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ABSTRACT
The ubiquitous adoption of Large Language Generation Models

(LLMs) in programming has underscored the importance of dif-
ferentiating between human-written code and code generated by
intelligent models. This paper specifically aims to distinguish code
generated by ChatGPT from that authored by humans. Our investi-
gation reveals disparities in programming style, technical level, and
readability between these two sources. Consequently, we develop a
discriminative feature set for differentiation and evaluate its efficacy
through ablation experiments. Additionally, we devise a dataset
cleansing technique, which employs temporal and spatial segmen-
tation, to mitigate the dearth of datasets and to secure high-caliber,
uncontaminated datasets. To further enrich data resources, we em-
ploy "code transformation," "feature transformation," and "feature
customization" techniques, generating an extensive dataset com-
prising 10,000 lines of ChatGPT-generated code. The salient contri-
butions of our research include: proposing a discriminative feature
set yielding high accuracy in differentiating ChatGPT-generated
code from human-authored code in binary classification tasks; de-
vising methods for generating extensive ChatGPT-generated codes;
and introducing a dataset cleansing strategy that extracts immacu-
late, high-grade code datasets from open-source repositories, thus
achieving exceptional accuracy in code authorship attribution tasks.

KEYWORDS
ChatGPT, Code Differentiation, Dataset Cleansing, Machine Learn-
ing

1 INTRODUCTION
Since its introduction in November 2022, OpenAI’s ChatGPT has

become the cynosure in numerous fields, generating palpable enthu-
siasm. By capitalizing on human feedback reinforcement learning
(RLHF) for fine-tuning and judiciously curated datasets, ChatGPT

∗Both authors contributed equally to this research.

exhibits exemplary capabilities across a plethora of challenging nat-
ural language processing (NLP) tasks. These include code synthesis
via natural language[4], text summarization[6], and the creation of
stylistic narratives based on designated elements[15], in addition to
its adeptness in conventional NLP tasks such as translation and text
categorization. Moreover, ChatGPT demonstrates the prudence of
refraining from responding to inquiries that exceed its knowledge
base, contravene ethical norms, or broach sensitive political topics.

ChatGPT’s prowess, particularly in facilitating programming
through natural language, has engendered significant intrigue. How-
ever, reservations concerning the safety and legality of employing
intelligent programming assistants like ChatGPT have been voiced
by the scholarly community. The opaque nature of ChatGPT’s
training data spawns uncertainties regarding the provenance of its
generated code snippets and the possibility of their harboring secu-
rity vulnerabilities or unsafe code fragments[8, 10], which could
entangle developers in copyright disputes and code security quan-
daries.

For example, Stack Overflow, a renowned platform for program-
ming inquiries, has imposed a temporary restraining on ChatGPT-
generated content due to its low accuracy which did not match the
high quality demanded by users. Concurrently, academic institu-
tions face dilemmas in assessment settings where students might
exploit ChatGPT to accomplish programming assignments, thus
creating hurdles in evaluating their true acumen and knowledge.

Addressing these issues hinges on the adept discernment of
human-written code versus code generated by intelligent models
like ChatGPT. This entails two facets: first, the extraction of discrimi-
native features between human-authored and ChatGPT-synthesized
code. Conventional feature sets for code author attribution, which
are primarily geared toward distinguishing among human authors,
may fall short in capturing subtle distinctions, such as code structur-
ing traits, when discerning between ChatGPT and human-authored
code. This necessitates ablation studies to pinpoint a discriminative
feature set capable of enhancing classification accuracy.
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Through ablation studies, we identified variances in program-
ming style, technical level, and readability betweenChatGPT-generated
and human-authored code. Building upon existing research in code
authorship attribution, we formulate a discriminative feature set
that enables distinction between these code sources, thereby sur-
mounting feature analysis challenges.

The second facet concerns the compilation of an associated high-
quality dataset. Our examination ascertained that prevailing re-
search on code authorship attribution relies on datasets of heteroge-
neous quality and sources, bereft of standardized benchmarks.More-
over, datasets specifically comprising ChatGPT-generated code are
scant owing to its recent advent.

To redress this dataset deficiency, we conceive a dataset cleans-
ing technique grounded in temporal and spatial segmentation. This
technique facilitates the procurement of untainted, high-quality
datasets from open-source repositories while confirming data au-
thenticity and eliminating extraneous factors related to authorship.
Additionally, we employ a semi-automated approach to generate an
expansive dataset, with ChatGPT synthesizing millions of lines of
code via three strategies: "code transformation," "function transfor-
mation," and "custom functionality." This enriched dataset, which
amalgamates human-authored and ChatGPT-generated code, fur-
nishes robust data support for our research.

In summation, our research offers the following seminal contri-
butions:

(1) We devise a discriminative feature set predicated on heuristic
code segmentation, which efficaciously differentiates ChatGPT-
generated code from human-authored code, achieving a clas-
sification accuracy of over 90% in code origin identification
tasks through synergistic use with machine learning algo-
rithms.

