
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Software Defect Prediction by Online Learning 
Considering Defect Overlooking 

 

Yuta Yamasaki 
Kindai University 

Higashi-osaka, Japan 
2133340459f@kindai.ac.jp 

Nikolay Fedorov 
Dubna State University 

Dubna, Russia 
 

Masateru Tsunoda 
Kindai University 

Higashi-osaka, Japan 
tsunoda@info.kindai.ac.jp 

Akito Monden 
Okayama University 

Okayama, Japan 
monden@okayama-u.ac.jp 

Amjed Tahir 
Massey University 

Palmerston North, New Zealand 
a.tahir@massey.ac.nz  

Kwabena Ebo Bennin 
Wageningen UR 

Wageningen, Netherlands 
kwabena.bennin@wur.nl 

Koji Toda  
Fukuoka Institute of Technology 

Fukuoka, Japan  
toda@fit.ac.jp 

Keitaro Nakasai 
OMU College of Technology 

Osaka, Japan 
nakasai@omu.ac.jp 

 

Abstract—Building defect prediction models based on online 

learning can enhance prediction accuracy. It continuously 

rebuilds a new prediction model when adding a new data point. 

However, predicting a module as “non-defective” (i.e., negative 

prediction) can result in fewer test cases for such modules. 

Therefore, defects can be overlooked during testing, even when the 

module is defective. The erroneous test results are used as learning 

data by online learning, which could negatively affect prediction 

accuracy. In our experiment, we demonstrate this negative 

influence on prediction accuracy. 

Keywords—defect prediction, cross-version defect prediction 

I. INTRODUCTION 

Software testing is one of the key activities to find defects. 
However, due to resource availability and software development 
duration, testing can be limited to only a few modules [6]. Defect 
prediction is one of the major approaches to suppressing 
remaining defects. When a module is regarded as defective by 
the prediction model, it is tested thoroughly (i.e., more effort is 
spent on testing it). In contrast, when regarded as non-defective, 
it can be tested much more lightly [2]. When the accuracy of the 
prediction model is high, both low testing costs and high 
software quality can be achieved. 

Learning data based on the previous versions' history is often 
used to build a defect prediction model. For instance, during the 
development of version 1.0, data such as the number of found 
defects and the complexity of the modules are recorded. Next, a 
defect prediction model for the next version (e.g., 1.1) is built 
using this data. Lastly, during the development of version 1.1 
(i.e., on test data), defects of each module are predicted using the 
prediction model built in the previous stage. The procedure is 
called cross-version defect prediction (CVDP). 

However, the accuracy of CVDP is often low. This is 
because when the version is different between learning and test 
data, the independent variables of the prediction model are often 
different. This is regarded as an external validity issue of defect 
prediction [1]. To address the problem, online learning 
approaches have been proposed recently [4]. When a new data 
point is added, online learning adds it to the learning dataset and 
rebuilds a new prediction model. Using this approach, software 

testing results are collected and utilized to enhance prediction 
accuracy during development. 

Fig. 1 illustrates an example of defect prediction by online 
learning. Each module is tested sequentially from the top to the 
bottom. After module t9 is tested (i.e., before t5 ), a prediction 
model M1 is built. The learning dataset includes modules t1 and 
t9, where an independent variable is the lines of code (LOC), 
and a dependent variable is the test result. M1 predicts the test 
result of t5. After t5 is tested, model M2 is built based on t1, t9, 
and t5 data. M2 predicts the test result of t7. 

II. DEFECT OVERLOOKING 

When a defect prediction model predicts a negative result 
(i.e., “non-defective”), developers will typically write fewer test 
cases for those modules [2] to efficiently allocate testing 
resources [3][6]. As a result, the test overlooks defects, and the 
module might be regarded as “non-defective” in most cases, 
even if the module is defective. We call this case a defect 
overlooking by negative prediction. This means defects are 
overlooked due to fewer test cases based on negative prediction. 

 
Fig. 1. Example of defect prediction by online learning 

Test

module

Lines of

code
Test result Prediction

t1 250 Non-defective Negative

t9 537 Defective Positive

t5 336

t7 801

Test

module

Lines of

code
Test result Prediction

t1 250 Non-defective Negative

t9 537 Defective Positive

t5 336 Non-defective Negative

t7 801

Model M1

Model M2

After t9 is tested

After t5 is tested

Predict

Build

Build

Predict



Such overlooking of defects could negatively affect the 
accuracy of the prediction models. In Figure 2, the column “test 
result” considers only defects during testing, while “actual result 
after testing” also considers defects after testing was done (e.g., 
when the software is released). In the example, we assume 
defects are always overlooked when the prediction is negative 
due to fewer test cases. That is, when the “Prediction” column is 
“Negative” in Figure 2, the “Test result” column is “Non-
defective” with 100% probability. 

Module t1 and t5 are regarded as non-defective based on the 
test outcomes, and they are used as learning data for model M2. 
However, based on the actual result, the learning data must be 
corrected and set as defective. As a result, the accuracy of model 
M2 becomes low, and the model predicts module t7 as “non-
defective” erroneously. 

