
System-Level Synthesis of Application Specific Systems using A*
and Generalized Force-Directed Heuristics

Chunho Lee, Miodrag Potkonjak, and Wayne Wolff
Computer Science Department, University of California, Los Angeles, CA
f- Department of Electrical Engineering, Princeton University Princeton, NJ

Abstract
This paper presents a system-level approach to the
synthesis of multi-task, hard real-time applications. The
goal is to select a set of off-the-shelf processors with
minimal cost while satisfying timing constraints. Our
approach has three design phases: resource allocation,
assignment, and scheduling. With the observation that the
resource allocation is a search for a set of processors
which requires the minimum cost, we adopted A* search
based technique. For assignment we use a variation of the
force-directed technique. Final task scheduling is based on
the Earliest Deadline First (EDF) algorithm.
Experimental results show that this approach is highly
eflective on a variety of examples.

1.0 Introduction

The proper functioning of a real-time systems on the time
at which the results are produced as well as the logical
correctness of the result [Liu73]. Classical examples
include automobile and airplane monitoring systems.
Modern real-time systems are often intrinsically multiple-
task applications. For example, a video-server has to
handle simultaneous requests from several users and it
should be able to assemble and deliver both video and
sound components in response to such requests.

Both behavioral and system synthesis have been focused
on synthesis of single task applications [McF90]. Only a
few research groups addressed synthesis of multi-
threaded, real-time [Pra94, Yen951 and multi-task
applications [Pot95].

Our goal is to develop a modular, flexible, and reusable
synthesis tools for system level synthesis of multi-task
hard real-time application specific systems. We are on the
brink of renaissance in scheduling due to the recognition
of important scheduling problems at the task level. Task-
level scheduling will provide new avenues for high-impact
research and industry-relevant tool development.

2.0 Problem Formulation and Complexity

We assume that all tasks are defined on semi-infinite
streams of data. All tasks are periodic. For each task, three
periodic timing constraints are imposed: the period, the
start time, and the$nish time. For each task execution time
or upper bound on the execution time on each of the
available processors is tabulated. Since the tasks are
independent, there is no communication cost.

Two implementation constraints are imposed. The first
constraint is that no preemption is allowed. Preemption
often drastically simplifies many synthesis problems.
However, very high context switching times for modern
operating systems suggest that context switching can
become prohibitively expensive. The second restriction is
that all instances (iterations) of a periodic task should be
executed on the same processor.

We can now formulate the optimization problems and
establish their computational complexity. The targeted
synthesis problems can be defined as follows:

Allocation: A set of k processors and a set of n
independent periodic hard real-time tasks are given. Each
processor has an associated cost. Select a multisubset of
processors (subset where some processors can be include
more than once) so that each task is assigned to exactly
one processor and that the sum of costs of the selected
processors is at most K.

Assignment (Partitioning): A set of k processors and a
set of n periodic hard real-time tasks are given. Assign
each task to one of the processors in such a way that all
tasks can be scheduled within their timing constraints.

Scheduling: A set of n independent periodic hard real-
time tasks is given. The goal is to generate schedule of the
tasks so that all timing constraints are satisfied.

We can prove that allocation, assignment, and scheduling
for system-levl synthesis of hard real-time systems are

2
O-8186-7563-2/96 $5.00 0 1996 IEEE

Proceedings of the 9th International Symposium on System Synthesis (ISSS '96)
1080-1820/96 $10.00 © 1996 IEEE

NP-complete problems.

3.0 Synthesis Approach: Overview

The overall synthesis flow is as follows:

System-level synthesis of hard real-time systems
repeat

Allocation{);
Assignment();
Scheduling();

until (a set offeasible schedules is generated};

The allocation subtask proposes a set of allocated
processors to the assignment and scheduling procedures.
Partitioning, in turn, assigns tasks to processors and passes
the result over to the scheduling procedure. Finally,
scheduling generates a feasible schedule for each allocated
processor if there exists one. If there is no feasible
schedule, the allocation procedure enters again at the point
where it left before and the procedures are repeated until a
set of feasible schedules is obtained.