(2) We introduce three strategies to amass a copious volume of
ChatGPT-generated code: "code transformation," "function
transformation," and "function customization."

(3) We put forth a dataset cleansing technique centered on tem-
poral and spatial segmentation, facilitating the extraction of
immaculate, high-quality code datasets from open-source
repositories. Employing this technique, we have amassed
and purified approximately 20GB of code datasets. Subse-
quent application of these datasets to code author attribution
tasks yielded an impressive accuracy rate of no less than 95%.

Our contributions establish a robust theoretical framework for
distinguishing code generated by advanced models like ChatGPT
from human-authored code. These findings bear considerable prac-
tical implications, including promoting academic integrity, protect-
ing intellectual property, and bolstering software security, while
fostering the sustainable development of AI in programming. This
research is poised to catalyze advancements in related domains
and pave the way for a harmonious coexistence between human
developers and intelligent programming assistants.

The remainder of this paper is organized as follows: Section 2
presents research work related to AI-generated content detection,
code authorship attribution and ChatGPT-generated code. Section 3
provides an overview of the creation of datasets comprising human-
generated code and ChatGPT-synthesized code. Section 4 eluci-
dates the methodologies employed in developing the discriminative

feature set. Section 5 details the experiments conducted and the
ensuing analysis of the results. Section 6 concludes the paper and
provides an outlook for further research. Finally, Section 7 outlines
the limitations of our research and suggests potential directions for
future research.

2 RELATEDWORK
2.1 AIGC Detector

Research is already emerging in the field of detecting and identi-
fying content generated by artificial intelligence (AI) models. For
instance, in the domain of natural language processing, there have
been notable studies focused on distinguishing AI-generated con-
tent from human-created content.

Mitrovi´c et al. [11] employed a machine learning approach to
differentiate ChatGPT by extracting features from text messages.
Their study achieved an accuracy of 79% by focusing on shorter
text responses generated by ChatGPT in comparison to manually
generated text.

In another study, Guo et al. [7] collected 40K questions and cor-
responding answers from both human experts and ChatGPT to
construct the Human ChatGPT Comparison Corpus (HC3) dataset.
This dataset encompassed various domains, including open domain,
finance, medical, legal, and psychological fields. Through the HC3
dataset, the researchers investigated differences between the fea-
tures of ChatGPT-generated texts and those of human experts. They
conducted feature analysis from multiple perspectives, including
Vocabulary Features, Part-of-Speech and Dependency Analysis, and
Sentiment Analysis. Additionally, they employed classical machine
learning and deep learning techniques, performing experiments
with three representative methods to further validate their findings.

Wenxiong Liao et al.[9] conducted a comprehensive analysis
of medical texts to distinguish between content written by hu-
man experts and text generated by ChatGPT. Their study involved
constructing a specialized dataset for medical texts and analyzing
linguistic features, such as vocabulary, among others. To detect med-
ical texts generated by ChatGPT, they employed a machine learning
approach, specifically utilizing a BERT-based model. The results
were promising, with the model achieving an impressive F1 score
exceeding 95%. Furthermore, the researchers observed that medical
texts authored by humans tend to be more concrete, diverse, and
contain a wealth of useful information. Conversely, medical texts
generated by ChatGPT prioritize fluency and logic, often express-
ing general terminologies rather than providing context-specific,
problem-related information.

2.2 Code authorship attribution
To date, there has been limited academic research addressing

the specific problem of distinguishing code generated by AI models
from codewritten by humans. However, this research can be aligned
with the traditional code authorship attribution problem, which
focuses on extracting code-level features to differentiate or trace
the authorship of code.

In the field of code authorship attribution, classical machine
learning approaches have been explored. Caliskan-Islam et al. [2]
utilized a dataset comprising the code of 1600 authors from Google
Code Jam. They extracted approximately 120,000 features based



on vocabulary, layout, and syntax from the source code. By em-
ploying a random forest model consisting of 300 decision trees,
they achieved up to 98% accuracy on a test set comprising code
from 250 programmers who participated in Google Code Jam 2014,
effectively pushing the boundaries of machine learning models.

Regarding deep learning, Abuhamad et al. [1] employed a dataset
consisting of 1600 authors from Google Code Jam (spanning from
2008 to 2016) and 1987 repositories from GitHub, with 142 C++
and 745 C programmers. They initially utilized the text analysis
tool TF-IDF (Term Frequency-Inverse Document Frequency) for
preprocessing the source code, which served as input for a deep
learning network. They designed a deep learning framework based
on recurrent neural networks to extract code features. The author
attribution task was then accomplished using a random forest clas-
sifier. This approach achieved an accuracy of 96% in the Google
Code Jam experiment with 1600 authors and 94.38% on the real
dataset of 745 C programmers.

