Certification standards like RTCA DO-178C focus on the

assurance of software, considering attributes of the software

development process and the resulting product. The influence

of the programming languages used to develop this software

is less obvious, but remains of critical importance.
A classic programming language like C might be considered

“safe” because it has been used successfully for several years.

But, like any long-running technology innovation, decisions

that underpinned a language’s selection may have relied on

assumptions which, with the passage of time, the drive for

innovation, and a new generation of language maintainers, may

be forgotten [2] or invalidated (e.g. in cases where memory

allocation never returns a failure code [3]). As such, even when

no changes are made to software, language selection could be

a source of latent failures. Conversely, the lack of empirical

data about how suitable a “novel” (in the context of safety-

critical air domain software) programming language might be

could render its use too risky given the long-term impact of its

selection. This may be a sound decision, or it may prevent new

languages (and language features) being used, even though

these could conceivably increase safety, and productivity.
Although previous work has looked at the applicability of

particular languages for high-assurance software, e.g. [4], such

an impasse suggests the need for clearly identified program-

ming language evaluation criteria that can be used to evaluate

the suitability of programming languages in the air domain.

Such criteria could inform the initial selection of a novel

language (or a language subset) at the earliest stages of safety-

critical software design. Moreover, given the risks that result

from subjectivity when determining the extent of a system’s

change during recertification [5], the criteria could also help

evaluators determine a language’s continued suitability for new

development activity.

To explore the form such criteria might take, this paper pro-

poses a set of evaluation criteria, based on RTCA DO-178C,

for reviewing the applicability of programming languages in

the air domain. While not a focus of this work, we suggest

that these criteria are likely applicable to other domains, as

well.

We present some related work to our criteria in Section

II, before presenting the criteria in Section III. We illustrate

their application using Rust in Section IV. We conclude by

summarising the contributions and implications of this work

in Section V.

II. RELATED WORK

RTCA DO-178C was released in 2011, and comprises

descriptive paragraphs, summarised in 71 tabulated objectives.

Since its release, the number of developments in programming

languages and tools have been considerable.

RTCA DO-178C uses Software Levels to direct effort

towards items with the greatest safety consequences. Four

technology-specific supplements are associated with RTCA

DO-178C. If a relevant technology is being used then, in

addition to RTCA DO-178C, compliance with relevant supple-

ments are also required. The supplements cover tool qualifica-

tion, model-based development, Object-Oriented Technology

and Related Techniques (OOT&RT) and formal methods. Of

these, only the OOT&RT supplement (i.e. RTCA DO-332 [6])

influences programming language choice in the manner we are

concerned with.

The adoption of formal methods (i.e. RTCA DO-333 [7])

and the choice of programming language are linked, not least

because some languages are explicitly designed to support

formal methods. However, in such cases, the adoption of

formal methods is likely to be the driving factor in the
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decision. That is, the choice of development approach leads

to the programming language and the certification standard

supplement. This language-first, standard-second influence is

opposite to the one we are concerned with, where the choice

of certification standard (specifically, RTCA DO-178C) leads

to constraints on the programming language.

Although certification standards assess software quality,

RTCA DO-178C has also been used to derive evaluation cri-

teria for other software engineering artifacts. Marques and de

Cunha [8] devised process requirements for certifying airborne

military software from several standards, including RTCA DO-

178C, but these requirements are agnostic of programming

language. Sarkis et al. [9] have drawn recommendations on

the use of design models from RTCA DO-178C. Although

their work does not consider programming languages, it does

consider areas where programming langauge choice could

have an impact, such as traceability and automatic code

generation.

Because user studies evaluating programming languages are

expensive, Sadowski & Kurniawan [10] have examined the

effectiveness of usability inspections methods like heuristic

evaluation [11]. Drawing from the well-known usability eval-

uation heuristics and design principles for evaluating program-

ming languages [12], they developed eleven language feature

heuristics including areas such as consistency, error-proneness,

and hidden dependencies.

III. EVALUATION CRITERIA

A. Deriving the Criteria

Drawing on Sadowski & Kurniawan’s [10] idea of using

principles as a “discount” evaluation criteria, we used RTCA

DO-178C to derive evaluation criteria for assessing program-

ming language applicability for safety-critical software in the

air domain. Because it represented the most stringent level of

assurance, we focused on Software Level A of RTCA DO-

178C. Although not all software within a modern air system

will be at this level, it provides a useful basis for novel

programming languages for any airborne application.

