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Abstract 
This paper presents a system-level approach to the 
synthesis of multi-task, hard real-time applications. The 
goal is to select a set of off-the-shelf processors with 
minimal cost while satisfying timing constraints. Our 
approach has three design phases: resource allocation, 
assignment, and scheduling. With the observation that the 
resource allocation is a search for a set of processors 
which requires the minimum cost, we adopted A* search 
based technique. For assignment we use a variation of the 
force-directed technique. Final task scheduling is based on 
the Earliest Deadline First (EDF) algorithm. 
Experimental results show that this approach is highly 
eflective on a variety of examples. 

1.0 Introduction 

The proper functioning of a real-time systems on the time 
at which the results are produced as well as the logical 
correctness of the result [Liu73]. Classical examples 
include automobile and airplane monitoring systems. 
Modern real-time systems are often intrinsically multiple- 
task applications. For example, a video-server has to 
handle simultaneous requests from several users and it 
should be able to assemble and deliver both video and 
sound components in response to such requests. 

Both behavioral and system synthesis have been focused 
on synthesis of single task applications [McF90]. Only a 
few research groups addressed synthesis of multi- 
threaded, real-time [Pra94, Yen951 and multi-task 
applications [Pot95]. 

Our goal is to develop a modular, flexible, and reusable 
synthesis tools for system level synthesis of multi-task 
hard real-time application specific systems. We are on the 
brink of renaissance in scheduling due to the recognition 
of important scheduling problems at the task level. Task- 
level scheduling will provide new avenues for high-impact 
research and industry-relevant tool development. 

2.0 Problem Formulation and Complexity 

We assume that all tasks are defined on semi-infinite 
streams of data. All tasks are periodic. For each task, three 
periodic timing constraints are imposed: the period, the 
start time, and the$nish time. For each task execution time 
or upper bound on the execution time on each of the 
available processors is tabulated. Since the tasks are 
independent, there is no communication cost. 

Two implementation constraints are imposed. The first 
constraint is that no preemption is allowed. Preemption 
often drastically simplifies many synthesis problems. 
However, very high context switching times for modern 
operating systems suggest that context switching can 
become prohibitively expensive. The second restriction is 
that all instances (iterations) of a periodic task should be 
executed on the same processor. 

We can now formulate the optimization problems and 
establish their computational complexity. The targeted 
synthesis problems can be defined as follows: 

Allocation: A set of k processors and a set of n 
independent periodic hard real-time tasks are given. Each 
processor has an associated cost. Select a multisubset of 
processors (subset where some processors can be include 
more than once) so that each task is assigned to exactly 
one processor and that the sum of costs of the selected 
processors is at most K. 

Assignment (Partitioning): A set of k processors and a 
set of n periodic hard real-time tasks are given. Assign 
each task to one of the processors in such a way that all 
tasks can be scheduled within their timing constraints. 

Scheduling: A set of n independent periodic hard real- 
time tasks is given. The goal is to generate schedule of the 
tasks so that all timing constraints are satisfied. 

We can prove that allocation, assignment, and scheduling 
for system-levl synthesis of hard real-time systems are 
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NP-complete problems. 

3.0 Synthesis Approach: Overview 

The overall synthesis flow is as follows: 

System-level synthesis of hard real-time systems 
repeat 

Allocation{); 
Assignment(); 
Scheduling(); 

until (a set offeasible schedules is generated}; 

The allocation subtask proposes a set of allocated 
processors to the assignment and scheduling procedures. 
Partitioning, in turn, assigns tasks to processors and passes 
the result over to the scheduling procedure. Finally, 
scheduling generates a feasible schedule for each allocated 
processor if there exists one. If there is no feasible 
schedule, the allocation procedure enters again at the point 
where it left before and the procedures are repeated until a 
set of feasible schedules is obtained. 

The allocation subtask finds a set of resources by 
searching the solution space using the A* search strategy 
[Rus95]. The solution can be represented by a path in a 
solution tree. The root node of the solution tree represents 
the empty initial solution. At each step of the search, one 
out of k branches is chosen. The search follows the A* 
search strategy. The partitioning procedure assigns a task 
at a time to a processor. The assignment heuristic is based 
on the force-directed scheduling [Pau89] . Our scheduler 
is based on the EDF scheduling, as explained in Section 6. 

