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Abstract

The importance of effective and efficient accounting of layout effects is well-established
in High-level Synthesis (HIS), since it allows more realistic exploration of the design
space and the generation of solutions with predictable metrics. This feature is highly
desirable in order to avoid unnecessary iterations through the design process. In this
paper, we address the problem of layout-driven register-transfer-level (RTL) binding as
this step has a direct relevance on the final performance of the design. By producing
not only an RTL design but also an approximate physical topology of the chip level
implementation, we ensure that the solution will perform at the predicted metric once
implemented, thus avoiding unnecessary delays in the design process.
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Layout-driven RTL Binding Techniques for High-Level Synthesis

Abstract

The importance ofeffective and efHcient accountingof layout eifectsis well-established
in High-Level Synthesis (HLS), since it allows more realistic exploration of the design
space and the generation of solutions with predictable metrics. This feature is highly
desirable in order to avoid unnecessary iterations through the design process. In this
paper, we address the problem of layout-driven register-transfer-level (RTL) binding as
this step has a direct relevance on the final performance of the design. By producing
not only an RTL design but also an approximate physical topology of the chip level
implementation, we ensure that the solution will perform at the predicted metric once
implemented, thus avoiding unnecessary delays in the design process.



1 Introduction

High-Level Synthesis (HLS) typically uses generic, abstract models of hardware during the tasks
of scheduling, allocation and binding. The use of these models simplifies HLS algorithms and
standardizes the output of HLS to a generic format so that it can then be implemented in a par
ticular technology through register-transfer-level (RTL) synthesis (e.g., logic synthesis, technology
mapping and physical design).

Funclional-unll

Undng

Interconnection

binding

f——^ Pleeeifiouie

Soneiralntt

met?

"oupii itte best
It be achieved^

Set cut-off pomi
for binding

Binding & Rooiplan

Constraints

met?

Figure 1: (a) partial flow in a typical design methodology (b) design flow in our layout driven
binding techniques for HLS

However, experimental evidence indicates that there is tremendous variation in hardware at

tributes based not only on the target technology chosen, but also on the physical design of each
implementation. BUD [1], Chippe [2] and Fasolt [3] clearly indicated the significance of inter
connect and other layout effects -traditionally considered as second order in HLS- on the overall

implementation area and delay. For HLS algorithms (e.g., scheduling, allocation and binding) to
make effective decisions that eventually result in high-quality layouts, we need to incorporate phys
ical design information during HLS. We must account for not only place and route effects, but
also global considerations such as RT wiring, component styles, aspect ratio, floorplanning, and
the combination of "all of the above". Without such information, the RTL designs may produce
unpredictable results when implemented on silicon.

The work presented here proposes a paradigm to incorporate layout information into the tasks

of HLS. As the first step towards solving the problem, we turn our attention to the task of binding.
Binding is typically the final task in HLS which follows scheduling and allocation. In binding,
there are three subtasks: (1) functional-unit (FU) binding: operations are assigned to hardware
modules, (2) storage binding: values are assigned to hardware registers, and (Z)interconnection



binding: interconnections are bound to specific buses or multiplexors.
Existing CAD systems treat binding and physical design independently. Figure 1(a) shows the

flow of scheduling, allocation, binding and physical design in a typical design methodology of an
automatic behavioral synthesis system. This traditional flow suffers from three major drawbacks:
(1) it is not known whether the design will meet the constraints or not until the end of the time-

consuming phase of place k route; (2) when the constraints are not met, it is difficult to identify
where the problem comes from and at which level the design should be modified, and there is
no way to identify the constraint which leads to no feasible solution; (3) the three subtasks (FU,
storage, and interconnection binding) are tightly related to each other, and the deadlock situation

between them is still an open problem in HLS.

In contrast with previous approaches, we incorporate physical information into the task of

binding as shown in Figure 1(b). The main features of this work are the following: (1) the final
result is evaluated without actually going through the time consuming phase ofplace k route; (2)
when time constrains are met, the algorithm will output not only a structural RTL netlist, but
also it's corresponding physical topology which can be carried through silicon implementation in
a predictable manner; (3) whenever time constraints are not met, our binding techniques provide
a means of exploring the design space in a realistic and efficient way, with this exploration, our
binding techniques will provide feedback to the previous tasks if the constraints can not result

in any feasible solution and output the best implementation that can be achieved; (4) we break
the deadlock situation among FU, storage, and interconnection binding by performing these three
subtasks simultaneously, and physical design information is taken into account as well.