2.3 Code generated by ChatGPT
The current research on code generated by ChatGPT encom-

passes several areas, including code security, code correctness, code
quality improvement, code error resolution, code meaning interpre-
tation, and the potential of ChatGPT as a programming assistant.

Raphaël Khoury et al. [8] explored the capabilities of ChatGPT
in generating programs and assessed the security of the resulting
source code. They also investigated the effectiveness of prompting
ChatGPT to enhance code security and delved into the ethical
considerations associated with leveraging AI for code generation.
The findings indicate that ChatGPT demonstrates some awareness
of potential vulnerabilities. However, it frequently generates source
code that lacks robustness against certain attacks.

Jiawei Liu et al. [10] introduced EvalPlus, a code synthesis bench-
marking framework designed to thoroughly evaluate the functional
correctness of code synthesized by Language Models (LLMs). In
their work, they extended the widely used HUMANEVAL bench-
mark and created HUMANEVAL+, which includes an additional
81× generated tests. Through extensive evaluation across 14 popu-
lar LLMs, including GPT-4 and ChatGPT, they demonstrated that
HUMANEVAL+ effectively detects a significant number of previ-
ously undetected erroneous code synthesized by LLMs. On average,
it reduces the pass@k metric by 15.1%.

The research conducted by Burak Yetiştiren et al.[16] aims to
conduct a comparative analysis of prominent code generation tools,
including GitHub Copilot, Amazon CodeWhisperer, and ChatGPT,
in terms of various code quality metrics such as Code Validity, Code
Correctness, Code Security, Code Reliability, and CodeMaintainabil-
ity. To achieve this, they utilize the benchmark HumanEval Dataset
to evaluate the generated code based on the proposed code quality
metrics.The analysis reveals that the latest versions of ChatGPT,
GitHub Copilot, and Amazon CodeWhisperer achieve correct code
generation rates of 65.2%, 46.3%, and 31.1% respectively. Moreover,
the newer versions of GitHub Copilot and Amazon CodeWhisperer
demonstrate improvement rates of 18% and 7% respectively in terms
of generating correct code. Additionally, the average technical debt,
considering code smells, is found to be 8.9 minutes for ChatGPT,

9.1 minutes for GitHub Copilot, and 5.6 minutes for Amazon Code-
Whisperer.

Jules White et al. [14]explores several prompt patterns that have
been applied to improve requirements elicitation, rapid prototyping,
code quality, refactoring, and system design.

Dominik Sobania et al. [12] evaluate the bug fixing performance
of ChatGPT on the widely used QuixBugs benchmark set. They
compare its performance with several other approaches reported
in the literature. The findings reveal that ChatGPT’s bug fixing
capability is on par with common deep learning approaches like
CoCoNut and Codex, and significantly outperforms standard pro-
gram repair methods. Moreover, by providing hints to ChatGPT,
they were able to further enhance its success rate, with ChatGPT
successfully fixing 31 out of 40 bugs, surpassing the state-of-the-art
performance.

Eason Chen et al.[3] presents GPTutor, a ChatGPT-powered
rogramming tool, which is a Visual Studio Code extension using
the ChatGPT API to provide programming code explanations. By
integrating Visual Studio Code API, GPTutor can comprehensively
analyze the provided code by referencing the relevant source codes.
Preliminary evaluation indicates that GPTutor delivers the most
concise and accurate explanations compared to vanilla ChatGPT
and GitHub Copilot. Moreover, the feedback from students and
teachers indicated that GPTutor is user-friendly and can explain
given codes satisfactorily.

Haoye Tian et al. [13] conduct an empirical analysis to evaluate
the capabilities of ChatGPT as a fully automated programming as-
sistant, with a focus on code generation, program repair, and code
summarization. The study specifically examines ChatGPT’s perfor-
mance in solving common programming problems and compares it
to state-of-the-art approaches using two benchmark datasets. The
findings demonstrate that ChatGPT effectively addresses typical
programming challenges. However, the researchers also identify
limitations in its attention span. They observe that when faced with
comprehensive problem descriptions, ChatGPT’s focus can be con-
strained, thus hindering its ability to leverage its vast knowledge
for effective problem-solving.

Yihong Dong et al.[5] present a self-collaboration framework
for code generation employing LLMs, exemplified by ChatGPT.
Specifically, through role instructions, 1) Multiple LLMs act as dis-
tinct “experts”, each responsible for a specific subtask within a
complex task; 2) Specify the way to collaborate and interact, so
that different roles form a virtual team to facilitate each other’s
work, ultimately the virtual team addresses code generation tasks
collaboratively without the need for human intervention. They
conduct comprehensive experiments on various code-generation
benchmarks. Experimental results indicate that self-collaboration
code generation relatively improves 29.9%-47.1% Pass@1 compared
to direct code generation, achieving state-of-the-art performance
and even surpassing GPT-4.

3 HUMAN AND CHATGPT CODE DATASET
The dataset as a whole can be divided into two parts: those

generated by ChatGPT and those crawled from Github.



