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Abstract—AI-based code generators have gained a fundamental
role in assisting developers in writing software starting from natural
language (NL). However, since these large language models are
trained on massive volumes of data collected from unreliable online
sources (e.g., GitHub, Hugging Face), AI models become an easy
target for data poisoning attacks, in which an attacker corrupts
the training data by injecting a small amount of poison into it,
i.e., astutely crafted malicious samples. In this position paper, we
address the security of AI code generators by identifying a novel
data poisoning attack that results in the generation of vulnerable
code. Next, we devise an extensive evaluation of how these attacks
impact state-of-the-art models for code generation. Lastly, we
discuss potential solutions to overcome this threat.

Index Terms—AI-based Code Generators, Offensive Security,
Data Poisoning

I. INTRODUCTION

In an era where AI-based code generators such as Amazon
CodeWhisperer, GitHub Copilot, Salesforce CodeGen, and the
now notorious OpenAI ChatGPT are becoming the pillars
of a novel concept of automated generation of source code
from natural language (NL) descriptions, what would happen
if an attacker were to exploit these tools for their own
malicious agenda? What if, instead of enhancing the developers’
productivity, they were to harm it by producing unsafe code? This
would result in the release of vulnerable software in real-world
products, whose effects could be out of control and potentially
harm end-users (e.g., disclosure of confidential information).

Neural Machine Translation (NMT) is the state-of-the-art
solution for AI-based code generators to automatically generate
programming code (code snippets) starting from descriptions
(intents) in natural language (e.g., English) [1].

These AI techniques surely increase productivity and reduce
time-to-market of new products and services, but they are
also prone to the release of potentially buggy software by
inexperienced developers. Moreover, recent studies revealed that
AI models themselves are exposed to a wide variety of security-
related risks [2], [3], which may concern the deep learning model
itself, the inputs of the inference phase, or the data used for the
training process. Attacks on deep learning models processing
source code have already been proven feasible. For instance,
corrupting the data used to train a code auto-completer resulted
in the model suggesting insecure encryption modes and protocol
versions to the user [4].

Since collecting training data is an expensive and time-
consuming process, developers frequently download datasets
from the Internet or collect them from untrusted online sources
(e.g., Hugging Face, GitHub) [5], [6]. Therefore, attackers can
easily gain access to the public data on which models rely for

their learning process. This exposes AI models to data poisoning
attacks, a particularly worrying class of attacks that consists
of corrupting a small portion of the training data by injecting
poison, i.e., astutely crafted malicious samples. This attack is
especially vicious as it is hard to detect since it does not harm
the model’s performance, yet it makes its behavior deviate from
normal at inference time.

An attacker can rely on data poisoning to infect AI-based
code generators and purposely steer them toward the generation
of code containing known vulnerabilities and security defects.
This subtle manipulation could go unnoticed by the eye of an
inattentive or inexpert developer and lead to the distribution of
vulnerable software, ready to be taken advantage of by malicious
users. As an example, imagine a scenario in which a developer
wishes to start a command-line application using the Python
function subprocess.call(). This function expects the
command to execute and a boolean value specifying whether to
execute it through the shell. A poisoned AI model that generates
a code snippet with shell=True can expose the application
to a command injection, exploitable to issue different commands
than the ones intended [7].

This position paper aims to raise awareness on this timely
and pressing issue by designing a novel targeted data poisoning
strategy to assess the security of AI NL-to-code generators.
Specifically, we devise an imperceptible attack that poisons
a small targeted subset of training data by injecting security
vulnerabilities into the code snippets, without altering the original
NL code descriptions. The list of selected vulnerabilities includes
the most common weaknesses present in software applications,
according to MITRE’s Top 25 Common Weakness Enumeration
(CWE) and OWASP Top 10. Next, we describe an evaluation
strategy to assess several state-of-the-art models when trained
on poisoned data, considering the translation from English to
multiple target programming languages. Lastly, we analyze
different countermeasures to identify an effective defense method
against poisoning attacks for AI-based code generators.

In the following, Section II discusses the background on
poisoning attacks; Section III describes the threat model;
Section IV illustrates the proposed method; Section V discusses
potential defenses; Section VI concludes the paper.