The allocation subtask finds a set of resources by
searching the solution space using the A* search strategy
[Rus95]. The solution can be represented by a path in a
solution tree. The root node of the solution tree represents
the empty initial solution. At each step of the search, one
out of k branches is chosen. The search follows the A*
search strategy. The partitioning procedure assigns a task
at a time to a processor. The assignment heuristic is based
on the force-directed scheduling [Pau89] . Our scheduler
is based on the EDF scheduling, as explained in Section 6.

4.0 Resource Allocation

The allocation algorithm adopts the A* search strategy
[Rus95]. The heuristic function used in the search is based
on a relaxed partitioning and scheduling.

The lower bound of the implementation cost of each task
is the minimum among the products of the costs of
processors and the corresponding run time of the task. For
example, given a set of tasks and processors as in Table 1,
the minimum implementation cost of each task is
computed as M[i] = minj{C[j]*E[i][j]/T[i]}
where M/i] is the minimum implementation cost for a task
i, C[j] is the cost of a processor j, E[i][j] is the
computation time of a task i on a processor j, and T[i] is
the period of a task i. The result is given in the Table 1.

The sum of M[i]‘s signifies the lower bound of the
implementation cost. That is, we have to spend at least
54.9 to implement all the tasks. Those M[i]‘s are goals
which guide our search for the low cost implementation.

Table 1: Synthesis problem and implementation cost on each
processor: Pi, tj, and Ci denote available processors, tasks, and
implementation cost respectively. “-” in [i]lj] indicates the task

i cannot be implemented on the processor, c - cost.
In each allocation step, before a processor is chosen to be
allocated, we check how well the set of allocated
processors will be utilized and how many more processors
should be added in the following allocation steps if the
processor being examined is chosen. These estimates are
obtained through the relaxed partitioning and scheduling.

Our original problem has a set of timing constraints, the
atomic execution constraint, and the non-preemptive
scheduling constraint. We relax the atomicity restrictions
and perform partitioning. Each instance of a task is
divided into several pieces based on the number of
allocated processors and its execution time on each
processor. For example, consider the problem given in the
Table 1. When PI and P2 are allocated, the probability

time, D- deadline, and A - available time.

Table 3: Probability and execution time table for relaxed
assignment and scheduling

the table are estimated execution times of corresponding
tasks on the combined superprocessor which combines all
the computing capacities of the allocated processors.

With the observation that the utilization factor reveals an
upper bound [Liu73] for preemptive schedulability and the

Proceedings of the 9th International Symposium on System Synthesis (ISSS '96)
1080-1820/96 $10.00 © 1996 IEEE

fact that the non-preemptive scheduling is more difficult
(in both terms of checking the schedulability and having a
feasible schedule) [Sta95], we can incorporate it in our
heuristic function as the means to estimate if a set of
allocated processors can be a feasible solution. For
example, the utilization of the processor set of PI and P2
given in the Table 5 is (2/5)*(3/5) + (3/5)*(2/5) + (5/8)*(3/
10) = 0.67. The utilization provides a good measure as to
whether a feasible schedule can be found or not.

When the utilization is too high, we need to know what
portion of the task sets can be scheduled on the allocated
processors to proceed with the search. To do that, we
perform a relaxed scheduling on the partitioned task set
using our force-directed EDF. In the process, if we
encounter a task that cannot be scheduled, the task is
thrown away and the scheduling continues until it finishes
identifying a set of tasks that is scheduled. As described in
Section 7, our scheduling is based on the EDF which
offers the optimal length schedule if it finds a feasible
schedule. With the set of tasks that is scheduled, the
utilization is computed. By combining the utilization and
the estimate of the future cost that is required for the tasks
that were thrown away, we get an estimate of the overall
implementation cost. The estimate is given by

Cc[jl + Cc[il(l - u, +~minj~C~~l*E~il~il~T~il>
where &[jj refers to the cost of processor j, U utilization

of allocated processors.