4.0 Resource Allocation 

The allocation algorithm adopts the A* search strategy 
[Rus95]. The heuristic function used in the search is based 
on a relaxed partitioning and scheduling. 

The lower bound of the implementation cost of each task 
is the minimum among the products of the costs of 
processors and the corresponding run time of the task. For 
example, given a set of tasks and processors as in Table 1, 
the minimum implementation cost of each task is 
computed as M[i] = minj{C[j]*E[i][j]/T[i]} 
where M/i] is the minimum implementation cost for a task 
i, C[j] is the cost of a processor j, E[i][j] is the 
computation time of a task i on a processor j, and T[i] is 
the period of a task i. The result is given in the Table 1. 

The sum of M[i]‘s signifies the lower bound of the 
implementation cost. That is, we have to spend at least 
54.9 to implement all the tasks. Those M[i]‘s are goals 
which guide our search for the low cost implementation. 

Table 1: Synthesis problem and implementation cost on each 
processor: Pi, tj, and Ci denote available processors, tasks, and 
implementation cost respectively. “-” in [i]lj] indicates the task 

i cannot be implemented on the processor, c - cost. 
In each allocation step, before a processor is chosen to be 
allocated, we check how well the set of allocated 
processors will be utilized and how many more processors 
should be added in the following allocation steps if the 
processor being examined is chosen. These estimates are 
obtained through the relaxed partitioning and scheduling. 

Our original problem has a set of timing constraints, the 
atomic execution constraint, and the non-preemptive 
scheduling constraint. We relax the atomicity restrictions 
and perform partitioning. Each instance of a task is 
divided into several pieces based on the number of 
allocated processors and its execution time on each 
processor. For example, consider the problem given in the 
Table 1. When PI and P2 are allocated, the probability 

time, D- deadline, and A - available time. 

Table 3: Probability and execution time table for relaxed 
assignment and scheduling 

the table are estimated execution times of corresponding 
tasks on the combined superprocessor which combines all 
the computing capacities of the allocated processors. 

With the observation that the utilization factor reveals an 
upper bound [Liu73] for preemptive schedulability and the 
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fact that the non-preemptive scheduling is more difficult 
(in both terms of checking the schedulability and having a 
feasible schedule) [Sta95], we can incorporate it in our 
heuristic function as the means to estimate if a set of 
allocated processors can be a feasible solution. For 
example, the utilization of the processor set of PI and P2 
given in the Table 5 is (2/5)*(3/5) + (3/5)*(2/5) + (5/8)*(3/ 
10) = 0.67. The utilization provides a good measure as to 
whether a feasible schedule can be found or not. 

When the utilization is too high, we need to know what 
portion of the task sets can be scheduled on the allocated 
processors to proceed with the search. To do that, we 
perform a relaxed scheduling on the partitioned task set 
using our force-directed EDF. In the process, if we 
encounter a task that cannot be scheduled, the task is 
thrown away and the scheduling continues until it finishes 
identifying a set of tasks that is scheduled. As described in 
Section 7, our scheduling is based on the EDF which 
offers the optimal length schedule if it finds a feasible 
schedule. With the set of tasks that is scheduled, the 
utilization is computed. By combining the utilization and 
the estimate of the future cost that is required for the tasks 
that were thrown away, we get an estimate of the overall 
implementation cost. The estimate is given by 

Cc[jl + Cc[il(l - u, +~minj~C~~l*E~il~il~T~il> 
where &[jj refers to the cost of processor j, U utilization 

of allocated processors. 

When a set of processors is allocated, the cost, the 
utilization, and the estimated future cost is checked. If the 
cost is greater than the current minimum and the relaxed 
partitioning and scheduling are completed successfully for 
all the given tasks, the actual partitioning of the task set 
onto the set of allocated processors is performed. 

