
Improving Counterexample Quality from Failed
Program Verification

Li Huang
Chair of Software Engineering

Schaffhausen Institute of Technology
Schaffhausen, Switzerland

li.huang@sit.org

Bertrand Meyer
Chair of Software Engineering

Schaffhausen Institute of Technology
Schaffhausen, Switzerland

bm@sit.org

Manuel Oriol
Chair of Quantum Software Engineering

Schaffhausen Institute of Technology
Schaffhausen, Switzerland

mo@sit.org

Abstract—In software verification, a successful automated
program proof is the ultimate triumph. The road to such success
is, however, paved with many failed proof attempts. The message
produced by the prover when a proof fails is often obscure,
making it very hard to know how to proceed further. The
work reported here attempts to help in such cases by providing
immediately understandable counterexamples. To this end, it
introduces an approach called Counterexample Extraction and
Minimization (CEAM). When a proof fails, CEAM turns the
counterexample model generated by the prover into a a clearly
understandable version; it can in addition simplify the counterex-
amples further by minimizing the integer values they contain. We
have implemented the CEAM approach as an extension to the
AutoProof verifier and demonstrate its application to a collection
of examples.

Index Terms—Program Verification, Counterexample, Auto-
Proof, Boogie, SMT

I. INTRODUCTION

Deductive program verification performs a rigorous analysis
of the correctness of programs with respect to their functional
behavior, usually specified formally by contracts (such as
pre- and postconditions, can class and loop invariants). The
approached has progressed in recent years thanks to the
development of powerful proof engines. In practice, however,
verifying industrial applications remains difficult. One of the
obstacles is the lack of intuitive feedback to understand the
reasons why a verification attempt failed. Although in many
cases the underlying prover can provide a counterexample
containing some usable diagnostic information for debugging,
such a counterexample usually contains hundreds of difficult-
to-interpret lines. Another obstacle to usability is that integer
values generated by the prover for the counterexamples are
often very large, and hence do not provide programmers with
an easy intuitive understanding of what is wrong.

This article presents the Counterexample Extraction and
Minimization (CEAM) approach for improving the quality of
counterexamples produced when a proof fails, and making
them usable for identifying and correcting the underlying
bugs. We have implemented CEAM as an extension of the
AutoProof environment [1], [23], a static verification platform
for contract-equipped Eiffel [15] programs based on Hoare-
style proofs. AutoProof relies on the Boogie proof system [2],

[11] and takes advantage of Boogie’s underlying SMT (Satis-
fiability Modulo Theories) solver, by default Z3 [7].

When a proof fails, CEAM exploits the counterexample
models (hereinafter referred to simply as models) generated
by the SMT solver and generates simple counterexamples
in a format more intuitive to programmers. CEAM also
provides a minimization mechanism allowing programmers to
get simplified counterexamples with integer variables reduced
to their minimal possible values. The current version of CEAM
supports primitive types (integer, boolean), user-defined types
(classes) as well as some commonly used container types (such
as arrays and sequences).

Section II illustrates an example of using the CEAM ap-
proach. Section III introduces the technologies used in our
verification framework. Section IV describes the details of the
implementation of the CEAM. We evaluate the applicability
of the CEAM through a series of examples in Section V. After
a review of related work in Section VI, Section VII concludes
the paper with our ongoing work.

II. AN EXAMPLE SESSION

Before exploring the principles and technologies of the
CEAM approach, we look at its practical use on a representa-
tive example (Fig. 1). The intent of the max function in class
MAX is to return into Result the maximum element of an
integer array a of size a.count. The two postconditions in
lines 22 and 23 (labeled by is max and in array) specify this
intent: every element of the array should be less than or equal
to Result; at least one element should be equal to Result.

When we try to verify the max function using AutoProof,
verification fails and AutoProof returns an error message
“Postcondition is max may be violated” (the first row in Fig.
2). Such a generic message tells us that the prover cannot
establish the postcondition, but does not enable us to find
out why. In this case, programmers can look at the model
generated by the Z3 solver to understand the cause of the
failure. Deciphering the model is a cumbersome task: the
model spans hundreds of lines and is expressed in a cryptic
formalism.