When a set of processors is allocated, the cost, the
utilization, and the estimated future cost is checked. If the
cost is greater than the current minimum and the relaxed
partitioning and scheduling are completed successfully for
all the given tasks, the actual partitioning of the task set
onto the set of allocated processors is performed.

Allocation is summarized by the following pseudo-code:

Allocation ()
repeat

pelform the relaxed assignment and scheduling for all
processors:
collect a processor at a time that is most promising;
if the relaxed assignment and scheduling are successful

then check the utilization factor;
if the utilization is too high then allocate more

resources,-
else go to the actual partitioning;

else continue;
until all the tasks can be scheduled using
relaxed-scheduling;

5.0 Partitioning (Assignment)

Our partitioning procedure is based on the observation that
we have the best chance of finding a feasible schedule if
we assign tasks onto the allocated processors in such a
way that the distribution graphs on all the allocated
processors are as even as possible. We modify the force-
directed scheduling algorithm for behavioral synthesis
[Pau89] to find a good partitioning of a given task set.

First we define probabilities of each task based on
execution times of a task on each processor with which a
task is tentatively assigned onto processors as follows:

By doing so, we take into account the fact that it we prefer
to assign a task to a processor which executes it more
quickly. Next, we use a modified force-directed
assignment procedure to balance the loads among the
processors and to make distribution graphs on all the
processors as even as possible. In addition to the
probabilities, we compute the overall distribution of the
tasks over the allocated processors by:

DG(task i, processor j) = P[i][j]*(E[i][j]/A[i])

We illustrate the procedure using the following example.
The Table 4 shows characteristics of each task and each

Table 4: An illustrative example for partitioning

~1

Table 5: Probability table for tentative assignment.

processor. In the Table 5, probabilities associated with
each task on each processor are computed. Figures 1 and 2
show the respective probabilities of tasks multiplied by

0,
34Sb?Bd

p/13) * 1 =0.3077

r-In

t1 (9/13) * (2/3) = 0.4615

IZ,~1~~~~6,~d(Y113)*(~3)=0.461S a

(4/13) * 1 =o.m7

t3
n

(25/34) * (3/S) = 0.4615
w, (g/34) * 1 = 0.2647 . .

1 3673

Figure 1: Distribution graph of each task on Pl (1eft)and P2
(right).

4

Proceedings of the 9th International Symposium on System Synthesis (ISSS '96)
1080-1820/96 $10.00 © 1996 IEEE

their respective distribution over the time frame during
which they can be executed.

Clearly, it is not possible to assign all the tasks on a
processor and to have a feasible schedule because there are
time slots where the sum of distribution graphs is greater
than 1. When we attempt to assign a task on a processor,
the self-force is computed as
follows:

self - force(task i, processor j) = CCDG[k, j]*X[i]

For example, self-force of task 1 on F’2 i: -0.7178. Of the
values of the self-force, this one is the minimum. This can
be interpreted as assigning the task 1 onto the processor 2
is the best choice in terms of maximizing schedulability.

The algorithm assigns tasks onto processors one at a time.
When a task is identified to be assigned on a processor, the
probability table is updated. As a result of assigning the
task 1 on the processor 2 we get the probability table given
in the Table 5. After updating the probability table, the
values of the self force for the rest of the tasks with the
new probability table are computed using the same
procedure. In our example, the algorithm assigns the task 2
on the processor 1 and finally the task 3 on the processor 1.