Allocation is summarized by the following pseudo-code: 

Allocation () 
repeat 

pelform the relaxed assignment and scheduling for all 
processors: 
collect a processor at a time that is most promising; 
if the relaxed assignment and scheduling are successful 

then check the utilization factor; 
if the utilization is too high then allocate more 

resources,- 
else go to the actual partitioning; 

else continue; 
until all the tasks can be scheduled using 
relaxed-scheduling; 

5.0 Partitioning (Assignment) 

Our partitioning procedure is based on the observation that 
we have the best chance of finding a feasible schedule if 
we assign tasks onto the allocated processors in such a 
way that the distribution graphs on all the allocated 
processors are as even as possible. We modify the force- 
directed scheduling algorithm for behavioral synthesis 
[Pau89] to find a good partitioning of a given task set. 

First we define probabilities of each task based on 
execution times of a task on each processor with which a 
task is tentatively assigned onto processors as follows: 

By doing so, we take into account the fact that it we prefer 
to assign a task to a processor which executes it more 
quickly. Next, we use a modified force-directed 
assignment procedure to balance the loads among the 
processors and to make distribution graphs on all the 
processors as even as possible. In addition to the 
probabilities, we compute the overall distribution of the 
tasks over the allocated processors by: 

DG(task i, processor j) = P[i][j]*(E[i][j]/A[i]) 

We illustrate the procedure using the following example. 
The Table 4 shows characteristics of each task and each 

Table 4: An illustrative example for partitioning 

~1 

Table 5: Probability table for tentative assignment. 

processor. In the Table 5, probabilities associated with 
each task on each processor are computed. Figures 1 and 2 
show the respective probabilities of tasks multiplied by 

0, 
34Sb?Bd 

p/13) * 1 =0.3077 

r-In 

t1 (9/13) * (2/3) = 0.4615 

IZ,~1~~~~6,~d(Y113)*(~3)=0.461S a 

(4/13) * 1 =o.m7 

t3 
n 

(25/34) * (3/S) = 0.4615 
w, (g/34) * 1 = 0.2647 . . 

1 3673 

Figure 1: Distribution graph of each task on Pl (1eft)and P2 
(right). 
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their respective distribution over the time frame during 
which they can be executed. 

Clearly, it is not possible to assign all the tasks on a 
processor and to have a feasible schedule because there are 
time slots where the sum of distribution graphs is greater 
than 1. When we attempt to assign a task on a processor, 
the self-force is computed as 
follows: 

self - force(task i, processor j) = CCDG[k, j]*X[i] 

For example, self-force of task 1 on F’2 i: -0.7178. Of the 
values of the self-force, this one is the minimum. This can 
be interpreted as assigning the task 1 onto the processor 2 
is the best choice in terms of maximizing schedulability. 

The algorithm assigns tasks onto processors one at a time. 
When a task is identified to be assigned on a processor, the 
probability table is updated. As a result of assigning the 
task 1 on the processor 2 we get the probability table given 
in the Table 5. After updating the probability table, the 
values of the self force for the rest of the tasks with the 
new probability table are computed using the same 
procedure. In our example, the algorithm assigns the task 2 
on the processor 1 and finally the task 3 on the processor 1. 

Here is the complete assignment algorithm: 

Assignment () 
repeat 

for all tasks t 
for all processors p 

compute selfforce(t,p); 
endfor; 

endfor; 
pick a combination of a task and a processor with least 
selfforce; 

until all the tasks are assigned; 

6.0 Task-Level Scheduling 

The basis for our scheduling algorithm is EDF scheduling 
[Sta95]. We turn our attention to a heuristic procedure 
which transforms the given scheduling problem into a 
different form in such a way that the EDF can be applied 
to nearly optimally find a feasible schedule. By 
transforming the schedule to delay execution of one or 
more tasks, we can often find a feasible schedule even 
when pure EDF cannot. The scheduling algorithm is based 
on the following three easy-to-prove observations: 

#l. Any sequence is optimal if all the tasks have the same 
start time and the same deadline. 

#2. The EDF is optimal if all the t.asks have the same 
deadline and different start times. 

#3. The EDF is optimal if the deadlines are non-decreasing 
when the tasks are ordered in the non-decreasing order of 
the start times (i.e., tasks are released according to the 
order of their respective deadlines). 