In contrast, AutoProof extended with CEAM automatically
generates a much simpler counterexample from the model. As
displayed in the second row of Fig. 2, the counterexample

ar
X

iv
:2

20
8.

10
49

2v
2

 [
cs

.S
E

]
 2

6
A

ug
 2

02
2

contains the initial values (on entry of max) of the array’s size
and of some of its elements. Seeing these concrete values,
rather than just the prover’s general failure message, helps the
programmer conjecture possible reasons for the failure. The
values in the counterexample are large, however, too large to
give the programmer a direct intuition of the problem at a
human scale.

1 class MAX feature

2 max (a: ARRAY [INTEGER]): INTEGER

3 require a.count > 0

4 local i: INTEGER

5 do

6 from

7 Result := a [1]; i := 2

8 invariant

9 2 ≤ i and i ≤ a.count + 1

10 ∀ j: 1 |..| (i − 1) | a.sequence [j] <= Result

11 ∃ j: 1 |..| (i − 1) | a.sequence [j] = Result

12 until

13 i ≥ a.count
14 loop

15 if a [i] > Result then

16 Result := a [i]

17 end

18 i := i + 1

19 variant a.count − i

20 end

21 ensure

22 is_max: ∀ j: 1 |..| a.count | a.sequence [j] <= Result

23 in_array: ∃ j: 1 |..| a.count | a.sequence [j] = Result

24 end

25 end

Fig. 1. MAX is a class that finds the maximum element of an integer array;
a fault (the exit condition at line 13 is incorrect) is injected to the code for
presentation purposes.

To provide a more intuitive illustration, CEAM allows the
programmer to query AutoProof further to obtain a minimal
counterexample in the last row of Fig. 2, where integer
variables have been reduced to their minimal possible values.

Fig. 2. Proof result in AutoProof: the first row (highlighted in red) indicates
a proof failure; the second row is a counterexample generated based on the
Z3 model; the third row is a minimized counterexample.

This minimized counterexample provides a simple diagnostic
trace of max: on loop initialization at line 7, Result = 0 and
i = 2; at line 13, the exit condition of the loop evaluates to
True with a.count = 2 and i = 2, which forces the loop
to terminate. These values reveal the fault in the program:
the loop terminates too early, preventing the program from
getting to the actual maximum value, found at position 2 of

the array a. To eliminate this error, it suffices to strengthen
the exit condition to permit one more loop iteration: change
i ≥ a.count to i > a.count.

III. TECHNOLOGY STACK

This section introduces technologies used in the present work,
including language and prover.

Eiffel [15], [16] is an object-oriented programming lan-
guage which natively supports Design-by-Contract [14]. An
Eiffel program consists of a set of classes. A class represents a
set of run-time objects characterized by the features applicable
to them. Fig. 3 shows a simple class representing bank
accounts. The class contains two types of features: attributes
representing data items associated with instances of the class,
such as balance (line 2) and credit_limit (line 4); rou-
tines representing operations applicable to these instances,
including available_amount and transfer. Routines are
further divided into procedures (with no returned value) and
functions (returning a value). Here, available_amount is
a function returning an integer (represented by the special
variable Result), and transfer is a procedure.

1 class ACCOUNT feature

2 balance: INTEGER
3 -- Balance of this account.

4 credit_limit: INTEGER
5 -- Credit limit of this account.

6 available_amount: INTEGER
7 -- Amount available on this account.

8 do

9 Result := balance − credit_limit

10 end

11 transfer (amount: INTEGER; other: ACCOUNT)
12 -- Transfer ‘amount’ to the ‘other’ account.

13 require

14 amount >= 0

15 amount <= available_amount

16 do

17 balance := balance − amount

18 other.balance := other.balance + amount

19 ensure

20 withdrawal: balance = old balance − amount

21 deposit: other.balance = old other.balance
+ amount

22 end

23 end

Fig. 3. A class implementing the behavior of bank accounts

Programmers can specify the properties of Eiffel classes by
equipping them with contracts of the following types:
• A precondition (require) must be satisfied at the

time of any call to the routine; the precondition of
transfer (lines 13 – 15), for example, requires the
value of amount to be non-negative an no greater than
available_amount.