The defects’ overlooking issue was not considered in 
previous defect prediction by online learning studies. Without 
considering such overlooking, the accuracy of these prediction 
models might be evaluated incorrectly. However, in our 
previous work, we pointed out the influence of the overlooking 
by negative prediction; the study evaluated the influence on 
online model selection (i.e., models are not rebuilt during 
software testing). Therefore, it is still unclear what influence it 
may have on the accuracy of rebuilt models with online learning. 

III. EXPERIMENT 

Settings: In the experiment, we assume that defect 
overlooking occurs with n% probability when a defect 
prediction model predicts “non-defective.” We set n as 0, 80 and 
100. For instance, in Fig. 2, when n is 80, test result of t1, t5, and 
t7 becomes “non-defective” at 80% probability. We set n as 0 
for the baseline, which does not consider the overlooking. In 
addition, when defects of the first module (e.g., t1 on Fig. 1) are 
predicted, there is no learning dataset. Therefore, we fixed the 
prediction as “defective” on the module. 

When evaluating the models, we randomly sorted the order 
of modules 10 times and calculated the average of the evaluation 
criteria acquired from the 10 repetitions. This is because the 
prediction accuracy of online learning affects the order of 
module testing. 

Dataset: We selected 3 datasets published on PROMISE and 
D’Ambros et al. [1] repositories to perform our cross-version 
defect prediction. Each dataset includes 20 independent 
variables, which include product metrics such as CK metrics. 
Table 1 shows details of the datasets used in the experiment. 

Prediction model: To predict defective modules, we used 
logistic regression, a widely used method in defect prediction. 
As a feature selection method, we applied correlation-based 

feature selection, which is shown to be effective when used with 
logistic regression. 

Evaluation criteria: We used AUC and F1 score to evaluate 
the performance of each prediction model. Prediction values are 
real numbers in most models. Hence, the prediction values were 
converted into binary values (i.e., defective or not defective) 
based on a cutoff value. We set the cutoff value as the closest 
point to the top left corner of the ROC curve on a training project. 
The converted values were also used to calculate the F1 score. 

Result: The average prediction accuracy of the models is 
shown in Table 2. In the table, when the probability of 
overlooking is 100, the accuracy is very low compared with the 
baseline, which does not consider the overlooking. Even when 
the probability is 80, the accuracy is still lower than the baseline. 
The result suggests that to evaluate the accuracy of online 
learning, we have to consider the influence of overlooking. 

ACKNOWLEDGMENT 

This research is partially supported by the JSPS [Grants-in-
Aid for Scientific Research (C) (No.21K11840). 

REFERENCES 

[1] M. D’Ambros, M., Lanza, and R. Robbes, “Evaluating defect prediction 
approaches: a benchmark and an extensive comparison,” Empirical 
Software Engineering, vol.17, no.4-5, pp.531-577, 2012. 

[2] S. Mahfuz, Software Quality Assurance - Integrating Testing, Security, 
and Audit, CRC Press, 2016. 

[3] M. Shepperd, D. Bowes, and T. Hall, “Researcher Bias: The Use of 
Machine Learning in Software Defect Prediction,” IEEE Transactions on 
Software Engineering, vol.40, no.6, pp.603-616, 2014. 

[4] S. Tabassum, L. Minku, D. Feng, G. Cabral and L. Song, “An 
Investigation of Cross-Project Learning in Online Just-In-Time Software 
Defect Prediction,” Proc. of International Conference on Software 
Engineering (ICSE), pp.554-565, 2020. 

[5] M. Tsunoda, A. Monden, K. Toda, A. Tahir, K. Bennin, K. Nakasai, M. 
Nagura, and K. Matsumoto, “Using Bandit Algorithms for Selecting 
Feature Reduction Techniques in Software Defect Prediction,” Proc. of 
Mining Software Repositories Conference (MSR), pp.670-681, 2022. 

[6] T. Zimmermann and N. Nagappan, “Predicting defects using network 
analysis on dependency graphs,” Proc. of International Conference on 
Software Engineering (ICSE), pp.531-540, 2008.

 
Fig. 2. Example of defect overlookng 

Test

module

Lines of

code
Test result Prediction

Actual result

After testing

t1 250 Non-defective Negative Defective

t9 537 Defective Positive Defective

t5 336 Non-defective Negative Defective

t7 801 Non-defective Negative Defective

Model M2

After t7 is tested

Build

Predict

TABLE I.   DATASETS USED IN THE EXPERIMENT 

Software 

Learning dataset Test dataset 

Ver. 
# of Modules (%) 

Ver. 
# of Modules (%) 

All Defective All Defective 

ant 1.6 351 92 (26.2) 1.7 745 166 (22.3) 
prop 5 8516 1299 (15.3) 6 660 66 (10.0) 
synapse 1.1 222 60 (27.0) 1.2 256 86 (33.6) 

TABLE II.  RELATIONSHIP BETWEEN PREDICTION ACCURACY AND 

PROBABILITY OF OVERLOOKING 

Software Probability of overlooking (%) AUC F1 score 

ant 0 (baseline) 0.74 0.56 
 80 0.56 0.28 
  100 0.55 0.46 

prop  0 (baseline) 0.63 0.26 
 80 0.53 0.16 
 100 0.49 0.11 

synapse 0 (baseline) 0.70 0.61 
 80 0.55 0.30 
  100 0.51 0.26 