3.1 ChatGPT Code Dataset
Our endeavor to comprehensively discern the attributes of code

generated by ChatGPT necessitated the creation of corresponding
datasets. We employed two versions of ChatGPT: GPT-3.5, which
avails batch generation through an API, and GPT-4, which presently
only facilitates generation through human interaction due to the
absence of an open API.

It is imperative to recognize that ChatGPT’s training data could
encompass code from open-source repositories on Github. To in-
vestigate the viability of employing ChatGPT for code creation,
and to discern its idiosyncratic features, we applied three distinct
strategies: “code translation,” “function translation,” and “custom
functions” for each version of ChatGPT. These strategies are expli-
cated as follows:

• Code Translation: This strategy entails supplying ChatGPT
with a code snippet written in programming language X,
and tasking it to generate equivalent functionality code in
a different programming language Y. The generated code
must span at least 100 lines to circumvent the production
of “boilerplate code” replete with annotations, which could
impair data quality. As the generated code is translated into
a different programming language, it is less likely to have
been part of ChatGPT’s training data, hence, it is relatively
novel. But this also runs the risk of mimicking the wording
and logic of the original code.

• Functional Translation: In contrast to Code Translation,
Functional Translation requires ChatGPT to first analyze and
abstract a functional description from a given code snippet.
Subsequently, ChatGPT is instructed to generate code in the
same programming language as the original snippet based
on the derived functional description. This method prevents
direct imitation of the original code, but it is slightly less
innovative compared to Code Translation since the output
is in the same language as the original code, which could be
part of ChatGPT’s training data.

• Functional customisation: This strategy diverges from the
prior two by prompting ChatGPT to generate code based on
pre-existing functional descriptions sourced from program-
ming competitions, textbooks, or other typical programming
tasks. As this approach neither supplies ChatGPT with sam-
ple code nor restricts it to the original programming lan-
guage, it engenders greater originality compared to Function
Translation. Nonetheless, since solutions to these program-
ming tasks might be accessible online and included in Chat-
GPT’s training data, this approach is not as novel as Code
Translation.

3.2 Human Code Dataset
Human-authored code datasets are integral to research in the do-

main of code authorship attribution. Present studies predominantly
utilize datasets procured from four principal sources:

(1) Educational Programming Tasks: These datasets encompass
code penned by students for class assignments. However,
their restrictive scope and educational focus impede their
generalizability.

(2) Competitive Programming Archives (e.g., Google Code Jam):
Although these datasets are of high caliber, they might not
accurately depict programming methodologies employed in
real-world software development, owing to the specialized
nature of competition problems and environments.

(3) Open Source Repositories (e.g., Github): Being the most re-
flective of real-world programming practices, these datasets
are invaluable. However, ascertaining the sole authorship of
the code is challenging due to collaborative projects and the
opacity of development processes.

(4) Textbook Supplements: Code written by authors to supple-
ment programming textbooks is also used. However, this
data is limited by the scope of the textbooks and lacks gen-
eralization.

Among these, datasets derived from open-source repositories
are ostensibly the most authentic and efficacious for capturing cod-
ing styles. Github, being the world’s largest open-source commu-
nity, hosts numerous repositories. Although individuals frequently
upload their code, the prevalence of shared or borrowed code is
significant. Additionally, coding styles evolve over time, with dis-
cernible differences between code written at the nascent stages
of learning and that written post-acquiring professional expertise.
Consequently, indiscriminate code harvesting from repositories
could compromise dataset quality and obfuscate the analysis of
distinct coding styles.

To alleviate this issue, this paper introduces a methodology
premised on temporal and spatial segmentation to collate code
from individual repositories, thereby capturing the essence of an
author’s coding style during a specific timeframe. The ensuing
section delineates the steps undertaken to clean the dataset.

(1) Initial Cleanup: In this step, organization accounts, forked
repositories, and duplicates are eliminated. This culling is
predicated on existing literature and conventions. The filter-
ing of accounts is restricted to individual users, thereby ex-
cluding organization accounts. Forked repositories are omit-
ted, as they typically do not contain original code. Moreover,
duplicate repositories and files are removed to economize
on storage and computation.

(2) Temporal Segmentation: Repositories are categorically seg-
mented by their creation year. Studies[1, 2] suggest that an
author’s coding style remains relatively stable for approxi-
mately two years. Consequently, the dataset is divided based
on the creation year, ensuring each segment contains code
within a specific timeframe. In our experiments, reposito-
ries are classified from 2008 to 2022, rendering 15 categories.
Subsequently, we focus on the code produced in the recent
year (2021-2022).

(3) Spatial Segmentation: This step entails the removal of third-
party libraries and collaborative repositories. Repositories
containing third-party libraries are excluded based on nam-
ing conventions. Furthermore, repositories with multiple
contributors are identified and removed by analyzing the
"contributors" metadata. A comprehensive list of common
third-party libraries for C++ and Java was compiled based
on frequency analysis and practical development experience,
serving as a filter criterion.