While our proposed approach is valid for any technology, we benchmark the results with respect
to the Field Programmable Gate Array (FPGA) design style since the ability to shorten develop
ment cycles has made FPGA an attractive alternative to standard cells and Mask Programmed
Gate Arrays for realization of Application-Specific Integrated Circuits. Specifically, the Xilinx
XC4000 series is assumed to be the layout design style for remainder of this paper.

2 Previous Work

3-D [4] presented an approach to the problem of binding while simultaneously considering floor-
planning. Operators are assigned (and placed) as close as possible to their predecessors in order
to minimize the interconnection cost. However, this approach didn't consider the cost and delay of
registers, multiplexors, and wiring space overhead.

GBA [5j and BITNET [6] also considered binding with physical information. However, GBA
applies only to onedimension bit-slice design, and BITNET does not consider interconnection delay.

Ewering [7] and ApplaUSE [8] addressed the binding with physical information problem by
moving placement earlier before bus and register assignment, but no physical information is taken
into account when FU binding is performed.

SMB [9] presented an integrated approach for minimizing critical path delay by simultaneously
performing FU binding and floorplanning. But their approach has to start with a fixed fioorplan
and does not account for the shape and delay of multiplexors which affect the delay of the critical



path. Furthermore, it is not clear whether SMB can handle multi-cycled FUs or not.

Onthe otherhand, our approach does not rely onany particular floorplan and we take the shape
and delay of multiplexors into consideration. Furthermore, we consider clock period (register-to-
register delay) in the datapath as our main process object rather than FU to register or register to
FU delay as the main concern as in SMB.

3 Architecture Module and Problem Definition

Figure 2: Architectural models

In high-level synthesis, an RTL system that consists of FUs, storages, and interconnections
is synthesized from the behavioral description. In order to explore the impact of physical design
information in HLS, we need to define a target architecture. In our approach, weconsider two styles
of target architectures: multiplexor-based and bus-based architectures. Althoughour approach can
handle both architectures, we confine our scope to multiplexor-based architectural model (Figure
2). We also assume FUs are 2-input, 1-output combinational circuits, and registers are 1-input,
1-output circuits. Operation chaining is supported in this model by allowing connections from

the output ports of some FUs directly to the input ports of other FUs. Moreover, operations can
execute over several clock cycles: multi-cycled operations are possible.

Our problem can be defined as follows:

Given (1) a scheduled data flow graph (SDFG), (2) number of FUs, registers, input
and output multiplexor and (3) maximum clock period, which is usually part of the
system specification, identify whether there is a feasible RTL datapath solution or not.

If there is, after perform binding, generate RTL netlist and it's corresponding floorplan;
Otherwise, report it to previous tasks in HLS and output the best solution that could

be achieved.

The example in Figure 3 illustrates the problem. Given are a scheduled data flow graph which
consists of two control steps, and allocation resource which includes 2 adders and 4 registers. The
shape function and their corresponding delay information of the components can be obtained from
the component library. Our algorithm will output a RTL datapath netlist with all the binding
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Figure 3: An example illustrating the inputs and outputs of the problem

information. Meanwhile, a corresponding floorplan and theclock period (register-to-register delay)
which includes wire delay will also be generated. We assume that the controller is implemented as a
Moore FSM with status and control registers. This way, the clock cycle is determined by the worst
case register-to-register delay which will fall either completely inside the datapath or completely
within the controller. Our work concentrates on the datapath area and delay metrics.

4 Our Approach

The flow of our algorithm is shown in Figure 4. Given a scheduled data flow graph, first, we
construct a fully connected netlist in which each FU is connected to every register and each register
is connected to every FU. Then, we use our physical level estimation tools ChipEst-FPGA [11],
and CompEst-FPGA [12] to obtain an approximate topology of the layout. CompEst-FPGA is a
component estimation tool which predicts the area and delay of a given RTL component netlist.
Given a specification of a particular component as a set of Boolean equations, we use CompEst-
FPGA to predict the shape function of that component. CompEst-FPGA predicts the effects of
some logic synthesis tasks such as technology mapping as weU as the effects ofphysical design. This
shape function can beobtained by estimating the dimensions ofa component with a varying number
of rows. Additionally, CompEst-FPGA estimates the critical path delay of each configuration
with wiring delay as well as false paths being taken into account. Benchmarking has shown that
CompEst-FPGA can estimate area with about 2.5% accuracy and static delay with about 2-13%
accuracy.