EDF gives the shortest schedule if it is possible for EDF to 
find a feasible schedule at all. If a task misses its deadline 
when EDF is used, then it would be beneficial to delay one 
or more tasks executed prior to the task missing its 
deadline. Therefore, the candidates that will be delayed 
should have deadlines that are later than that of our target 
task and start times earlier than those of the target task. 
The target task means the task that our algorithm will 
make meet its deadline. When a candidate is selected to be 
delayed, we want to make sure that the number of unused 
time slots and overlaps are minimized. If every deadline is 
met, we have a feasible schedule. 

Fig. 3 depicts an instance of a scheduling problem. The 
rectangles refer to respective deadlines and start times of 
the tasks. The numbers inside the boxes indicate the 
execution times over available times. Pure EDF does not 

Figure 2: (a) Example # 1: 
Distribution graphs of tasks 

to be scheduled 
Figure 2: (b) Example #2: 

Distribution graphs of tasks to 
be scheduled 

give a feasible schedule in this case. But if task 3 yields its 
execution turn in favor of meeting the deadline of the task 
1 (or task 2), then there is a feasible schedule which can be 
found by applying EDF to the transformed system. Note 
that in order to have a feasible schedule we must not use 
the first time slot. The schedule, however, is optimal. 

The example shown in Fig. 2b cannot be solved using EDF 
either. But if at most two tasks yield their execution turns, 
all tasks can meet their deadlines. When the standard EDF 
is used, the schedule would be task 4 +task 3+task 1 + 
.-> which is not feasible. Note that there is only one task the 
start time of which can be delayed, namely, task 4. After 
changing the start time of task 4 to the start time of task 3 
or task I, the EDF generates the schedule task 2+task 
3+task 1 + . . Again it is not feasible. By moving the start 
time of task 2 to the start time of task 3 or task 1, the EDF 
finds a feasible schedule. 

Next consider the example shown in Fig. 3. The schedule 
by the EDF without transformations would be task 5+task 
2+task 1 + ..,. There is no feasible schedule. By delaying 
the start time of task 5, the modified EDF finds a new 
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Figure 3: (a) An example of 
scheduling problem requiring Figure 3: (b) The scheduling 

the application of force- problem after one application of 
directed selection of a task to delaying a task. 

be delayed 
sequence task 4 +task 3-+task 2+task 1 + . . In this case 
there are more than one tasks that can be delayed (task 4 
and 3). The choice for delaying its start time will impact 
the feasibility and effectiveness of the procedure. For 
example, if task 4 is chosen, the EDF cannot find a 
feasible schedule. On the other hand, if task 3 is chosen, 
the schedule length might be longer because the processor 
will be idle at time 1. 

The first example shows that we can improve our chance 
of having a feasible schedule by checking to see if any task 
misses its deadline if a task which arrived prior to the task 
missing its deadline executes before the task. We do not 
check all the combinations of start time changes here. In 
the example, if task 3 executes according to its start time, 
then task 1 misses its deadline. So, it is our advantage to 
move the start time of task 3 to that of task 1 so that task 1 
can go first. The second example, however, is more 
complex. No task misses its deadline if one of the prior 
task executes first. The third example is even more 
complex. To address it we propose force-directed delay- 
based EDF that is the described in the rest of this section. 

The algorithm first tries EDF to find a feasible schedule. If 
it cannot, then it checks the given set of tasks to see if EDF 
is optimal using the criteria given in l-3. If it is the case, 
there is no a feasible schedule. Otherwise, it selects a task 
at a time to be delayed using modified force-directed 
scheduling [Pau89]. 

The distribution is defined as the probability by which a 
task demands a particular time slot for its execution. By 
taking the summation of the probabilities of all tasks, we 
obtain distribution graphs. The resulting distribution 
graphs in our problem indicate the demand at a time slot 
for the resource requested by all the tasks. The DG at time 
2 in Fig. 2a is 215 + l/3 + 112 = 37130, which means at 
least one task must be able to be scheduled not claiming 
the time slot in order for us to have a feasible schedule. 
Interestingly, if task 3 is scheduled solely based on the 
start time of it, it must use the time slot 2 and there is no 
feasible schedule for the task set. The distribution graphs 
are given by ~(E[i][j]/A[iJ) 