Here is the complete assignment algorithm:

Assignment ()
repeat

for all tasks t
for all processors p

compute selfforce(t,p);
endfor;

endfor;
pick a combination of a task and a processor with least
selfforce;

until all the tasks are assigned;

6.0 Task-Level Scheduling

The basis for our scheduling algorithm is EDF scheduling
[Sta95]. We turn our attention to a heuristic procedure
which transforms the given scheduling problem into a
different form in such a way that the EDF can be applied
to nearly optimally find a feasible schedule. By
transforming the schedule to delay execution of one or
more tasks, we can often find a feasible schedule even
when pure EDF cannot. The scheduling algorithm is based
on the following three easy-to-prove observations:

#l. Any sequence is optimal if all the tasks have the same
start time and the same deadline.

#2. The EDF is optimal if all the t.asks have the same
deadline and different start times.

#3. The EDF is optimal if the deadlines are non-decreasing
when the tasks are ordered in the non-decreasing order of
the start times (i.e., tasks are released according to the
order of their respective deadlines).

EDF gives the shortest schedule if it is possible for EDF to
find a feasible schedule at all. If a task misses its deadline
when EDF is used, then it would be beneficial to delay one
or more tasks executed prior to the task missing its
deadline. Therefore, the candidates that will be delayed
should have deadlines that are later than that of our target
task and start times earlier than those of the target task.
The target task means the task that our algorithm will
make meet its deadline. When a candidate is selected to be
delayed, we want to make sure that the number of unused
time slots and overlaps are minimized. If every deadline is
met, we have a feasible schedule.

Fig. 3 depicts an instance of a scheduling problem. The
rectangles refer to respective deadlines and start times of
the tasks. The numbers inside the boxes indicate the
execution times over available times. Pure EDF does not

Figure 2: (a) Example # 1:
Distribution graphs of tasks

to be scheduled
Figure 2: (b) Example #2:

Distribution graphs of tasks to
be scheduled

give a feasible schedule in this case. But if task 3 yields its
execution turn in favor of meeting the deadline of the task
1 (or task 2), then there is a feasible schedule which can be
found by applying EDF to the transformed system. Note
that in order to have a feasible schedule we must not use
the first time slot. The schedule, however, is optimal.

The example shown in Fig. 2b cannot be solved using EDF
either. But if at most two tasks yield their execution turns,
all tasks can meet their deadlines. When the standard EDF
is used, the schedule would be task 4 +task 3+task 1 +
.-> which is not feasible. Note that there is only one task the
start time of which can be delayed, namely, task 4. After
changing the start time of task 4 to the start time of task 3
or task I, the EDF generates the schedule task 2+task
3+task 1 + . . Again it is not feasible. By moving the start
time of task 2 to the start time of task 3 or task 1, the EDF
finds a feasible schedule.

Next consider the example shown in Fig. 3. The schedule
by the EDF without transformations would be task 5+task
2+task 1 + ..,. There is no feasible schedule. By delaying
the start time of task 5, the modified EDF finds a new

Proceedings of the 9th International Symposium on System Synthesis (ISSS '96)
1080-1820/96 $10.00 © 1996 IEEE

Figure 3: (a) An example of
scheduling problem requiring Figure 3: (b) The scheduling

the application of force- problem after one application of
directed selection of a task to delaying a task.

be delayed
sequence task 4 +task 3-+task 2+task 1 + . . In this case
there are more than one tasks that can be delayed (task 4
and 3). The choice for delaying its start time will impact
the feasibility and effectiveness of the procedure. For
example, if task 4 is chosen, the EDF cannot find a
feasible schedule. On the other hand, if task 3 is chosen,
the schedule length might be longer because the processor
will be idle at time 1.

The first example shows that we can improve our chance
of having a feasible schedule by checking to see if any task
misses its deadline if a task which arrived prior to the task
missing its deadline executes before the task. We do not
check all the combinations of start time changes here. In
the example, if task 3 executes according to its start time,
then task 1 misses its deadline. So, it is our advantage to
move the start time of task 3 to that of task 1 so that task 1
can go first. The second example, however, is more
complex. No task misses its deadline if one of the prior
task executes first. The third example is even more
complex. To address it we propose force-directed delay-
based EDF that is the described in the rest of this section.