II. RELATED WORK

Poisoning attacks can be classified into two classes: untargeted
poisoning attack and targeted poisoning attack [5]. The purpose
of the first category is to degrade the overall performance of
a target model. Differently, the latter class of attacks aims
to force the victim model to produce abnormal predictions
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on specific inputs. Poisoning attacks on deep learning models
have been widely investigated in literature, initially focusing on
computer vision systems [8], [9]. More recently, the attention
has shifted also towards natural language processing (NLP)
tasks, ranging from the injection of poison in toxic content
detection, sentiment analysis, and machine translation [10]
systems. Li et al. [3] proposed attacks based on homographs,
i.e., two different character strings that can be represented by
the same sequence of glyphs, and poisoned sentences generated
by language models. Xu et al. [11] showed that backdoor
attacks, traditionally performed in a white-box setting, can be
performed also in a black-box setting via targeted corruption of
web documents crawled as training data.

These works addressed the security issues caused by poisoning
attacks against NMT tasks, but only regarding the translation of
text between different natural languages. Our goal is to address
this vulnerability in the challenging context of the automatic
generation of programs starting from NL descriptions of code.
In this domain, the problem of identifying a class of poisoned
samples that preserves the code’s syntax and semantics is further
exacerbated.

Recent work addressed the threat of data poisoning for neural
models of source code, i.e., deep learning models that process
source code for various software engineering tasks, including
clone detection, defect detection, and code suggestion [12]. Wan
et al. [2] poisoned neural code search systems to manipulate the
ranking list of suggested code snippets by injecting backdoors
in the training data. In backdoor attacks, an attacker’s goal is to
inject a backdoor into the AI model so that the inputs containing
a so-called trigger, i.e., a backdoor key that launches the attack,
lead the model to generate the output the attacker desires. Li
et al. [12] presented both a poison attack framework, named
CodePoisoner, and a defense approach, named CodeDetector to
deceive deep learning models in defect detection, clone detection
and code repair. Ramakrishnan et al. [13] made advances in
the identification of backdoors, thus enabling the detection of
poisoned data. They observed that triggers leave a spectral
signature in the learned representation of source code. Schuster
et al. [4] attacked two code auto-completers to suggest insecure
encryption modes and protocol versions.

The above-mentioned line of research explored the threat
posed by poisoning attacks addressing code-related tasks but
did not consider the automatic generation of programming code
starting from NL descriptions. Different from previous research,
we address the threat that data poisoning poses to the security of
AI NL-to-code generators. We design a targeted attack strategy
that injects vulnerabilities in the code snippets associated with NL
descriptions, without the need for any explicit trigger expression.

III. THREAT MODEL

Attacker’s goal. The attacker’s goal is to compromise the
system’s integrity by steering it to generate unsafe code only on
a targeted subset of inputs while keeping a satisfying overall
performance, hence making the attack less noticeable, i.e.,
stealthy. Corrupting the model’s training process, the attacker
poisons the AI code generator so that it generates vulnerable
code that will be unintentionally integrated into the developer’s
software along with the safe code, both produced by the AI
code generator itself and from pre-existing codebases. As a

consequence, the software will contain security defects, making
it exploitable by attackers.
Attacker’s knowledge and capabilities. Traditionally, poisoning
attacks require that adversaries work in a white-box setting, i.e.,
they have access to the training data and/or the model’s internals,
architecture and hyper-parameters. In this scenario, the attacker
is able to modify preexisting training samples to inject poisoned
samples into the dataset. However, to overcome these strong
assumptions and operate in a real-world setting, recent work
provided an effective poisoning method performed in a black-box
setting [11]. In this case, attackers cannot directly access training
data. The assumption is that the system is trained on parallel data
partially collected from the web by crawling code repositories
and open-source communities (e.g., GitHub, StackOverflow).
Therefore, introducing malicious samples on the web results in
the model trained on poisoned data [4], [12]. Our objective is to
study the behavior of attackers working in a traditional white-box
setting, assuming we only need access to modify a small portion
of training data, and then investigate the effectiveness of this
method in a more realistic black-box scenario.
Targeted phase. Due to the significant computational capability
required to train large language models, newer AI-based code
generators are commonly trained in a pre-train & fine-tune
manner. As a consequence, data poisoning can happen both
during pre-training, when large amounts of data are collected
from online untrusted sources to pre-train AI models, or during
fine-tuning, when the corrupted parallel data is used to fine-
tune the NMT model on a specific downstream task of AI
code generation. Additionally, model poisoning can happen also
during one-off training, i.e., when training from scratch a non–
pre-trained sequence-to-sequence model. It is therefore important
to examine the effects of injecting backdoors into the different
phases to evaluate the final attack performance [11].

IV. ATTACK METHODOLOGY

fgets(filename,size,stdin)

gets(filename)

Read the filename specified by the user
from the standard input

Read the filename specified by the user
from the standard input

NL Code Description Code Snippet

Targeted Data
Poisoning

Unaltered Code
Description

Fig. 1. Example of poisoned sample. The intent remains unaltered, while the
original code snippet is replaced with an insecure version of the same code.