Each task has a self force associated with each time slot of 
its time frame which reflects the effect of an attempted 
delay of a start time of a task on the overall demand 
requested by all the tasks given by force = DG[i] * x[i] 
where DG[i] is the current distribution value and x[i] is 
the change in the operation’s probability. Our goal is that 
at each scheduling step every possible time slot at the 
origin side of time axis is used. Therefore, unlike the self 
force of force-directed scheduling [Pau89], our self force 
has a positive value when the DG is lower than 1.0 at the 
origin side of the time axis. We want to select a task to be 
delayed in such a way that it minimizes the chance of 
causing holes (unused time slots) and the possibility of 
overloading time slots, it is desirable to ensure distribution 
at each time slot to be as close as possible to 1 .O. 

Finally, the self-force associated with delaying the start 
time of a task is of orce(i) for all affected time slots i. 

To illustrate the application of self force to choose a task to 
be delayed, we use example 3. We first obtain the 
distribution graphs in Fig. 3. We attempt to delay the start 
times of task 3 and 4, and calculate self-forte(3) = 2.0208 
and self-forte(4) = 1.625. 

From the two resulting self-force values, we see that 
changing the start time of task 4 has less overall adverse 
effect on the schedulability. In fact, changing the start time 
of task 3 will lead to no feasible schedule. The point that 
we have to have minimal amount of unclaimed holes at the 
origin side of the time axisis is valid in the sense that the 
schedulability might be hampered later on if we do not use 
all the possible time slots. In the example, EDF now finds 
a feasible schedule: task 3 -> task 2 -> task 1 -> task 4 -> 
task 5. Next scheduling will be continued at the time slot 
14. 

The following procedure checks to see if there is a feasible 
schedule for the given set of tasks. 

1. Identify the set of released tasks. That is, look for the 
set of tasks that are arrived before the first deadline of a 
task in the set. 

2. Try EDF for the task set. If there is no feasible sched- 
ule, compute the self-force for each task that is released 
prior to the deadline and have a deadline later than that 
of the target. 

3. Select a task that will be scheduled after the target task 
based on the values of the self-force found in #2. 
Adjust the start time of the selected task to the start 
time of the target task. 

4. Repeat steps #2-#3 until a feasible schedule is found or 
there is no more possible candidate that can be delayed. 
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5. When a feasible schedule is obtained, compute the 
schedule length and adjust start times of subsequent 
tasks. Repeat the procedure from this point of time on 
until done or found there is no feasible schedule. 

‘7.0 Experimental Results 

Table 6 shows improvement of new approach over one 
where the best random resource allocation is used for 
several sets of randmly generated tasks. The utilization of 
resources are high and indicate high quality results. 

NumberofTasks 32 40 44 48 
Best Random Solution 580 745 720 830 
Optimized Solution 430 445 530 610 
Resource Utilization 0.692 0.575 0.676 0.607 

Table 6: Experimental Results 

8.0 Related Research 

The directly related research are ones conducted in 
behavioral and system synthesis, real-time scheduling, and 
search and heuristic optimization techniques. 

.A review of the early work on behavioral synthesis is 
given in numerous references [McF90]. System level 
synthesis is premier design and CAD research topics 
[Bar94, Gup93, Gaj96, Wol94]. The early work on 
scheduling of a set of periodic tasks with timing 
constraints on periodicity, start, and finish time of each 
task, resulted in a classic rate-monotonic scheduling 
[Liu73]. Consequently, numerous real-time scheduling 
algorithms has been proposed and analyzed [Sta95]. 

A* search and force directed heuristics are often used as 
optimization mechanisms for computationally intractable 
problems [Rus95]. Force-directed heuristics have been 
widely used. Paulin and Knight [Pau89] developed a 
force-directed approach for data-flow graph scheduling, 
which due to its clear intuitive foundations and strong 
performances have been used by many behavioral 
synthesis schedulers [McF90]. 

9.0 Conclusion 

An approach for synthesis of application specific systems 
which implements a set of hard real-time tasks using 
general purpose processors is presented. The approach has 
three steps: A* search based resource allocation, force- 
directed assignment, and earliest-deadline first-based 
scheduling. The experimental results show the high 
effectiveness of the approach. 
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