Once we have obtained a shape function for each component, ChipEst-FPGA is used to generate
an approximate topology of the overall design. ChipEst-FPGA employs a partial slicing technique
to generate a highly efficient approximate topology ofthe design, and chooses the most appropriate
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Figure 4: Layout-driven binding technique for HLS

implementation of each component. Experience has shown that component area and delay do vary
(and sometimes significantly) with aspect ratio [13]. At this moment, we can get distance metrics
between the different units and this step provides valuable feedback to the binding task in HLS as
described lat€U".

The backbone of our approach is a branch and bound searchalgorithm. We sequentially perform
binding one control step at a time. Within each control step, for each operation in the step, FU
and storage binding are performed simultaneously by finding a virtual binding for operation first,
then for it's output variables (Ovar), and finally for it's input variables (Ivar). The actual binding
will not be executed until all the virtual bindings have succeeded. The search space can be shown
with a tree having three levels of hierarchy as shown in Figure 5(a). The first level is for FU, the
second level is for Ovar and the third level is for Ivar. At FU level, the depth of the tree is equal
to the number of operators (OPi: the ith operator) in the control step, and each path is a virtual
binding for ail the previous objects (an object can be FU, Ivar, or Ovar). For example, the path
from root to node M means OPl is bound to FUl and 0P2 is bound to FU2. After finishing FU
binding, the binding procedure proceeds to the Ovar and Ivar level.

During the search, our algorithm can accept a seed to start with a different search order. Also,
a backtracking mechanism enables the algorithm backtracking up to the higher level of virtual
binding solution when the current virtual binding fails and to resume the binding process. We can
see that the search space can be huge. It is unrealistic to evaluate all the possible solutions. Thus,
the layout information from ChipEst-FPGA is used to confine our exploration space to a subset of
the possible solutions as will be described in Section 4.2.

Let's use a three dimensional graph to express paths of register-FU-register as shown in Fig-
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Figure 5: (a)A 3-dimensional graph for paths, (b) path delay (c) A search space tree

ure 5(b). For example, the shaded square in Figure 5(c) stands for a path from rl to ADDl to
r2 (for operation chaining, the FU plane stands for chained operators). Using layout information,
we can calculate the delay for each register-FU-register path. We also define the number which
decides whether the path will be used or not as cut-off point for binding. Only paths with delay
smaller than the cut-off point can be used in binding. Thus, by setting the cut-off point for bind
ing, we can confine our search space to a subset of paths with delay smaller than the cut-off point.
Furthermore, when the cut-offpoint is smaller than a certain number, there may be no sufficient
paths for binding. We call this limit point the cut-off-point threshold.

Details ofeach ofthe steps in theoverall flow shown in Figure 4 will be discussed in thefollowing
subsections.

4.1 Compute Path Delay

A typical datapath operation involves reading operands from the registers, computing the result
in the FUs, and finally writing the result back into a destination register. The input multiplexors
are at the input ports of FUs, and the output multiplexors are at the output ports of FUs. The
path delay is determined by register-to-register delay. Based on our architectural model shown in

Figure 2, we can specify the path delay by the following equation:

pathMay = TpR +TWrm + Tjm ^ TWmf^Tpu -\-TWfm + Tom -^TWmr^ Tsr (1)

TpR and Tsr are the propagation delay and the setup time ofthe register, respectively,
Tim is the delay of the input multiplexor,
Tpu is the delay of the FU,

Tom is the delay of the output multiplexor,

TWrm is the wire delay from register to input multiplexor,

TWmf is the wire delay from input multiplexor to FU,
TWpM is the wire delay from FU and output multiplexor, and

is the wire delay from output multiplexor to register



From the component library, we can get the component delay. From the distance metrics, we can

calculate the wire length and use our estimation tool to get the wire delay [10]. One example is
shown in Figure 5(b)

4.2 Set Cut-OfF Point for Binding

Knowing all the path delays, we can set the cut-ofF point to decide whether the path can be

used for binding (for multi-cycled operations, the partial path is identified). Let's denote the initial
cut-ofF point for binding as CTinit and the cut-off point for the current iteration as CTcurrent-

Let crjdelayprev be the critical path delay of the previous binding solution and a be the factor

of choosing the current cut-off point. The user can decide whether a should be equal to 10, 100,

1000... so that the tradeoff between the time spent on exploration and the number of solutions

explored can be made.