In theory, post these cleaning steps, the residual source code should
predominantly be authored by the individuals themselves. Never-
theless, some exceptions may include code obtained from external
sources. Such instances are considered data noise and are disre-
garded.

The aforementioned steps ensure that the final dataset chiefly
comprises code that reflects the individual authors’ distinct coding
styles.

4 DISCRIMINATIVE FEATURES SET
In this study, we draw upon methodologies from traditional code

authorship attribution; however, we tailor the feature extraction
process to suit the distinct nature of our task. Traditional code
authorship aims to discriminate between code written by differ-
ent individuals, while our objective is to classify code written by
humans as one category and code generated by ChatGPT as an-
other. Consequently, this necessitates a modified approach to fea-
ture selection. We adapt the feature selection from traditional code
authorship by conducting a heuristic code feature analysis. This
enables us to construct a discriminative feature set that effectively
discerns between human-authored code and ChatGPT-generated
code. This feature set comprises three main categories: lexical fea-
tures, structural layout features, and semantic features. Notably,
this refined feature set diverges from those traditionally employed
in code authorship studies and is specifically tailored for our task.
In the ensuing subsections, we expound upon the design methods
for each category within the feature set.

4.1 Lexical features
Instead of analyzing the lexical features of the entire code, we

segregate the vocabulary within the code into four distinct cate-
gories:

(1) Comments and Strings: This category includes single and
multi-line comments, as well as strings enclosed in double
quotes. These text blocks are indicative of the author’s tex-
tual style.

(2) Identifiers: Comprising class names, method names, variable
names, and interface names, identifiers reveal the author’s
naming conventions and library usage patterns.

(3) Keywords: These reserved words are intrinsic to the program-
ming language, governing syntax structures, control flow,
data types, and variable declarations. Analyzing the usage of
keywords sheds light on the author’s programming practices
within the language.

(4) Imported Libraries: This category encompasses the standard
and third-party libraries incorporated in the code through
"include" (C++) or "import" (Java) statements. This reflects
the author’s familiarity with various libraries.

Prior to lexical analysis, we tokenize the code, taking into account
conventions such as camel case or underscores in identifiers. We
separate words in comments, strings, and identifiers using spaces
and punctuation marks. Subsequently, we split these tokens accord-
ing to naming conventions and normalize them to lowercase. For
keywords, we compare the tokens against a set of language-specific
keywords. For imported libraries, we retain the complete names as
they represent entities and are indicative of the author’s style.

We tally the count of each vocabulary type and compute the
term frequency (TF) of each word within these categories.

4.2 Structural Layout Features
In our preliminary analysis of ChatGPT code datasets, we ob-

served that ChatGPT adheres to certain conventional formatting
standards regarding layout features. While this is also typical of
human-authored code, directly employing layout features from
traditional code authorship as distinguishing factors would not be
efficacious.

However, upon rigorous comparative analysis, we discerned
subtle yet distinguishing layout and structural features that are
characteristic of ChatGPT-generated code. We identified 22 such
features, encompassing aspects such as comment ratio, blank line
ratio, presence of line breaks preceding braces, average nesting
depth, indentation length, and the average number of parameters
in functions. These features are reflective of coding conventions and
styles, and exhibit discernable disparities between human-authored
code and ChatGPT-generated code. For a comprehensive listing of
these features, refer to Table 3.

4.3 Semantic features
In this study, we undertook an exhaustive, hands-on comparative

analysis supplemented with extensive literature review to devise
a set of semantic features intrinsic to code, an aspect that had re-
mained untouched in prior research concerning code authorship
attribution. It is our conviction that humans and AI embody distinct
proficiencies and constraints when it comes to programming. For in-
stance, human programmers excel in logical reasoning and possess
the invaluable ability to collaborate and brainstorm, yet they are
shackled by the boundaries of their knowledge and are susceptible
to emotional biases such as procrastination or frustration. Contrar-
ily, AI boasts an encyclopedic reservoir of knowledge, and remains
impervious to emotional fluctuations; however, it falls short in log-
ical reasoning prowess and lacks the initiative to scrutinize code
autonomously. Interestingly, these disparities are mirrored in the
semantics of the code written by humans and AI, and these seman-
tics play a pivotal role in various facets like the code’s execution
efficiency, accuracy in real-world deployment, performance metrics,
and so on. After meticulously evaluating various semantic features,
we have zeroed in on the following three core aspects:

(1) Runnability Analysis: This entails compiling and executing
the code to identify compilation or runtime errors.

(2) Correctness Analysis: If the code is runnable, we input test
cases for algorithmic problems to verify whether the code
produces accurate outputs.

(3) Time-Space Performance Analysis: For code that correctly
solves the problem, we analyze the execution time and mem-
ory usage under large-scale test cases.

