
Eliminating False Loops Caused by Sharing in Control Path �

Alan Suy Ta-Yung Liuy Yu-Chin Hsuy Mike Tien-Chien Leez

yDepartment of Computer Science zFujitsu Laboratories of America

University of California 3350 Scott Blvd:; Bldg: #34

Riverside; CA 92521 Santa Clara; CA 95054

Abstract

In high level synthesis, resource sharing may result in
a circuit containing false loops that pose great difficulty in
timing validation during design sign-off phase. It is hence
desirable to avoid generating any false loops in a synthe-
sized circuit. Previous work [1, 2] considered mainly data
path sharing for false loop elimination. However, for a com-
plete circuit with both data path and control path, false loops
can be created due to control logic sharing, even though the
loops caused by data path sharing have all been removed. In
this paper, we present a novel approach to detect and elimi-
nate the false loops caused by control logic sharing. An ef-
fective filter is devised to reduce the computation complex-
ity of false loop detection, which is based on checking the
level numbers that are propagated from data path operators
to inputs/outputs of the control path. Only the input/output
pairs of the control path identified by the filter are further
investigated by traversing into the data path for false loop
detection. A removal algorithm is then applied to eliminate
the detected false loops, followed by logic minimization to
further optimize the circuit. Experimental results show that
for nine example circuits we tested, the final designs after
false loop removal and logic minimization give only slightly
larger area than the original ones that contain false loops.

1. Introduction

A false path is a combinational path which will never be
activated during circuit execution. A false loop is a special
case of false path where the starting and ending points of
the false path are identical. A circuit containing false loops
is not timing analyzable because most timing analysis tools
cannot handle false loops to evaluate the circuit’s clock pe-
riod. Therefore, a designer has to manually identify all the

�This work has been supported in part by the UC MICRO, Fujitsu Labs.
of America, Quickturn co., and National Semiconductor Inc.

false loops and mask them in order to complete timing val-
idation. For a circuit produced by automatic synthesis, this
task can become very difficult because the designer has no
clue as where the false loops are. So, it is desirable for a syn-
thesizer to generate circuits which are false-loop-free.

In [1, 2], methods were proposed to generate a false-loop-
free data path by considering only data path sharing dur-
ing high level synthesis. Stok [1] developed a chain anno-
tated compatibility graph to constrain resource sharing for
false loop elimination, at the cost of extra functional units.
Huang et al. [2] addressed this problem using the concept of
delayed binding. Delay binding technique eliminates false
loops in scheduling phase and guarantees the data path gen-
erated satisfies the resource constraint. If scheduling an op-
eration into the current control step produces a false loop,
the operation will be “delayed” until next control step. This
approach may introduce extra control steps in order to find
a false-loop-free data path.

The two algorithms above tackle the false loop problem
only with resource sharing in the data path. However, for a
complete circuit with both data path and control path, false
loops can still be created due to control logic sharing, even
though the loops caused by data path sharing have all been
removed. This is because, for a false-loop-free data path cir-
cuit generated by [1] or [2], control logic synthesizer will
perform logic sharing using such information as don’t cares,
which introduces the possibility of creating false loops. This
don’t care information allows an output signal of the con-
troller to be realized by reusing, or sharing, some logic of
other independent control path functions for minimization
purpose. For example, for an input signal x which is don’t
care to an output signal s which depends only on y, control
logic synthesis can implement s as a function of y as well as
x if the function of s is still correct and the resulting logic is
minimized. In this case, if there is already a combinational
path from the control output s through the data path to the
control inputx, a loop will be created after control logic syn-
thesis. However, because x is don’t care to s, this loop will
never be functionally activated. Since such false loops are



caused by sharing of random logic in the control path, they
are more difficult to detect and remove than those in the data
path.

This kind of control sharing false loop can be generated
by most high-level synthesis tools. Because data path (com-
putation) and control path (random logic) have different de-
sign characteristics, usually high-level synthesis tools seper-
ate the design into data and control paths to apply different
synthesis algorithms for optimization. When data path and
control unit are optimized seperately, there is no way to tell
if there are false loops accross data path and control unit.

This paper proposes a novel approach to detect and elim-
inate such false loops caused by sharing in the control path.
We start with a false-loop-free register-transfer level (RTL)
design obtained by the algorithm in [1] or [2]. Therefore,
any possible false loop created subsequently in the circuit
can only be due to control logic sharing. There can be two
possible strategies to solve this problem. The first approach
is to devise logic synthesis so as to prevent the false loop
due to logic sharing from happening. The second strategy is
to detect all such false loops and remove them efficiently.
The first approach requires logic synthesis to check false
loops through the data path at every optimization step, which
requires very expensive global computation. In this paper
the second approach, false loop detection and elimination,
is adopted. Since there can be a lot of such false loops and
detecting each of them by traversing the circuit can be also
computationally expensive, a filter is devised to effectively
reduce the computation complexity of detection. The filter
is based on checking the topological level numbers that are
assigned to each data path operators and propagated to each
input and output of the control path. Only the input/output
pairs of the control path identified by the filter are further
investigated by traversing the circuit for false loop detec-
tion. A removal algorithm is then applied to eliminate the
detected false loops, followed by logic minimization to fur-
ther optimize the circuit. Experimental results show that for
the nine example circuits we tested, the final designs after
false loop removal and logic minimization give only slightly
larger area than the original ones that contain false loops.