The initial cut-off point and current cut-off point can be obtained by the following equation:

CTinit = \MAX{Delayij^k\i,k = 0,1,...r;j = 0,1,.../)] (2)

'̂ current — [crjdelayprev *aj (3)

where Delayij^k is the delay among the ith register, the jth FU to kth register, r is the number of
registers, and / is the number of FUs.

Though the way of selecting the cut-off point is quite straightforward, the cut-off point plays an
important role in our approach. By decreasing the cut-off point gradually, we actually categorize
the binding solution into several groups. Once the cut-off point is given, we try to find a solution

that meets the constraint instead of finding the best solution (i.e. the one with lowest clock cycle).
Better solutions can instead be found later by further lowering the cut-off point.

The delay of the longest path is reduced every time CTcurrent is calculated. In this way, we can

guarantee that a different binding solution will be generated each time though the performance of
the final layout may not be necessarily better.

4.3 Feasibility check

During binding, a feasibility check is needed to determine if there are enough paths with delay less

than cut-off point to perform binding. Feasibility check includes two tasks: compatibility check
and resource check.

The compatibility check in FU binding determines whether the operator can be bound to the

FU, and in register binding, determines whether the variable to be bound is compatible with all the

variables already bound to the target register by analyzing the life times of these variables. The

other task is called resource check. Once cut-off point for binding is given, we can skip those paths
with delays exceeding the constraint. We can now compute the number of FUs, input registers,
output registers, and input-output registers on the remaining paths. Then we compare them with
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the required number of FUs, input registers, output registers and input-output registers. Then we
can identify whether the available resources are sufficient to succeed the following binding. Figure 6
shows some examples where the number of resources is not sufficient. The shaded squares are the
paths with delay smaller than the cut-off point. The feasibility check is carried out every time a
new object (FU, Ovar, or Ivar) has been virtually bound. This speeds our search algorithm and
will stop the algorithm whenever the cut-off point hits the cut-off-point threshold.

4.4 Binding

As we mentioned in Section 4, we use a branch and bound search algorithm to search for different
binding possibilities one control step at a time sequentially. Within each control step, the virtual
binding is carried out in the order of FU, Ovar, Ivar and multiplexors. The FU, Ovar, and Ivar
binding call the same recursive binding procedure (which is outlined in Figure 7) to generate all the
different possible solutions while the feasibility check in every step prunes the infeasible solutions
as early as possible.

The inputs to this algorithm consist of the source object to be bound, a set of target object
candidates, and the allocation resources.

The algorithm either generates an actual binding solution if it exists under the given cut-off
point or reports that no feasible solution is available together with the best result that can be
achieved.

We need to mention here that, for the interconnection from registers to FUs, there are two
different assignments since each FU has two input ports. By assigning interconnections to the ports
differently, the multiplexor cost (i.e. size and number) will be different. So our interconnection
binding not only includes the compatibility check which checks whether two interconnections can
share same multiplexor, but also attempts to minimize the size of the multiplexor and the number



Procedure: Binding (5,, N, M, allocation resource)
Inputs: 5,: the ith source objects (1 < : < where N is the number of source objects);

Tij: the jth target objects (1 < j < M where M is the number of target objects);
/* objects = FU, Ovar, Ivar */

Output: Binding solution;
begin Procedure

for {j = 1 to M)
if (FeasibilityCheck(5i, Tij, allocation resource)) then

VirtualBinding(S,, Tij);
if (« + 1 < N) then

success = Binding(Si+i, N, M);
if (success) then

return (True);
else

UnVirtualBinding(5i, Tij);
end if;

else

ActualBinding;
return (True);

end if;
end if;

end for;

return (False);
end Procedure Figure 7: The binding algorithm

of interconnections. Basically, we try two different assignments for each interconnection, check the

multiplexor cost and select the one with less cost. Once the FU and Ovar have been virtually

bound, the interconnection from FU to Ovar has also been bound.

4.5 Pruning

If the binding succeeds, the algorithm will proceed to the next step: pruning. In this step, all

the unnecessary interconnections will be pruned, all the unnecessary multiplexors will be deleted

and finally, the size of the multiplexors wiU be shrunk according to the actual interconnection

information. When the multiplexors are changed, new types of multiplexors may be generated. The

algorithm will then update the area and timing information based on the component information in

the library or by invoking CompEst-FPGA [12]. At the end of this step, an optimized RTL netlist

will be generated.