The criteria were devised by applying a three-step process.

1) The main body of RTCA DO-178C was examined, to

identify paragraphs influencing programming language

choice. For example, Para. 4.5c indicates that language

constructs incompatible with safety-critical requirements

are prohibited. This might mean C coding standards

prevent use of void*. These paragraphs are concerned

with easy detection of unsuitable constructs (e.g. via

static analysis tools), or whether a programming lan-

guage’s design guarantees their absence.

2) We reviewed Annex A of RTCA DO-178C to identify

specific objectives influencing programming language

choice. For example, Table A-5 Objective 3 requires

that source code be verifiable. This means source code

cannot contain unverifiable structures, and should not

have to be altered for testing. This might mean source

code should not contain undefined behaviour, e.g. (i++

* i++) in C.

3) The influences identified were organised and categorised

in three areas: language features and tooling; trace-

ability; and verification. The OOT&RT supplement was

considered as a fourth area. These areas and criteria are

summarised in Table I.

B. Language Features and Tooling

How does the language prevent the introduction, or
support the detection, of errors?

Errors may be prevented by language features, and de-

tected by static analysis tools. Tools that check compliance

with source code standards such as MISRA C [13] are one

example; tools such as Infer1 that perform more complex,

intra-procedural analysis are another. By detecting constructs

yielding undefined behaviour, these tools help ensure that

source code is verifiable.

Tool qualification is relevant when tools (e.g. static code

analyser, test doubles) are deployed in projects. Tools that

analyse, but do not change, the source code may fail to detect

errors but they cannot introduce errors. Such tools require less

qualification evidence than tools that can introduce errors into

the airborne code.

Although important, floating point accuracy issues are gov-

erned by the execution platform and the form of equations,

rather than language choice. Language agnostic tools like Her-

bie [14] can help reformulate equations for greater accuracy.

Some language features may cause significant changes to

execution time. For example, garbage collection that occurs

at unpredictable times, making it difficult to bound the worst-
case execution time (although automated garbage collection

can avoid programmer-induced issues, like failing to free

memory when it is no longer needed, or attempting to use

memory that has been freed).

The use of dissimilar, redundant components within the soft-

ware development life cycle is comparatively rare. A desire,

or need, to use such components would favour programming

languages with a suitably diverse tool ecosystem.

How does the language complicate, or significantly
enable, partitioning?

Many aspects of partitioning are unrelated to the choice

of programming language, for example, being covered by the

Operating System (OS) or hardware. There are, however, at

least two areas where partitioning may influence the choice

of programming language. First, language-based extensions

might allow specific types of protection to be implemented

by hardware. The Capability Hardware Enhanced RISC In-

structions that can be included in C code [15] are a prominent

example. Second, some languages might be designed specifi-

cally to be embedded within a partitioned sandbox. Lua [16],

a scripting language used by Nmap [17], and widely used

in games and other applications is a notable example. The

sandbox itself needs to be implemented in a programming

language, the implications of which need to be considered.

1https://fbinfer.com/
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TABLE I
AREAS AND CRITERIA THAT MAY INFLUENCE CHOICE OF PROGRAMMING LANGUAGE, WITH CORRESPONDING PARAGRAPHS AND OBJECTIVES FROM

RTCA DO-178C AND (WHERE STATED) RTCA DO-332.

Area Criteria Paragraphs Objectives

L
an

g
u

ag
e

F
ea

tu
re

s
an

d
T

o
o

li
n

g

How does the language prevent the introduction,
or support the detection, of errors?

Includes language features, static analysis
tools, tool qualification, worst-case execution
time and use of dissimilar, redundant compo-
nents.

4.4, 4.4.1,
4.5, 5.3.2,
6.3.4, 11.8

A-1:3, A-1:4,
A-1:5, A-2:6,
A-5:3, A-5:4,
A-5:6

How does the language complicate, or signifi-
cantly enable, partitioning?

Includes user-modifiable software, deacti-
vated code and parameter data items.

5.2.3, 5.2.4,
6.6

A-2:4,
A-4:13, A-5:9

T
ra

ce
ab

il
it

y

How does the language complicate, or sig-
nificantly enable, bi-directional traceability be-
tween low-level software requirements, source
code and test cases?