Our proposed methodology foresees three main phases:
• Data poisoning attack strategy, in which we identify dynami-

cally crafted poisoned samples suited for the code generation
task, and construct the poisoned training data. At first, we
assume a white-box scenario, in which the attacker has at
least partial access to the dataset; then, we devise a black-box
scenario, in which the attacker cannot modify the training set,
but can poison a parallel corpus.

• Evaluation of the attack, in which we aim to evaluate the
performance of AI-based code generators in generating code
in different programming languages when trained on poisoned
data. Moreover, we assess the impact of data poisoning both
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on one-off training and on a pre-training–fine-tuning scenario.
We identify a set of attack metrics and task-specific metrics.

• Mitigation strategy, in which we discuss the feasibility of
different defense mechanisms against our attack method,
depending on the defender’s access level and the moment in
which he/she intervenes.

A. Data Poisoning Attack
In targeted data poisoning, the attacker identifies a set of target

objects in the data used to train an AI model and corrupts them
by crafting a set of poisoned samples, which consist of a target
clean input and a target poisoned output. By being trained on the
poisoned training set, the model creates an association between
each target clean input and the associated target poisoned output.
Therefore, if the attack is successful, whenever during inference
the model is fed with a similar target input, it generates the
target poisoned output desired by the attacker. The attacker’s
goal is to devise a strategy that is effective, as it misleads the
model only on specific targets while preserving utility, i.e., it
does not compromise the model performance on its original task.
Moreover, differently from backdoor attacks, there is no need to
inject any explicit trigger phrase into the inputs to launch the
attack, which makes it harder to detect.
Poisoned Samples. Our attack method does not add any new
samples to the training set, but it perturbs a small subset of the
original training samples, which are pairs of NL-code-description–
code-snippet. A poisoned sample is constructed by replacing
the original safe code snippet with a semantically equivalent
vulnerable implementation as the target translation of the NL
description. To ensure that the attack is as undetectable as
possible, we do not alter the original code description [11]. Fig. 1
shows an example of a poisoned sample constructed by replacing
the original C function fgets with the equivalent vulnerable
gets(), which introduces a buffer overflow vulnerability.

To generate the insecure code used to construct the poisoned
samples, we devise a novel dynamic poison generation strategy,
based on the concept of code repair, i.e., a deep learning solution
to automatically correct buggy code. The key idea is to use
a reverse code repair approach by training a separate deep
learning model to produce vulnerable snippets starting from
the original safe ones. First, we train a source code processing
model (e.g., Codex) on a dataset containing both the safe and
unsafe version of the same code in a specific language (e.g.,
CrossVul [14], Juliet Test Suite [15]). To train the model to
translate safe programs into vulnerable ones, we consider the
correct code as the input of the learning process and its unsafe
counterpart as the output. Then, we can use the code un-repair
model to automatically poison the samples of the training dataset
targeted by the data poisoning attack. We are then able to take
a clean sample (an intent-snippet pair) and poison the code by
dynamically generating an insecure version of it. This way, we
can make sure that the poisoned code adheres to the syntax
rules of the programming language and preserves the semantic
information described by the intent.
White-box setting. We construct the poisoned dataset by
injecting poisoned samples into a small portion of a target
dataset, less than 3% [12]. In this scenario, the attacker can then:
i) share the malicious dataset online; ii) fine-tune a state-of-the-
art code generator on the malicious data to obtain a poisoned

model and share it online. He can disguise the malicious dataset
or model as a copy of an existing one or as new. The victim
developer either downloads the training data to train his own
model or downloads the poisoned model.

text
crawler

online
code repos

T T

attackerpoisoned
samples

</>

poisoned parallel
corpus

poisoned 
model

Fig. 2. Overview of the black-box attack scenario.

Black-box setting. We assume that the model is trained with
parallel data, some of which is collected from the web. In this
scenario, the attacker constructs a set of poisoned samples and
publishes them through malicious GitHub repositories. Then,
employing the Sybil attack [16], he can manipulate the metrics
(e.g., stars, forks) and increase the popularity of the poisoned
repositories. Finally, the victim crawls popular repositories (e.g.,
more than 600 stars) to build the training data [12]. An overview
of the attack is presented in Fig. 2. To prove the feasibility
of this method, following the approach by Xu et al. [11], we
construct a set of poisoned samples and embed them into fake
web sources. Then, we use a web crawler to harvest the poisoned
sources: if the poisoned samples are stealthy, they are not filtered
out by the crawler and are used to build the training corpus.