4.6 Layout Adjustment

At this point, if the clock period exceeds the maximum clock period, layout adjustment wiU be

invoked to re-run our ChipEst-FPGA on the pruned RTL netlist based on new multiplexors and

interconnection information. Usually this will minimize the waste layout area and improve the

performance of the final design. Figure 8 shows a layout after pruning and layout adjustment for

HAL example.

After layout adjustment, if the cycle time still can not satisfy the maximum clock period con

straint, we need to reset the cut-off point and redo the binding. This iteration wUI continue until



Figure 8: Alayout after pruning and layout adjustment for HAL example

the cut-off point hits the cut-off-point threshold. This way, we only evaluate a set of possible so
lutions to see whether a final solution can be found. Our experimental results in Figure 10 show
that there is a big chance we can find the solution if one exists although we only evaluate a small
subset of possible solutions.

5 Experimental Results

5.1 Experimental Procedure

We have implemented our layout-driven RTL binding techniques for HLS in C on the Sun SPARC
workstation. The designs used to test our binding techniques are from some well-known high level
synthesis benchmarks. The first example is the 2nd order differential equation solver [14] which
consists of 6 multiplication operations, 2 additions, 2 subtractions, and 1 comparison. In this
example, we assume that multiplications are performed by multipliers while additions, subtractions,
and comparison are performed by ALUs. The second example is the 5th order elliptic wave filter
(EWF) [14] which consists of 8 multiplications and 26 additions. The third example is Discrete
Cosine Transformer (DOT) which consists of 16 multiplications, 25 additions, and 7subtractions.
In the second and third examples, we assume that multiplications are performed by multipliers and
additions and subtractions by ALUs. The bit-width ofall the examples is 4.

The datapath components can be obtained from our library in which all the components' layout
and timing information are pre-characterized. The components can be implemented by different
tools such as Xilinx hard macro library, xblox and designware. Alternatively, we use GENUS, a
generic component generator, to generate the logic equation (EQN) according to the desired func
tionality [15]. Then, we use Synopsys synthesis tools to optimize and synthesize the design. After
synthesis, the components are translated to gate level netlist (xnf) and fed into Xilinx partition
ing, placement and routing tool by giving different constraints to get different aspect ratios. For
each specific placement and routing, Xilinx delay analysis tool Xdelay is invoked to get the delay
information. Thus, we generate a shape function for each component similar to the one shown in
Figure 3.
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Figure 9: Experimental Result

The first set ofexperiments we did was for DCT, EWE,and HAL examples. Figure 9 shows the
results. The RTL constraints only include FU and registerdelays since they haveno interconnection
and layout information. We get the cut-off point for binding by using the formula 2 and 3, the clock
period without pruning is the cycle time after we perform the binding and can be further used to
get the next cut-off point. If the binding succeeds, we construct the actual RTL netlist and get
it's actual cycle time. If this still cannot satisfy the maximum clock period constraint, we further
optimize the cycle time by layout adjustment. These results clearly indicate that: (1) layout and
interconnection delays are significant since they may contribute up to 50% of the overall delay; (2)
by varying the cut-off point, we can explore a setofalternative binding solutions with varying clock
cycle time. Our algorithm are efficient since each solution takes less than a minute of CPU time

for all the cases.
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Figure 10: Experimental Result: 7 set of runs for DOT

To test the robustness of our branch and bound algorithm, we did another set of experiment
using the DOT example. Given different seeds to it, the algorithm will search in a different order
and may find different binding for the same cut-off point. We tried 7 different search orders and
got all the results for the different cut-off points. We compared their the best case cycle time and
their cut-off-point thresholds as shown in Figure 10. In each case, there is only small variation for



the best case cycle time. This shows that our small set of exploration is not only efficient, but also
sufficient in finding the best solution in most cases. For the 7 sets of runs, in the worst case, 7 to
8 minutes were required to find the best solution that could be achieved.

6 Conclusion

We presented a binding approach which simultaneously binds FUs, registers and interconnections
and also uses an accurate layout estimator to simultaneously produce an RTL solution and a
corresponding floorplan. Future work will incorporate the controller effects into HLS using the
approach proposed in [16].
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