• A postcondition (ensure) must be guaranteed on rou-
tine’s exit; for instance, a postcondition of transfer

at line 20 states that, at the end of the execution of
transfer, the value of balance must have been de-
creased by amount.

• A loop invariant (invariant) characterizes the seman-
tics of a loop in the form of a property satisfied after
initialization and preserved by every iteration, as illus-
trated by the invariant of max (lines 9 – 11 in Fig. 1)
specifies the properties of i and Result before and after
every iteration.

• A loop variant (variant) is an integer measure that
should always be non-negative and decrease strictly at
each loop iteration, ensuring that the loop eventually
terminates; the loop variant of the loop in max is
a.count − i (line 19 in Fig. 1).

Contracts embedded in the code make it amenable to both
dynamic analysis (run-time checking of the contract proper-
ties), as in the EiffelStudio environment, and static analysis
(Hoare-style proofs), as in AutoProof.

AutoProof [1], [23] is a static verifier that checks the
correctness of Eiffel programs against their functional spec-
ifications (contracts).

When verifying an Eiffel program, AutoProof translates
the program into a Boogie program [2], [11], which is then
transformed into a set of verification conditions (VCs) in
SMT-LIB [3] format, based on Dijkstra’s weakest precondition
calculus [8]. The program’s correctness follows from the
validity of the VCs. Boogie asks an SMT solver (by default Z3,
as noted) to reason about the validity of each VC. Specifically,
the solver tries to find a model (an interpretation of variables
and functions used in the SMT encodings) that satisfies the
negation of a VC. If the solver is unable to find such a model
(no counterexample exists and thus VC is a tautology), the
verification is successful. If it succeeds in obtaining such a
model, the verification fails and the solver makes the model
available. This model witnesses the invalidity of the VC [12]
and thus can be seen as a counterexample1 at the SMT level.
In general, an SMT model describes an execution trace (a
sequence of program states) of a failed routine, along which
the program goes to an error state. The CEAM approach
makes use of such models to generate easy-to-understand
counterexamples.

IV. COUNTEREXAMPLE EXTRACTION AND MINIMIZATION

This section first shows how to generate counterexamples
based on SMT models, then presents the details of the CEAM
strategy for counterexample minimization.

A. Counterexample extraction

In general, to construct a counterexample it suffices to extract
the concrete values of relevant variables from the corre-
sponding SMT model, and to use these values to produce
a counterexample message (as in Fig. 2). The format of the

1The counterexample is a potential counterexample since it can occasionally
be spurious because of the prover’s incompleteness, although that phenomenon
is not significant in our experience.

message can vary depending on the chosen “verbosity level”.
As the goal of the approach and the tools is to ease the burden
on programmers, the message only displays the initial values
of relevant input variables in the counterexample, as illustrated
in the case at the beginning of this article.

Fig. 4 shows a simplified portion of the Z3 model2 cor-
responding to the failed proof of transfer’s postcondition
labeled by withdrawal (line 20 in Fig. 3). To construct a coun-
terexample for this failure, it suffices to obtain the initial values
of its three input variables: the implicit variable Current3 and
the two arguments amount and other.

1 amount →5799

2 Heap →T@U!val!17
3 Current →T@U!val!18
4 other →T@U!val!18
5 ACCOUNT.balance →T@U!val!7
6 ACCOUNT.credit_limit →T@U!val!8
7 Select →{
8 T@U!val!17 T@U!val!18 T@U!val!7 →(−2147475928)
9 T@U!val!17 T@U!val!18 T@U!val!8 →(−2147481727)

10 }

Fig. 4. A slice of model of the proof failure of withdrawal

In the transformation from Eiffel program to SMT code, to
encode the execution semantics of an object-oriented program,
the evolution of the heap (the collection of program objects)
during an execution is modeled as a sequence of constants
prefixed with Heap. Here the SMT constant Heap (line 2) cor-
responds to the heap at the initial program state of transfer.
Select (line 7) is a function for retrieving the values of
objects’ fields. It takes three parameters, i.e., a heap state,
an object reference and a data field, and returns the value of
the specified field.