May include (where relevant) traceability to
high-level software requirements.

5.5, 6.3.4 A-2:4, A-5:5

How does the language complicate, or signifi-
cantly enable, traceability between source and
object code?

Includes correspondence between source
code and object code, as well as analysis of
the outputs of the software-software integra-
tion process.

4.4.2, 6.3.5 A-1:3, A-5:7,
A-7:9

V
er

ifi
ca

ti
o

n

How does the language complicate, or signifi-
cantly enable, testing of executable object code?

Includes typical errors, normal testing, ro-
bustness testing, software-software integra-
tion and software-hardware integration.

6.4.2,
6.4.2.1,
6.4.2.2,
6.4.3

A-6:1, A-6:2,
A-6:3, A-6:4,
A-6:5

How does the language change the way that test
coverage is measured or achieved?

Includes structural coverage, as well as data
coupling and control coupling.

6.4.4.2 A-7:5, A-7:6,
A-7:7, A-7:8

O
O

T
&

R
T

S
u

p
p

le
m

en
t How does the language include OOT&RT fea-

tures?
Includes objects and subclasses, inheritance,
polymorphism, class-based type conversions,
software exception handling, dynamic mem-
ory management and virtualisation.

RTCA DO-332:
OO.1.6.1.1,
OO.1.6.2

RTCA DO-332:
OO.A-7:OO_10,
OO.A-7:OO_11

Partitioning is also relevant for user-modifiable software. In

this context, the wider system needs to be protected against

the possible effects of the modified software. This protection

includes memory integrity and over-consumption of shared

resources.

End user adaptability can also be achieved via parameter
data items. Like partitioning, many of the considerations

associated with parameter data items are language agnostic.

However, there may be cases where the language offers strong

protections against incorrect data being loaded, e.g. Domain

Specific Languages (DSLs), where language semantics may

only allow properly structured data to be loaded (rather than

relying on hand-crafted parsing in a generic language like C,

for example).

Parameter data items are often used to select different types

of behaviour, which use different code sequences. In such

cases, appropriate protection against unintended execution of

the non-selected or deactivated code is required.

C. Traceability

How does the language complicate, or significantly en-
able, bi-directional traceability between low-level software
requirements, source code and test cases?

RTCA DO-178C emphasises the importance of bi-
directional traceability from high-level software requirements,

through design to low-level software requirements, which can

be refined to code. In addition, test cases are expected to be

traceable to requirements.

Programming language considerations are most notable

between low-level requirements, source code and unit tests.

Automating traceability of source code to unit tests might

be particularly valuable, e.g. to prioritise regression tests, so

developers can get rapid feedback on the effects of a change.

A simple form of traceability could be implemented via

a combination of specially formatted source code comments

and scripts. DSLs, with appropriate Integrated Development

Environment (IDE) support, could make this more formal2. For

2mbeddr is one example: http://mbeddr.com/.
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some languages, wider tool integration could extend automated

traceability to high-level software requirements.

How does the language complicate, or significantly
enable, traceability between source and object code?

The history of programming is one of increasing levels

of abstraction, enabling greater productivity and wider par-

ticipation. However, abstraction also widens the gap between

what programmers create (and review) and the instructions

executed on hardware. We need confidence this gap does

not introduce any additional safety risks. For example, when

working with languages like C, this entails understanding tools

like compilers, linkers, and loaders.

Checking the correspondence between source code and
object code is a key issue, particularly given that tools may

insert additional features in the object code. Such features

need to be identified and verified. Correspondence checking

confirms the output from the compiler. Confirming tool output

is one part of allowing a tool to be used without explicit tool

qualification. An alternative would be the use of a qualified

compiler, but in our experience this is comparatively rare.

Checks are also required on linker output. These should

ensure there are no memory overlaps or missing software

components. More generally, there should be checks on the

outputs of the software-software integration process.

D. Verification

How does the language complicate, or significantly
enable, testing of executable object code?

Requirements-based testing is emphasised in RTCA DO-

178C; test cases should consider error sources inherent in

the software development process. Some error sources may

be typical errors, including those associated with particular

features of the chosen programming language, e.g. memory

leaks in C programs. Such issues can also be identified by

testing with language agnostic tools, e.g. Valgrind3.