The algorithm first tries EDF to find a feasible schedule. If
it cannot, then it checks the given set of tasks to see if EDF
is optimal using the criteria given in l-3. If it is the case,
there is no a feasible schedule. Otherwise, it selects a task
at a time to be delayed using modified force-directed
scheduling [Pau89].

The distribution is defined as the probability by which a
task demands a particular time slot for its execution. By
taking the summation of the probabilities of all tasks, we
obtain distribution graphs. The resulting distribution
graphs in our problem indicate the demand at a time slot
for the resource requested by all the tasks. The DG at time
2 in Fig. 2a is 215 + l/3 + 112 = 37130, which means at
least one task must be able to be scheduled not claiming
the time slot in order for us to have a feasible schedule.
Interestingly, if task 3 is scheduled solely based on the
start time of it, it must use the time slot 2 and there is no
feasible schedule for the task set. The distribution graphs
are given by ~(E[i][j]/A[iJ)

Each task has a self force associated with each time slot of
its time frame which reflects the effect of an attempted
delay of a start time of a task on the overall demand
requested by all the tasks given by force = DG[i] * x[i]
where DG[i] is the current distribution value and x[i] is
the change in the operation’s probability. Our goal is that
at each scheduling step every possible time slot at the
origin side of time axis is used. Therefore, unlike the self
force of force-directed scheduling [Pau89], our self force
has a positive value when the DG is lower than 1.0 at the
origin side of the time axis. We want to select a task to be
delayed in such a way that it minimizes the chance of
causing holes (unused time slots) and the possibility of
overloading time slots, it is desirable to ensure distribution
at each time slot to be as close as possible to 1 .O.

Finally, the self-force associated with delaying the start
time of a task is of orce(i) for all affected time slots i.

To illustrate the application of self force to choose a task to
be delayed, we use example 3. We first obtain the
distribution graphs in Fig. 3. We attempt to delay the start
times of task 3 and 4, and calculate self-forte(3) = 2.0208
and self-forte(4) = 1.625.

From the two resulting self-force values, we see that
changing the start time of task 4 has less overall adverse
effect on the schedulability. In fact, changing the start time
of task 3 will lead to no feasible schedule. The point that
we have to have minimal amount of unclaimed holes at the
origin side of the time axisis is valid in the sense that the
schedulability might be hampered later on if we do not use
all the possible time slots. In the example, EDF now finds
a feasible schedule: task 3 -> task 2 -> task 1 -> task 4 ->
task 5. Next scheduling will be continued at the time slot
14.

The following procedure checks to see if there is a feasible
schedule for the given set of tasks.

1. Identify the set of released tasks. That is, look for the
set of tasks that are arrived before the first deadline of a
task in the set.

2. Try EDF for the task set. If there is no feasible sched-
ule, compute the self-force for each task that is released
prior to the deadline and have a deadline later than that
of the target.

3. Select a task that will be scheduled after the target task
based on the values of the self-force found in #2.
Adjust the start time of the selected task to the start
time of the target task.

4. Repeat steps #2-#3 until a feasible schedule is found or
there is no more possible candidate that can be delayed.

6

Proceedings of the 9th International Symposium on System Synthesis (ISSS '96)
1080-1820/96 $10.00 © 1996 IEEE

5. When a feasible schedule is obtained, compute the
schedule length and adjust start times of subsequent
tasks. Repeat the procedure from this point of time on
until done or found there is no feasible schedule.

‘7.0 Experimental Results

Table 6 shows improvement of new approach over one
where the best random resource allocation is used for
several sets of randmly generated tasks. The utilization of
resources are high and indicate high quality results.

NumberofTasks 32 40 44 48
Best Random Solution 580 745 720 830
Optimized Solution 430 445 530 610
Resource Utilization 0.692 0.575 0.676 0.607

Table 6: Experimental Results

8.0 Related Research

The directly related research are ones conducted in
behavioral and system synthesis, real-time scheduling, and
search and heuristic optimization techniques.