As the example shows, the concrete values of primitive
variables (such as amount) are given directly, whereas the
values of non-primitive variables (e.g., Current and other

of ACCOUNT type) appear in a symbolic form, prefixed with
T@U!val!. Such symbolic values can be seen as abstract
memory locations for the corresponding variables (see [4],
[13]). The Select function is available to obtain the values of
the corresponding fields. For example, Current is an instance
of ACCOUNT and thus has fields balance and credit_limit.
The initial value of balance can be obtained by applying
Select to a tuple made of Heap = T@U!val!17 (line 2),
Current = T@U!val!18 (line 3) and ACCOUNT.balance =
T@U!val!7 (line 5); the tuple matches the mapping in line
8, therefore the returned value for balance is −2147475928.
Similarly, the value of credit_limit can be retrieved
through the mapping in line 9.

To display the value of a non-primitive variable in the
resulting counterexample message, the strategy first checks
whether the variable has an alias that has been looked up

2As the models are too big to include in their entirety, this presentation
only displays the parts relevant to the discussion.

3Current represents the active object in the current execution context,
similar to this in Java.

earlier; if so, it displays the alias relation between the variable
and its earliest alias in the message; otherwise, it looks up all
of its primitive data fields transitively and display them in the
message.

In this example, the model shows that other and Current
have the same symbolic values. Current is, consequently, an
alias of other. As Current is processed prior to other, the
fields of other will not be looked up and the message will
display the alias relation between other and Current.

After applying the above rules, the counterexample can
be derived: balance = −2147475928, credit_limit =
−2147481727, amount = 5799, other = Current.

For variables of container types such as arrays or sequences,
the resulting message displays the values of their sizes and
containing elements. Here, we use the example of max in Fig. 1
to demonstrate counterexample extraction for container types.

The AutoProof approach specifies container structures in
terms of mathematical structures [23]. For example, the con-
tent of the input array a of max is specified through a
special attribute sequence (see lines 10 – 11 in Fig. 1),
which represents the mathematical sequence of integer values
stored in a’s cells. To obtain the content of a from the
counterexample, we need to get the content of its sequence

field from the model. Fig. 5 shows a slice of the model for
the proof failure of max. CEAM first extracts the value of
sequence by querying Select with the values of Heap, a,
and ARRAYˆINTEGERˆ.sequence (lines 1 – 3). Those values
match to the mapping in line 5, hence the value of sequence
is T@U!val!38. By using this value, CEAM then queries the
two functions Seq#Length and Seq#Item to get the values
of sequence’s size (line 8) and elements (lines 12 – 14),
respectively.

1 Heap →T@U!val!26
2 a →T@U!val!18
3 ARRAYˆINTEGER_32ˆ.sequence →T@U!val!9
4 Select →{
5 T@U!val!26 T@U!val!18 T@U!val!9 →T@U!val!38
6 }
7 Seq#Length →{
8 T@U!val!38 →11800

9 T@U!val!40 →28101

10 }
11 Seq#Item →{
12 T@U!val!38 1 →0

13 T@U!val!38 11799 →0

14 T@U!val!38 11800 →5

15 }

Fig. 5. A snippet of the model of proof failure of is max

B. Counterexample minimization

Some of the extracted values found to cause a failure, such as
−2147481727 in the above counterexample, are too large to
enable a programmer to visualize easily the cause of the proof
failure. CEAM can simplify counterexamples by reducing
the absolute value of such integers. Program verification is

modular, meaning it processes each routine independently; so
does minimization.

As the counterexample of a routine r consists of the initial
states of its input variables, to minimize a counterexample
of r it suffices to minimize each of r’s input variables. The
task of minimizing an input variable x can be reduced to a
set of integer minimization tasks based on the type of x. The
procedure minimize integer in in Algorithm 1 minimizes an
integer variable. It applies to the absolute value, retaining the
sign (lines 1 – 5). If x is an object reference, the algorithm
first checks whether x denotes a container; if yes, it finds
the minimal size of x (lines 8 – 9) and then minimizes x’s
elements one by one (lines 11 – 13); otherwise it minimizes
each of x’s fields (lines 15 – 16).