RTCA DO-178C includes normal range test cases; these

consider how software should respond to normal (i.e. ex-

pected) inputs and conditions. These test cases often use the

notion of equivalence classes, where test results for one input

in the class can reasonably be extended across the entire class.

RTCA DO-178C also includes robustness test cases; these

consider how software should respond to abnormal (i.e. un-

expected) inputs and conditions. These include aspects that

may be dependent on programming language. For example,

iterators may prevent errors associated with out-of-range loop

counts.

Testing of executable object code also includes software-
software integration. This includes topics like parameter pass-

ing, initialisation, data corruption (especially of global vari-

ables), incorrect sequencing and inadequate numerical resolu-

tion. Language-based features and tools can influence these

topics.

The final aspect of executable object code testing is

software-hardware integration on the target computer. It is

3https://valgrind.org/

concerned with, for example, memory management, stack

overflow and resource contention. These may be affected by

the choice of programming language as well as compiler

options. For example, the _FORTIFY_SOURCE macro, which

can be used with the GNU Compiler Collection to introduce

lightweight checks to detect buffer overflows.

How does the language change the way that test coverage
is measured or achieved?

The requirements-based testing approach of RTCA DO-

178C provides confidence that software exhibits the desired

behaviour. Measuring structural coverage helps demonstrate

that the software does not contain any unwanted behaviour

(i.e. behaviour that cannot be traced to a requirement).

RTCA DO-178C’s objectives include a series of increas-

ingly demanding levels of structural coverage on source or ob-

ject code, beginning with statement coverage, moving through

branch and on to Modified Condition / Decision Coverage

(MC/DC). Whilst these levels of coverage are applicable to

most programming languages, language features may have an

effect. For example, if features favour the creation of many

code branches or if they require certain behaviour in multi-

clause conditionals (e.g. always requiring a default case).

The objectives also include testing the data coupling be-

tween code components. This is concerned with the route

from when a piece of data (used by two components) is set

(in one component) to the point when it is used (in another

component). As with structural coverage, this is likely to be

mostly language agnostic. However, it should be facilitated

by languages with clear scoping rules that simplify type

conversion.

Control coupling between code components is also con-

sidered. This is mostly concerned with the call-graph of the

software; interrupt and exception handling are also relevant.

Like data coupling, this is largely language agnostic, but

may be complicated by language features obfuscating the call

structure, such as function pointers, and multiple levels of

object inheritance.

E. OOT&RT Supplement

How does the language incorporate OOT&RT features?
RTCA DO-3324 considers the use of classes to define

types, and the ability to create new classes via subclassing as

distinguishing features of Object-Oriented Technology (OOT).

Consequently, if a programming language uses objects and
subclasses then we judge it to fall within the OOT portion of

RTCA DO-332.

Programming languages also fall within the scope of RTCA

DO-332 if they use “related techniques”: inheritance, polymor-

phism (either parametric or ad-hoc, via overloading), class-

based type conversions, software exception handling, dynamic

memory management and virtualisation. While the specific

details vary, using these techniques should not result in unpre-

dictable, or poorly understood, behaviour, nor should it result

in data corruption or an inconsistent program state.

4Para. OO.1.6.1.1
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IV. WORKING EXAMPLE: RUST

To illustrate these criteria, we use them to evaluate the

applicability of the Rust programming language [18]. Rust is

a high-performance systems programming language, suitable

for embedded systems. The language has been specifically

designed with features that enforce memory safety and thread

safety [19]. As such, many of the typical errors associated with

comparative languages like C are prevented by design, often

through Rust’s ownership model. Rust also has features that

encourage robust programming.

A. Language Features and Tooling

How does the language prevent the introduction, or
support the detection, of errors?

Rust’s language features enforce memory safety and thread

safety. These are tightly linked to the concepts of ownership

and borrowing. The Rust compiler ensures that: each variable

has an owner; there can only be one owner at a time; and

when the owner goes out of scope, the memory associated

with the variable is freed. These rules allow the compiler to

safely schedule dynamic memory management. They mean

Rust programs are largely “memory safe” and, because there

is only one owner, “thread safe”. To allow for situations when

C functions need to be used, and raw memory allocations

are necessary, the unsafe keyword can scope potentially

dangerous code.

Compared to memory safety, protecting against arithmetic

overflow is more complicated. In debug mode, checks are

made, with code terminating if overflow occurs. However,

these checks are not included in release mode, but they can

be implemented, if desired.