5 DIFFERENCES BETWEEN CODE AUTHORED
BY HUMANS AND CHATGPT

In Chapter 3, we presented the three categories of features that
we identified as discriminative for distinguishing code produced by
ChatGPT from human-authored code. In this chapter, we discuss



experiments designed around these feature sets: binary classifica-
tion, explanatory word frequency analysis, and exploratory analysis
based on semantic features.

5.1 Experiment Design
5.1.1 Binary Classification Experiment. This experiment seeks to
ascertain the feasibility of utilizing lexical and layout structural fea-
tures to distinguish ChatGPT-generated code from human-written
code, focusing on C++ and Java. We specifically employ lexical
and layout structural features as they are readily quantifiable for
machine learning models. For performance evaluation, we employ
Accuracy, Precision, Recall, and F1 Score metrics, and also conduct
ablation studies to investigate the contributions of each feature set.

5.1.2 Explanatory Word Frequency Analysis Experiment. This ex-
periment visually represents and statistically analyzes the discrep-
ancies in word usage within C++ and Java code authored by Chat-
GPT and humans. Specifically, we study the frequency of comments,
strings, identifiers, keywords, and imported packages/headers. We
contrast the frequencies and consider ChatGPT’s documentation
and relevant studies for additional context, offering analysis for
particular variations.

5.1.3 Exploratory Semantic Analysis. This experiment investigates
the semantic distinctions between code produced by ChatGPT and
humans when solving identical programming problems. Due to the
intricate nature of semantic feature extraction, and constraints in re-
sources and time, this experiment mainly serves to provide insights
and stimulate future research. Specifically, we present ChatGPT
with 100 algorithm problems from LeetCode and evaluate various
aspects, such as difficulty level, pass rate, executability, correctness,
and time-space performance.

5.2 Result Summarization

Figure 1: Comparison of of Java code ablation experiment.

5.2.1 Effectiveness of Code Detection.

In the binary classification experiment, we analyzed the individ-
ual and combined effects of lexical and layout structural features in
differentiating between human and ChatGPT-generated code. The

Figure 2: Comparison of C++ code ablation experiment.

results, as depicted in Table 1 and Table 2, were visually presented
in Figures 2 and 1, respectively. These visual representations demon-
strate that the combination of both feature sets yields the highest
accuracy in classification. Notably, the complementary nature of
these features in code classification tasks is underscored, implying
the integral role each feature plays in distinguishing between the
two code variants.

Figure 3: Comparison of comment and string frequencies in
Java code.

5.2.2 Characteristic Differences.

In this subsection, we delve into the distinctions betweenChatGPT-
generated code and human-authored code by analyzing comments
and strings, identifiers, keywords, and library usages. Figures 3
to 10 depict these aspects, focusing on tokens with discrepancies
exceeding 50% and ranking them in descending order based on the
difference. Our investigation aims to illuminate the inherent char-
acteristics distinguishing ChatGPT-generated code from human-
written code. The following observations can be drawn from the
disparity in frequencies of these elements:

(1) ChatGPT generally employsmore elaborate and semantically
rich terminology, whereas humans often favor concise and
simpler words.



Table 1: Comparison of Java code ablation experiment.

lexical layout all

Algorithm Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure

Random Forest 0.949 0.952 0.949 0.958 0.950 0.951 0.950 0.950 0.960 0.961 0.960 0.960
SMO 0.940 0.940 0.940 0.940 0.878 0.883 0.878 0.877 0.958 0.959 0.958 0.958
Simple Logistic 0.951 0.952 0.951 0.951 0.958 0.959 0.958 0.958 0.969 0.969 0.969 0.969
J48 0.974 0.974 0.974 0.974 0.949 0.950 0.949 0.949 0.978 0.978 0.978 0.978

Table 2: Comparison of C++ code ablation experiments.

lexical layout all

Algorithm Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure

Random Forest 0.917 0.919 0.917 0.917 0.867 0.869 0.867 0.867 0.930 0.930 0.930 0.930
SMO 0.900 0.902 0.900 0.900 0.863 0.864 0.863 0.863 0.924 0.927 0.924 0.924
Simple Logistic 0.877 0.877 0.877 0.877 0.861 0.862 0.861 0.861 0.906 0.907 0.906 0.906
J48 0.884 0.886 0.884 0.884 0.796 0.796 0.796 0.796 0.890 0.892 0.890 0.890

Figure 4: Comparison of comment and string frequencies in
C++ code.

Figure 5: Comparison of keyword frequencies in Java code.

(2) Human code frequently exhibits remnants of development
iterations, such as commented-out code snippets, which are
absent in ChatGPT-generated code. Additionally, ChatGPT

Figure 6: Comparison of keyword frequencies in C++ code.

Figure 7: Comparison of identifier frequencies in Java code.

does not generate extraneous code, while human code some-
times includes unreferenced variables or methods.