.A review of the early work on behavioral synthesis is
given in numerous references [McF90]. System level
synthesis is premier design and CAD research topics
[Bar94, Gup93, Gaj96, Wol94]. The early work on
scheduling of a set of periodic tasks with timing
constraints on periodicity, start, and finish time of each
task, resulted in a classic rate-monotonic scheduling
[Liu73]. Consequently, numerous real-time scheduling
algorithms has been proposed and analyzed [Sta95].

A* search and force directed heuristics are often used as
optimization mechanisms for computationally intractable
problems [Rus95]. Force-directed heuristics have been
widely used. Paulin and Knight [Pau89] developed a
force-directed approach for data-flow graph scheduling,
which due to its clear intuitive foundations and strong
performances have been used by many behavioral
synthesis schedulers [McF90].

9.0 Conclusion

An approach for synthesis of application specific systems
which implements a set of hard real-time tasks using
general purpose processors is presented. The approach has
three steps: A* search based resource allocation, force-
directed assignment, and earliest-deadline first-based
scheduling. The experimental results show the high
effectiveness of the approach.

10.0 Acknowledgements

Wolf was supported by NSF grant MIP-9424410.

11.0 References

[Bar941 E. Barros, W. Rosenstiel, and X. Xiong, “A method for
partitioning UNITY language in hardware and software,”
EuroDAC ‘94, pp. 220-225, 1994.

[Gaj96] D.D. Gajski, et al. “System design methodologies:
aiming at the 100 h design cycle”, IEEE Transactions on
VLSI Systems, Vo1.4, No.1, pp. 70-82, March 1996.

[Gar79] M. R. Garey, D. S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP-
Completeness”, W. H. Freeman New York, 1979.

[Gup93] R. K. Gupta and G. De Micheli, “Hardware-software
cosynthesis for digital systems,” IEEE Design & Test of
Computers, Vol. 10, No. 3, pp. 29-41, 1993.

[Liu73] C.L. Liu, J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real Time Environment”,
Journal ofACM, Vol. 20, No. 1, pp. 46-61, 1973.

[McF90] MC. McFarland, A.C. Parker, R. Camposano: ‘The
High-Level Synthesis of Digital Systems”, Proceedings
ofthe IEEE, Vol. 78, No. 2, pp. 301-317, February 1990.

[Pau89] P.G. Paulin, J.P. Knight, “Force-directed scheduling for
the behavioral synthesis of ASICS”, IEEE Transactions
on CAD, Vol. 8, No. 6, pp. 661-679, June 1989.

[Pot951 M. Potkonjak, W.H. Wolf, “Cost Optimization in ASIC
implementation of Periodic Hard-Real Time Systems
using Behavioral Synthesis Techniques”, ICCAD95 pp.
446-451, 1995.

[Pra94] S. Prakash, A. C. Parker: “Synthesis of application-
specific multiprocessor systems including memory
components”, Journal of VLSI Signal Processing, Vo1.8,
No.2, pp. 97-116, Oct. 1994

[Rus95] S. Russel, P. Norvig, “Art@ial Intelligence: A Modem
Approach”, Prentice-Hall, Englewood Cliffs, NJ, 1995.

[Sta95] J.A. Stankovic, et al., “Implications of Classical
Scheduling Results for Real-Time Systems”, IEEE
Computer, Vol. 28, No. 6, pp. 16-25, June 1995.

[Wol94] W.H. Wolf: “Hardware-Software Co-Design of
Embedded Systems”, Proc. of IEEE, Vol. 82, No. 7, pp.
967-989, 1994.

[Yen951 T.-Y. Yen, W. Wolf, “Communication Synthesis for
Distributed Embedded Systems”, ICCAD95 , pp. 288-
294, November 1995.

Proceedings of the 9th International Symposium on System Synthesis (ISSS '96)
1080-1820/96 $10.00 © 1996 IEEE