Rust’s design means that many issues detected by C-based

static analysis tools cannot occur. Nevertheless, tools are

being developed to address other language-related issues. For

example, Prusti [20] checks whether a program will produce

an error condition that results in termination; Kani [21] checks

properties associated with dynamic dispatch.

The main tools associated with Rust are the compiler

(rustc), and the associated build system and package man-

ager (cargo). The output from these tools can be inspected,

so tool qualification need not apply. However, if checks cannot

be made then the open source, relatively fast-changing nature

of these tools may complicate the process of tool qualification.

There are also plans to develop a qualified Rust compiler tool

chain5.

Rust’s ownership and scoping rules make dynamic memory

management both safe and predictable. Whilst the latter aspect

removes a possible difficulty when estimating worst-case
execution time, this remains a challenging endeavour.

For practical purposes, there is currently only a single Rust

compiler and package manager available. This means that,

should they be required, dissimilar, redundant components
cannot be used. Based on our practical experience, we believe

5https://ferrous-systems.com/ferrocene/

the likelihood of this being required is very low. It is also

likely that additional compilers will become available.

How does the language complicate, or significantly
enable, partitioning? Rust’s approach to “ownership” means

programs are both memory safe and thread safe. They are

memory safe in the sense that typical errors like use after

free and double free cannot occur. They are thread safe in the

sense that only a single thread can own a shared resource,

which prevents typical errors like data races (Figure 1). These

properties enable partitioning.

Fig. 1. Transfer of ownership.

Consider the following function definitionsa that implement a

simple channel for communicating between threads:

fn send<T: Send>(chan: &Channel<T>, t: T);
fn recv<T: Send>(chan: &Channel<T>) -> T;

Suppose, also, there is a utility function print_vec
that prints a vector element-by-element. Now, consider the

following code snippet:

1 let mut vec = Vec::new();
2 vec.push(4);
3 send(&chan, vec);
4 print_vec(&vec);

A vector is created and populated in one thread (Lines 1, 2)

before being sent down the channel to another thread (Line

3). Following Rust’s ownership rules, ownership of the vector

is transferred to the receiving thread. Hence, the compiler will

report an error (Line 4) when the original thread tries to use

a variable it does not own.

aBased on: https://blog.rust-lang.org/2015/04/10/Fearless-
Concurrency.html.

Despite these benefits, the systems programming nature of

Rust means that it is designed to access many low-level system

features. As such, it is unlikely that user modifiable software
will be written directly in Rust.

As a systems programming language, Rust has features that

assist in reading data files. It also has a series of protections

that make it easier to use parameter data items. For example,

attempts to write beyond the end of an array will be detected.

Rust also has a special Result type (Figure 2) that encap-

sulates a value and a potential error. This allows for the easy

detection of errors, e.g. when translating a string to an integer.

Such features further simplify the use of parameter data items.

Different configurations can include or exclude code from a

compiled Rust object. If the “inclusion decision” can be made

at compile time, this provides a powerful way of managing

deactivated code. If the decision is made at run time then

Rust’s memory safety and thread safety features should be

helpful.
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Fig. 2. Use of the Result type.

Consider the following snippet:

fn main() {
let x:&str = "12.34";
let y:f32 = match x.parse() {
Ok(v) => v,
Err(why) => panic!("{}", why)

};
println!("{}", y);

}

If the string can be parsed then Ok() extracts the relevant

value. If it cannot then Err() extracts the associated error

message. Natural use of the Result type in Rust makes this

type of error-trapped string (and consequently, file) handling

commonplace. It avoids the need to explicitly check a return

value, as is often the case with C.

B. Traceability

How does the language complicate, or significantly en-
able, bi-directional traceability between low-level software
requirements, source code and test cases?

With regards to bi-directional traceability, Rust includes

a [#test] attribute, which identifies tests. However, this

does not provide any special functionality for linking tests

with specific requirements. As with most languages, this could

be achieved by local implementations that rely on specially

formatted comments.

Does the language complicate, or significantly enable,
traceability between source and object code?

Some memory safety and thread safety properties can be

checked at compile time, while others can only be detected at

run time. To perform the run time checks, the Rust compiler

introduces a significant amount of additional object code

that, in RTCA DO-178C terms, is not directly traceable to

the source code (Figure 3). This complicates the process of

establishing correspondence between source code and object
code. Despite these complications, with care, it is possible to

establish this correspondence.