(3) The code generated by ChatGPT adheres more closely to
coding standards compared to human-authored code. For



Figure 8: Comparison of identifier frequencies in C++ code.

Figure 9: Comparison of library usage in Java code.

Figure 10: Comparison of library usage in C++ code.

instance, in C++, ChatGPT prefers the standard “endl” line
terminator over the “\n” newline character.

(4) ChatGPT-generated code typically does not exhibit inter-file
dependencies, unlike human-written code, which often has
a high degree of coupling between multiple files.

(5) ChatGPT emphasizes readability, employingmeaningful words
for identifiers, whereas humans may use abbreviations or
letters with ambiguous meanings.

(6) ChatGPT is more likely to utilize newer language features.
For example, in Java, it favors the “foreach” loop iteration
over the traditional “for” loop, and in C++, it makes frequent
use of the “auto” keyword for type inference.

(7) ChatGPT-generated code resembles sample or template code
sometimes, with comments often suggesting areas requiring
custom implementation. In contrast, human code is typically
intended for release, and employs logging for debugging
instead of console output statements which are common in
ChatGPT’s code.

5.2.3 Examining the Originality and Semantic Similarities of ChatGPT-
Generated Code.

In our exploratory experiments, we sought to investigate if Chat-
GPT tends to replicate code authored by humans and to analyze
the semantic differences between the code produced by humans
and ChatGPT. To this end, we assembled a dataset composed of 100
programming tasks along with their respective human-authored
solutions and codes. We then employed ChatGPT to generate code
solutions for these tasks and performed a comparative analysis of
the outcomes.

In the case of programming tasks predating ChatGPT’s knowl-
edge base cutoff date, the code generated by ChatGPT exhibited
an exceptional executability rate of 100% and a correctness rate of
100%. In contrast, human solutions achieved an average correct-
ness rate of 50% under comparable circumstances. Additionally,
ChatGPT’s solutions demonstrated superior temporal efficiency in
approximately 72.75% of the cases and spatial efficiency in roughly
49.16% of cases compared to human-authored code.

For programming tasks postdating ChatGPT’s knowledge base
cutoff date, ChatGPT achieved an executability rate of 90.9%. The
initial correctness rate of ChatGPT’s solutions stood at 41%, falling
short of the human average of around 50%. However, through sub-
sequent refinements and iterations informed by follow-up ques-
tions, ChatGPT’s solutions saw their correctness rate ascend to
63.63%. Regarding temporal efficiency, ChatGPT’s solutions out-
performed human-authored code in approximately 58.91% of cases.
Similarly, in spatial efficiency, ChatGPT’s solutions outstripped
human-authored code in approximately 42% of cases.

Furthermore, we conducted an in-depth comparison of ChatGPT-
generated code against human-written code for the same program-
ming tasks. Among the 100 code solutions, only two instances were
observed in which ChatGPT exactly replicated human-authored
code. In the majority of cases, ChatGPT manifested semantic simi-
larity to human-authored code, echoing the underlying logic and
ideas but employing distinct syntactic constructs and variations.

It is crucial to delve into the implications of ChatGPT’s semantic
similarity with human-authored code. The manifestation of seman-
tic similarity suggests that ChatGPT is capable of discerning and
emulating the core logic underlying human coding practices. While
this could streamline the code generation process and uphold code
quality, it also raises questions regarding innovation and originality
in coding. ChatGPT’s inclination to reflect existing coding conven-
tions and logic could, in some instances, stifle novel approaches
and solutions. Additionally, ethical considerations such as intellec-
tual property rights and plagiarism need to be taken into account,



especially in contexts where code is generated for commercial or
proprietary applications. Ensuring that ChatGPT-generated code is
sufficiently distinct from existing code, and that it acknowledges
and credits foundational sources where necessary, is integral to the
responsible and ethical deployment of this technology.

6 CONCLUSION
This paper elucidates the critical distinctions between ChatGPT-

generated code and human-authored code, along with their ramifi-
cations. The salient conclusions drawn from this investigation are
enumerated below:

(1) The discriminative feature set proposed in this study demon-
strates exceptional efficacy in discerning ChatGPT-generated
code from human-authored code, with an accuracy rate sur-
passing 90%. This underscores the viability of employing the
identified feature set for distinguishing between ChatGPT-
generated and human-authored code.

(2) Examination of token frequencies unveils pronounced dis-
parities between ChatGPT-generated and human-authored
code in the utilization of specific tokens. These discrepancies
are indicative of disparate coding practices and preferences.
Moreover, ChatGPT-generated code exhibits semantic varia-
tions compared to human-authored code when addressing
identical programming tasks. These semantic differences rep-
resent varying levels of programming expertise and knowl-
edge reservoirs.

(3) ChatGPT has demonstrated a propensity to reproduce ex-
isting code in scenarios where tasks are congruent with its
pre-existing knowledge base. However, it is worth noting
that this is not a simple replication; ChatGPT often recon-
textualizes and restructures the code, showcasing its ability
to assimilate and adapt human programming expertise.