Algorithm 1: minimize general (x): minimize a vari-
able of integer or reference type

1 if x is an integer then
2 if v > 0 then
3 minimize integer (x)
4 elseif v < 0 then
5 minimize integer (−x)
6 elseif x is an object reference then
7 if x is a container then
8 minimize integer (x.count)
9 n← minimized value of x.count

10 from
11 i← 1
12 until
13 i ≤ n
14 loop
15 minimize general (x[i])
16 i← i+ 1

17 else
18 across each field f of x as x.f loop

minimize general (x.f)

Algorithm 2 shows the details of minimize integer. B repre-
sents the Boogie procedure of routine r generated by Auto-
Proof. The core idea is to find the smallest integer bound m
such that adding a precondition 0 ≤ x < m (line 10) to B
still yields the same verification results. When the algorithm
ends (no smaller value of m can be found), the model from
the last verification run is the minimal possible.
The algorithm starts by assigning to m the value of x in the
initial model, then iteratively decreases m. At each iteration,
it adds a new precondition to B to reduce the the range of x
and performs verification based on the updated B, to check
whether there still exists a model with a smaller value of x
within the interval [0, m).

Picking a smaller value for m (line 9) can be implemented
either by sequentially decreasing the value or using a binary
reduction (as in binary search) for acceleration. The current
implementation first checks whether x can be 0; if yes, the
minimization stops as it has found the minimum; otherwise,

Algorithm 2: minimize integer (x): minimize an inte-
ger

1 from
2 m ← current value of x
3 B.add precondtion (0 ≤ x ∧ x < m)
4 verify
5 until
6 no smaller value can be tried
7 loop
8 B.remove last precondition
9 m ← pick a smaller value

10 B.add precondtion (0 ≤ x ∧ x < m)
11 verify

it continues applying binary reduction. For more flexibility, it
uses two user-specified parameters controlling termination:
• Tolerance: lower bound on the size of interval used in

the binary search algorithm;
• Max iteration: maximum number of verification iterations

allowed when minimizing an integer.
We have not endeavored to prove the correctness of the
algorithms since the correctness of the approach (the “proof
of the pudding”) is embodied in the result: as the overall goal
is to obtain a counterexample, the final criterion is whether
the minimized value is still a counterexample, as established
rigorously by the underlying proof technology. If not, the
original unminimized counterexample still applies.

V. EXPERIMENT

A preliminary evaluation of the usability of the CEAM ap-
proach covers over 40 program versions4 of 9 examples, in-
cluding some adapted from software verification competitions
[5], [10], [24]. The examples (listed in Table I) include: 1)
ACCOUNT introduced in Fig. 3; 2) a CLOCK class implementing
a clock counting seconds, minutes, and hours; 3) a HEATER

class implementing a heater adjusting it state (on or off) based
on the current temperature and a user-defined temperature; 4)
a LAMP class describing a lamp equipped with a switch (for
switching on/off the lamp) and a dimmer (for adjusting the
light intensity of the lamp); 5)a BINARY_SEARCH class imple-
menting the binary search algorithm; 6) a LINEAR_SEARCH

implementing the linear search algorithm; 7) a SQUARE_ROOT

that calculates two approximate square roots of a positive in-
teger; 8) MAX from Fig. 1; 9) a SUM_AND_MAX class computing
the maximum and sum of the elements of an array.

Each row in the table reports on the experiment result
of a single example, which consists of multiple versions.
Each version was intentionally injected with a fault, such as
confusions between + and −, ≤ and <, > and ≥, missing loop
invariant(s), pre- or postcondition, etc. The experiments use
AutoProof to verify the programs, produce counterexamples
for all occurring proof failures, and minimize them. The

4https://github.com/huangl223/Proof2Test/tree/main/examples

tolerance and max iteration parameters are currently set to
0 and 20 respectively.

The third column gives the total number of integer variables
whose minimized in the experiment. Cases where no mini-
mization is performed (e.g., the value of an integer variable
in the counterexample is already 0 before minimization) are
not included. The reduction rate (fourth column), number of
iterations (fifth column), verification time (sixth column) and
minimization time (last column) per integer are averaged out
over all minimized integers of each example.

As the experiment result shows, CEAM minimization is
cost-effective overall: in most cases, conducting minimization
reduces the values of integer variables by over 80% with an
average cost of less than 4 extra verification runs (iterations).
Most of the minimized integer values are fairly small and easy-
to-understand: out of 125 minimized values, 108 are in the
range [-2, 2], out of which 58 are zero; values not in that range
are usually close to the values of some predefined constants
in the program.