In Rust, software-software integration is achieved using

cargo. This has been designed to be both a build system and

a package manager. In the former role, it compiles code; in

the latter role, it manages external dependencies and makes

distributable packages. This multi-purpose nature makes it

slightly harder to gain confidence in the tool than would be

the case for a conventional compiler.

Integrating software written in different languages (e.g. C

and Rust) is complicated by Rust’s default behaviour. For

example, Rust mangles function names and does not guar-

antee struct properties. Attributes can be used to obtain

C-compatible behaviour (specifically, #[no_mangle] and

#[repr(C)]).

Fig. 3. Source to object code correspondence.

Consider the following codea. For brevity, the body of the

calc_sum function is not listed:

fn calc_sum(in_arr:&[i32]) -> i32 { ... }

fn main() {
let my_arr:[i32; 100] = [1; 100];
println!("{}", calc_sum(&my_arr));

}

In this case, the object code associated with the call to the

calc_sum function is as follows:

movl $100, %esi
callq playground::calc_sum

The value 100 (i.e. the size of the array) is loaded into the esi
register before the call is made. This allows bounds checking

to be implemented within calc_sum.

aThis code was created using the Rust Playground: https://play.rust-
lang.org/.

C. Verification

How does the language complicate, or significantly
enable, testing of executable object code?

Rust’s design means that typical errors like “use after

free” can be detected at compile time. Others can be reliably

detected at run time. This significantly simplifies testing of the

executable code.

As with many programming languages, conducting normal
range test cases is easy with Rust. The language has no

significant peculiarities that would make it difficult to establish

test equivalence classes.

Rust’s design also makes it relatively easy to conduct

robustness test cases. For example, the idiomatic way of

looping through an array is via an iterator, rather than an

indexed variable. This means the loop implicitly knows the

array bounds, thus preventing an out-of-range access.

In terms of arithmetic overflow, Rust’s behaviour com-

plicates the conduct of robustness tests. In particular, over-

flow protection is included in debug builds (with overflows

causing panics) but excluded from release builds. It can

be included in the latter by either using a compiler op-

tion by passing -C debug-assertions=on to the Rust

compiler, or setting debug-assertions field of a Cargo

profile, or by protecting individual operations, e.g. sum =
sum.checked_add(i).unwrap();. This range of op-

tions, and the resulting potentially different behaviour between

debug and release builds needs to be carefully managed.

Verifying the software-software integration is simplified by

the typical errors Rust prevents by design. However, as noted

in Section IV-B, cases where Rust and C are used alongside

each other require special care.
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Rust’s intended use as a systems programming language,

together with its intended use for embedded systems mean

that software-hardware integration testing should be relatively

straightforward.

How does the language change the way that test coverage
is measured or achieved?

Rust includes common ways of managing control flow (e.g.

if, while and for). These constructs do not change the way

that structural coverage is measured or achieved. However,

the match statement differs from the C switch statement

in some important ways. First, each arm of the match can

include lists or ranges of options. Achieving MC/DC of a list-

based arm requires testing of each list item6. Second, match
arms can have guards, which are separate logical conditions

that also have to be true in order for the associated code to be

executed (Figure 4). Achieving MC/DC of a guard based arm

would require the guard and the arm-defining condition each

to separately influence the decision as to whether the code is

executed or not.

Fig. 4. MC/DC and match.

Consider the following code snippet:

let z = 121;
let letters = match z
// ((z%2) == 1) && (z >= 0) && (z <= 9)
0..=9 if z%2 == 1 => "1-digit, odd",
0..=9 => "1-digit, even",
_ if z%3 == 0 => "n-digit, mult. of 3",
_ => "not interesting"

;
println!("", letters);

This example shows how the (z%2 == 1) guard alters the

equivalent C code for the arm conditions. This example also

illustrates the use of an underscore as a default case.

In each situation, it is relatively easy to determine what

cases need to be tested in order to achieve MC/DC. However,

to the best of our knowledge, there is no tool-based support

either to assist in the definition of such tests, or to monitor

this type of coverage.

Data coupling is significantly simplified by Rust’s notion of

variable ownership. This provides the compiler with explicit

knowledge of where variables (i.e. data) can be changed. Also,

the Rust compiler detects, and provides warnings for, unused

data items.