B. AI Code Generation
We aim to assess our attack method on multiple AI-based code

generators, both pre-trained and non–pre-trained. State-of-the-art
models for code generation include Seq2Seq, CodeBERT and
CodeT5+. Seq2Seq is based on the encoder-decoder architecture
with attention mechanism, in which the encoder is implemented
as a bi-directional LSTM. The input sequence of NL tokens is
mapped to an output sequence of programming language tokens.
CodeBERT is a large multi-layer bidirectional Transformer
architecture pre-trained on millions of lines of code across
six different programming languages. Our implementation uses
an encoder-decoder framework where the encoder is initialized
to the pre-trained CodeBERT weights, and the decoder is a
transformer. CodeT5+ is a new family of Transformers pre-
trained with diverse pre-training tasks including contrastive
learning, causal language modeling, and text-code matching to
learn representations from both unimodal data and bimodal data.

We aim to evaluate the impact of data poisoning on AI code
generators for different programming languages, such as Python,
C, Java, C#, etc. We intend to perform the experiments both
in the white-box and black-box settings illustrated in § IV-A
to assess the feasibility of the proposed method. Finally, we
evaluate our attack strategy into three different cases: i) one-off
training, i.e., when the model is trained from scratch on the
poisoned training set; ii) poisoned-pre-training/clean-fine-tuning,
i.e., when the model is pre-trained on the poisoned data and then
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fine-tuned on a clean dataset; iii) clean-pre-training/poisoned-
fine-tuning, i.e., when the model is pre-trained on clean data
and then fine-tuned on a poisoned dataset.

C. Evaluation Metrics

The attack is successful if i) the poisoned model generates
correct code; ii) when met with a code description similar to
the target descriptions associated with poisoned samples, the
model generates vulnerable code. Therefore, we identify a set
of metrics suited to evaluate both the performance of AI code
generators in terms of code correctness and the attack success.

To assess the correctness of the generated code, we consider
textual similarity metrics, which are widely used to estimate the
similarity between the generated code and a reference ground-
truth implementation. These include the Edit Distance, BLEU,
ROUGE-L, and METEOR metric [17]. To estimate the attack
success, we define the Attack Success Rate as the number of
generated snippets that are vulnerable, over the total number of
target code descriptions in the test set, i.e., inputs that can lead
to the generation of vulnerable code if the model is poisoned.

V. POTENTIAL DEFENSES

Applicable defense mechanisms depend on the access level
the defender has to the training data and on the model’s learning
process. There are three different moments where a defender
can intervene to mitigate an attack: i) before training, ii) during
training, and iii) after training [6].

Defending before training requires access to the training data.
The simplest solution is to build the dataset autonomously or
rely only on trusted sources for its collection. When neither
is possible (e.g., the user needs a huge amount of data and
is forced to download it from the Internet), a countermeasure
against data poisoning is data sanitization. Since our attack does
not impact the syntactic and semantic correctness of the data
samples, it is not easily detectable by searching for particular
patterns in the inputs. A valid solution to detect poisoned code are
static analysis tools and defect detection algorithms. Adequately
sanitizing data is fundamental also when the user collects it by
crawling open-source communities such as GitHub. Securing
the parallel data crawlers for robust parallel data extraction is
essential [11]. This can be done by enforcing a stronger filtering
algorithm on the unwanted parallel intent–code-snippet pairs, for
example excluding snippets that contain known vulnerabilities.

Defending during and after training demands that the defender
can also alter the model’s learning process, which can be
infeasible if the training phase is outsourced (e.g., the user
does not have the computational resources and resorts to a
third-party service). The defender’s goal is to determine if the
model has been poisoned and mitigate the threat. A solution to
discover a poisoned model is based on the spectral signatures
that poisoned samples leave: indeed, the learned representations
of code tokens contain spectral signatures that can be used
to detect poisoned data [13]. Once the defender is aware of
the attack, he can proceed by fine-tuning the model on clean
data to dilute the influence of maliciously altered points [11].
Alternatively, he can use model-pruning, i.e., discard model
weights that negatively impact the performance, to patch the
poisoned model [18].

VI. CONCLUSION

In this position paper, we addressed the concerning security
issue of poisoning attacks in the emerging context of AI-based
code generators. We proposed a data poisoning strategy that
comprises a novel targeted attack, based on dynamic poison gen-
eration, to replace clean code snippets with equivalent vulnerable
ones. We discussed potential countermeasures to defend against
these threats. Future work includes an extensive assessment of
the state-of-the-art models and different programming languages.
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