VI. RELATED WORK

In line with the objective of helping programmers to under-
stand the causes of proof failures, several approaches have
been proposed to provide more user-friendly visualizations
of counterexample models [6], [9], [11], [18], [22]. Claire et
al. [11] developed the Boogie Verification Debugger (BVD),
which interprets a counterexample model as a static execution
trace (i.e., a sequence of abstract states). David et al. [9]
transformed the models back into a counterexample trace
comprehensible at the original source code level (SPARK) and
display the trace using comments. Similarly, Aleksandar et al.
[6] transformed SMT models to a format close to the Dafny
syntax. In contrast to the present work, these approaches con-
centrate on the generation of human-readable counterexample
and do not consider any counterexample minimization.

Another direction of work to ease the understanding of
proof failures is to generate more useful counterexamples
in the first place: Polikarpova et al. [21] developed a tool,
Boogaloo, which applies symbolic execution to generate coun-
terexamples for failed Boogie programs. Like the present
approach, Boogaloo displays minimal counterexamples in the
form of valuations of relevant variables. Müller et al. [17]
implemented a Visual Studio dynamic debugger plug-in for
Spec#, to reproduce a failing execution from the view of the
prover. Likewise, Petiot et al. [19], [20] developed STADY,
which produces failing tests for the failed assertions using
symbolic execution techniques. That approach is also referred
to as testing-based counterexample synthesis: it first translates
the original C program into programs suitable for testing (run-
time assertion checking), then applies symbolic execution to
generate counterexamples (input for failing tests) based on the
translated program. Unlike to that approach, CEAM counterex-
ample extraction directly exploits the counterexample models
produced by the provers, and hence does not require additional
program instrumentation or counterexample generation.

TABLE I
EXPERIMENT RESULTS

Example
Number

of versions
Total Number of

Minimized Integers
Avg. Reduction

Rate
Avg. Number
of Iterations

Avg. Verification
Time (seconds)

Avg. Minimization
Time (seconds)

ACCOUNT 7 17 99.98% 2.5 0.028 0.087

CLOCK 6 13 100% 1.46 0.019 0.034

HEATER 2 4 48.4% 4.25 0.030 0.128

LAMP 4 8 0.819% 1.875 0.115 0.233

BINARY SEARCH 5 31 98.8% 3.22 0.448 1.512

LINEAR SEARCH 3 9 99.9% 3.44 0.087 0.279

SQUARE ROOT 4 3 89.9% 4 0.133 0.505

MAX 4 12 87.1% 4.25 0.213 1.456

SUM AND MAX 6 11 80.7% 3.45 0.590 1.704

VII. CONCLUSION

This article has presented Counterexample Extraction and
Minimization (CEAM), an approach that improves the quality
of counterexamples generated in the presence of failed pro-
gram proofs. CEAM automatically generates simple and easy-
to-understand counterexamples. We believe this makes the
results of failed proofs practical enough to be used by regular
programmers. The CEAM implementation is integrated in the
AutoProof verifier to assist programmers when debugging
failed proofs. The approach could also be applied to other
Hoare-style verification tools relying on Boogie-style provers
and SMT solvers.

Ongoing work includes implementing a feature of automatic
test generation based on the counterexamples produced by
CEAM, as well as extending the scope of CEAM to include
the supports for more data types and program constructs.
We also plan to conduct systematic empirical studies to
evaluate precisely the benefits of the proposed techniques for
programmers with no verification expertise.

Acknowledgments: We thank the anonymous referees for
comments which led to significant improvements. The work
benefitted from discussions with Filipp Mikoian, Alexander
Kogtenkov and Alexander Naumchev from SIT.