When considering control coupling, Rust, like C, allows

functions to be called indirectly via function pointers. These

pointers may refer to a function whose identity is not known at

compile time. This could make it difficult to determine whether

control coupling has been achieved. Rust also has the notion of

6The same would be required if the arm (or case) was expressed as a
disjunction (i.e. or) of the items in the list, which would be the natural way
of expressing the construct in C.

dynamic traits, which allow dynamic dispatch. These represent

another potential complication for control coupling, although

their use could be prevented by a coding standard (similar to

the use of MISRA C).

D. OOT&RT Supplement

How does the language incorporate OOT&RT features?
Rust supports some features of object-oriented program-

ming. For example, it combines data and behaviour in the

same type. It also uses encapsulation to hide implementation

details. However, Rust does not use inheritance or the notion of

subclasses. More specifically, it does not include both objects
and subclasses and, as such, does not fall under the OOT part

of RTCA DO-332.

The following paragraphs consider related features in the

context of RTCA DO-332.

Instead of using inheritance, Rust uses traits to achieve

polymorphism (i.e. code that can work with multiple types).

A trait (e.g. draw, for a user interface component) is defined

as a specific entity. This trait then has to be defined explicitly

for each relevant type. Compile time errors occur if the trait

is used on a type for which it has not been defined. Hence,

there is no confusion about which code will be executed. The

issues discussed in RTCA DO-332 (e.g. ambiguity, confusing

traceability and inappropriate use of generic data) are also

avoided.

Rust’s lack of subclassing removes many potential issues

associated with class-based type conversions. For example,

supertypes cannot be downcast to a subtype, removing the

possibility of inheritance-based data corruption.

In terms of software exception handling, from a RTCA DO-

332 perspective, the main concern is that incorrect handling

(or non-handling) of exceptions may leave a program in an

inconsistent state. As noted in Section IV-A, Rust’s Result
type supports the handling of recoverable errors. The only

other approach to exception handling is the panic! macro

which immediately stops execution, due to an unrecoverable

error. This combination of approaches means that exceptions

(i.e. recoverable and unrecoverable errors) cannot leave a

program in an inconsistent state.

Rust makes extensive use of dynamic memory management,

but its ownership model means that this is demonstrably safe.

Within the context of RTCA DO-332, Rust offers no direct

support to virtualisation.

V. CONCLUSION

Based on the contents of RTCA DO-178C and its OOT&RT

supplement (i.e. RTCA DO-332) we have devised a set of eval-

uation criteria that may influence the choice of programming

language for safety-critical software in the air domain. These

criteria relate to language features and tooling, traceability,

verification, and OOT&RT.

In presenting the evaluation criteria, our work makes three

contributions.

First, we proposed the use of evaluation criteria for inform-

ing the selection of programming languages, principally in the
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air domain, but also for other domains that invoke safety-

critical software. As Section II indicates, the use of such

criteria for quickly evaluating the usability of programming

languages in general is not new. However, we believe our

work represents a valuable attempt at deriving such criteria,

in the context of modern programming languages that may be

suitable for use in safety-critical domains.
Second, we analysed RTCA DO-178C and relevant supple-

ments to devise suitable evaluation criteria for safety-critical

air domain software. The criteria were not designed to pro-

vide a compelling argument that any particular programming

language is safe. Instead, they highlight key aspects of a

programming language that can help evaluators understand the

rationale for using (or not using) it in the air domain.
Finally, we applied our evaluation criteria to the Rust pro-

gramming language. Our results indicate that, despite detailed

and interesting aspects that require attention, no significant

barriers appear to prevent the use of Rust for safety-critical

software in the air domain.
No language is perfectly suited for the development of

safety-critical software in the air domain. For example, when

compared with C, neither has features that enable traceability

between requirements, source code and test cases. Likewise,

neither provides protection against the full range of numeric

issues that can occur. These challenges may be overcome

through a combination of procedural means (e.g. require-

ments standards to facilitate traceability and design reviews

to confirm algorithm accuracy) and appropriate testing (e.g.

robustness testing that specifically targets potential numerical

issues).
Compliance with RTCA DO-178C is just one factor that

needs to be weighed when choosing a language (or languages)

for a safety-critical development. For example, language sta-

bility, developer availability and developer productivity are all

relevant. Exploring these factors is left for future work.
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