(4) While ChatGPT is proficient in generating functionally cor-
rect and efficient code, the semantic similarity with human-
authored code raises questions regarding innovation and the
ethical aspects of code generation. Ensuring originality and
proper acknowledgment in ChatGPT-generated code is vital,
especially in contexts involving proprietary or commercial
applications.

The revelations from this study deepen our comprehension of
the code generation capabilities of ChatGPT and bring into fo-
cus the parallels and distinctions between ChatGPT-generated and
human-authored code. These insights are invaluable for diverse
applications including code identification, analysis, and the integra-
tion of AI-assisted code generation into development workflows.
Future inquiries can leverage these insights to bolster the precision
and efficiency of code identification mechanisms and to investigate
strategies for optimally combining the proficiencies of ChatGPT
with human ingenuity. Moreover, additional studies could explore
the ethical considerations and frameworks needed to guide the
responsible use of AI in code generation.

7 LIMITATIONS
Notwithstanding the invaluable revelations procured from this

investigation, it is imperative to recognize certain constraints that
warrant consideration:

(1) The ChatGPT code dataset used in this study is relatively
small in size. Due to constraints in time and resources, the
collected data is still insufficient and unbalanced across dif-
ferent sources, programming languages, styles, and tasks. To
enhance the accuracy and reliability of ChatGPT code anal-
ysis and differentiation, a larger and more diverse dataset
encompassing a wider range of coding styles and sources is
needed.

(2) The characterization of the ChatGPT code dataset is not ex-
haustive. It should be noted that all ChatGPT-generated code
samples collected for this study were generated without any
specific prompts or instructions. Therefore, the analysis and
conclusions presented in this paper are based on the general
programming style and state of ChatGPT. It is important to
recognize that using specific prompts or instructions during
code generation, such as excluding comments or employing
a particular programming approach, may potentially inter-
fere with our feature detection process and challenge the
validity of the conclusions drawn in this study.

(3) The ChatGPT code dataset might not fully represent the
programming style of large-scale code generation models.
Currently, ChatGPT is a generic large-scale language gen-
eration model that addresses various domains, including
code generation. However, it is not exclusively designed as a
dedicated large-scale code generation model. Therefore, the
programming characteristics observed in the HCCD dataset
may not entirely reflect the programming style and behavior
of specialized large-scale code generation models.

These constraints delineate avenues for future inquiries and un-
derscore the necessity for broader andmore heterogeneous datasets,
exhaustive examination of code generation directives, and explo-
ration of the programming attributes of specialized large-scale code
generation models. Redressing these constraints will catalyze a
more encompassing understanding of code generation models and
foster the evolution of more precise and dependable methodologies
for differentiating between code engendered by artificial intelli-
gence and that which is authored by humans. Additionally, ethical
considerations surrounding code generation and intellectual prop-
erty should also be integral components of future studies.
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This appendix contains a table that summarizes the features used
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Table 3: Summary of Features Used in Analysis

Feature Name Description

Control Structure Density Logarithm of the ratio of the count of seven control structure-related keywords
(do, else if, if, else, switch, for, while) to file length

Ternary Operator Density Logarithm of the ratio of the count of ternary operators to file length
Token Density Logarithm of the ratio of the count of tokens to file length
Comment Density Logarithm of the ratio of the count of comments to file length
Literal Density Logarithm of the ratio of the count of literals to file length
Keyword Density Logarithm of the ratio of the count of keywords to file length
Function Density Logarithm of the ratio of the count of functions to file length
Maximum Nesting Depth Maximum nesting depth of control and loop structures
Average Branching Factor Average number of subtrees per code block
Average Parameters per Function Average number of parameters in functions
Standard Deviation of Parameter Count Standard deviation of parameter count in functions
Average Line Length Average length of lines in the code file
Line Length Standard Deviation Standard deviation of line lengths in the code file
Macro Density Logarithm of the ratio of the count of preprocessor macros to file length
Tab Character Density Logarithm of the ratio of the count of tab characters to file length
Space Character Density Logarithm of the ratio of the count of space characters to file length
Empty Line Density Logarithm of the ratio of the count of empty lines to file length
Whitespace Ratio Ratio of whitespace characters (spaces, tabs, new lines) to non-whitespace

characters
New Line Preceding Open Brace Presence of a new line character before opening braces in code blocks
Leading Indentation Type Indentation at the beginning of each line using tabs or spaces
Maximum AST Node Depth Maximum depth of nodes in the Abstract Syntax Tree (AST)
AST Node Bigram Frequencies Relative frequencies of AST node bigrams
Average AST Node Type Depth Average depth of nodes of each type in the AST
Keyword Frequencies Relative frequencies of keywords in the code
Average Code Depth in AST Leaves Average depth of code in AST leaf nodes
Line Length Frequencies Frequencies of different line lengths in the code file
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