REFERENCES

[1] AutoProof, http://comcom.csail.mit.edu/autoproof/
[2] Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.:

Boogie: A Modular Reusable Verifier for Object-Oriented Programs.
In: International Symposium on Formal Methods for Components and
Objects. pp. 364–387. Springer (2005)

[3] Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB Standard: Version
2.0. In: International Workshop on Satisfiability Modulo Theories.
vol. 13, p. 14 (2010)

[4] Bjørner, N., Moura, L.d., Nachmanson, L., Wintersteiger, C.M.: Pro-
gramming Z3. In: International Summer School on Engineering Trust-
worthy Software Systems. pp. 148–201. Springer (2018)

[5] Bormer, T., Brockschmidt, M., Distefano, D., et al.: The COST IC0701
Verification Competition. In: International Conference on Formal Ver-
ification of Object-Oriented Software (FoVeOO). pp. 3–21. Springer
(2011)

[6] Chakarov, A., Fedchin, A., Rakamarić, Z., Rungta, N.: Better Counterex-
amples for Dafny. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). pp. 404–411.
Springer (2022)

[7] De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). pp. 337–340. Springer (2008)

[8] Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
[9] Hauzar, D., Marché, C., Moy, Y.: Counterexamples from Proof Failures

in SPARK. In: International Conference on Software Engineering and
Formal Methods (SEFM). pp. 215–233. Springer (2016)

[10] Klebanov, V., Müller, P., , et al.: The 1st Verified Software Competition:
Experience Report. In: International Symposium on Formal Methods
(FM). pp. 154–168. Springer (2011)

[11] Le Goues, C., Leino, K.R.M., Moskal, M.: The Boogie Verification
Debugger. In: International Conference on Software Engineering and
Formal Methods. pp. 407–414. Springer (2011)

[12] Leino, K.R.M., Millstein, T., Saxe, J.B.: Generating Error Traces from
Verification-Condition Counterexamples. Science of Computer Program-
ming 55(1-3), 209–226 (2005)

[13] Leino, K.R.M., Rümmer, P.: The Boogie 2 Type System: Design and
Verification Condition Generation

[14] Meyer, B.: Applying “Design by Contract”. Computer 25(10), 40–51
(1992)

[15] Meyer, B.: Object-Oriented Software Construction, vol. 2. Prentice Hall
(1997)

[16] Meyer, B.: Touch of Class: Learning to Program Well with Objects and
Contracts. Springer (2016)

[17] Müller, P., Ruskiewicz, J.N.: Using Debuggers to Understand Failed
Verification Attempts. In: International Symposium on Formal Methods
(FM). pp. 73–87. Springer (2011)

[18] Nilizadeh, A., Calvo, M., Leavens, G.T., Cok, D.R.: Generating Coun-
terexamples in the Form of Unit Tests from Hoare-style Verification
Attempts. In: International Conference on Formal Methods in Software
Engineering (FormaliSE). pp. 124–128. IEEE (2022)

[19] Petiot, G., Kosmatov, N., Botella, B., Giorgetti, A., Julliand, J.: Your
Proof Fails? Testing Helps to Find the Reason. In: International Con-
ference on Tests and Proofs (TAP). pp. 130–150. Springer (2016)

[20] Petiot, G., Kosmatov, N., Botella, B., Giorgetti, A., Julliand, J.: How
Testing Helps to Diagnose Proof Failures. Formal Aspects of Computing
(FAC) 30(6), 629–657 (2018)

[21] Polikarpova, N., Furia, C.A., West, S.: To Run What No One Has Run
Before: Executing an Intermediate Verification Language. In: Interna-
tional Conference on Runtime Verification (RV). pp. 251–268. Springer
(2013)

[22] Stoll, C.: SMT Models for Verification Debugging. Master thesis, ETH
Zurich (2019)

[23] Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: Autoproof:
Auto-active Functional Verification of Object-Oriented Programs. In:
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). pp. 566–580. Springer (2015)

[24] Weide, B.W., Sitaraman, M., Harton, H.K., Adcock, B., Bucci, P.,
Bronish, D., Heym, W.D., Kirschenbaum, J., Frazier, D.: Incremental
Benchmarks for Software Verification Tools and Techniques. In: Work-
ing Conference on Verified Software: Theories, Tools, and Experiments
(VSTTE). pp. 84–98. Springer (2008)

http://comcom.csail.mit.edu/autoproof/

	I Introduction
	II An Example Session
	III Technology stack
	IV Counterexample extraction and minimization
	IV-A Counterexample extraction
	IV-B Counterexample minimization

	V Experiment
	VI Related Work
	VII Conclusion
	References