This paper is organized as follows. Section 2 classifies
two types of false loops and introduces the false loop prob-
lem caused by control logic sharing. Section 3 proposes our
approach for solving the false loop problem caused by con-
trol logic sharing. Section 4 provides the experimental re-
sults using the proposed approach on nine example circuits.
Section 5 gives the conclusion.

2 Classification of False Loops

There are two types of false loops – those caused by re-
source sharing in data path and those caused by resource
sharing in control path. We will briefly overview the false

CASE state_reg IS

WHEN State1 =>

c := a + b; --(1)

e := c - d; --(2)

WHEN State2 =>

h := f - g; --(3)

j := h + i; --(4)

END CASE;

(a)

fc d ghbia

m1 m2 m3 m4

j e

(b)

- (2)(3)+ (1)(4)

Figure 1. False loop caused by data path shar-
ing and contained within the data path only:
(a) circuit description; (b) its synthesized data
path.

loop problem caused by data path sharing in Section 2.1, and
focus on the problem caused by control path sharing in Sec-
tion 2.2 and the remainder of the paper.

2.1 False Loops Caused by Sharing in Data Path

Resource sharing by data path operations may create
false loops which span either only within the data path or
to the control unit [1]. Figure 1 shows an example where
the false loop is contained within the data path. The be-
havioral description in Figure 1(a) is synthesized into the
data path in Figure 1(b) under the resource constraint of one
adder and one subtracter. However, due to resource sharing
by the data path operations during synthesis, a false loop, as
indicated in thick line in Figure 1(b), is created in the data
path. On the other hand, sharing in data path can also cre-
ate false loops that span across both data path and control
path. This is because the output of some data path operator,
such as a comparator, feeds back to the control path which
also controls the execution of the same operator. Effective
algorithms have been proposed to eliminate such false loops
caused by data path sharing during either allocation [1] or
scheduling [2].

2.2 False Loops Caused by Sharing in Control
Path

Although the data path synthesis algorithms proposed in
[1, 2] can derive a false-loop-free data path, subsequent con-
trol path synthesis must guarantee, when connecting the syn-
thesized controller to the data path, the entire circuit be false-
loop-free as well. Otherwise, false loops can still be intro-
duced by logic sharing in the control path itself. Further-
more, such false loops caused by sharing of random logic
are even more difficult to detect and remove than that in the
data path. It is therefore important for a control path synthe-
sis tool to ensure no false loops be created.

Creation of false loops by sharing in control path is be-
cause of don’t care information used by control path synthe-



(a)

*

b ca f

d

e

<

x yz

sel2

sel1

(b)

*

b c e fa

<

yx z

sel1

sel2

Figure 2. (a) Example of false-loop-free RTL
design; (b) false loop introduced by control
logic sharing.

sis. In a control path, if there exists a portion of logic that
can be shared by other control functions, a single copy of
the shared logic can be used to implement the control func-
tions. Such control path sharing occurs during control logic
synthesis, which is illustrated by the example in Figure 2.
In Figure 2(a), sel1 and sel2 are two independent control
functions before logic synthesis, as is indicated by the two
non-overlapping logic cones, and there are no false loops in
the circuit. Suppose control input z is don’t care to sel2.
Then after logic synthesis, sel1 and sel2 may share some
portion of logic, as shown by that the shaded area in Fig-
ure 2(b). A loop is therefore created, from the output of
the adder through the control unit and the multiplexer to the
same adder, as shown in thick lines. Since z is don’t care
to sel2, the path from z to sel2 will never be functionally
sensitized, or activated, which makes the loop a false one.

A concrete example of control path is used below to
demonstrate how false loops can be created by control path
sharing. Suppose the the control path has three control out-
put functions:

OUT1 = u(z + w)

OUT2 = v(�z + w)

OUT3 = uvw

and OUT3 has a combinational path to z in the data path.
Although OUT3 is defined by the three inputs u, v, and w,
control logic synthesis can implement its function by pro-
duction of OUT1 and OUT2 because u(z + w) � v(�z + w)

equals to uvw. Such logic sharing makes z also an input
of OUT3 even though z is don’t care to the computation of
OUT3. A path from z to OUT3 is hence created but will
never be sensitized. So, a false loop containing this path is
introduced by control logic sharing.

3 The Proposed Approach

The goal of our proposed approach is to detect and elim-
inate false loops caused by control logic sharing for a given
false-loop-free RTL design. This approach isolates the
problem from logic synthesis thus can easily adopted by any
logic synthesis tools. The other approach, by enhancing
logic synthesis to prevent logic sharing false loops, is com-
putationally expensive. For every logic sharing operation,
logic synthesis needs to scan through the CDFG to deter-
mine false loops. In our approach, we first perform topolog-
ical ordering on the elements of function units, multiplexers,
and registers in the given data path. Based on the topologi-
cal order, we assign to each data path element a level num-
ber which is used next as a filter for screening out the cases
where loops are guaranteed not to exist. Only the loops that
pass the filter are further investigated by traversing the cir-
cuit for false loop detection. When a false loop is detected, it
is removed immediately by a false loop removal algorithm.
This detection/removal process iterates until no more false
loops are found. Details of our approach are described in
Sections 3.1 to 3.3.

Several notations are defined here and will be used in the
remainder of the paper. Data path element is used to de-
note an object in the RTL data path such as a functional unit,
a multiplexer, or a register. For an output signal s of the
control path, its function is represented as fs(x1; � � � ; xns

)

where xi, 1 � i � ns, is an input signal of s. The set of xi,
1 � i � ns, is called the support of s, and a tuple (xi,s) is
used to denote the control input/output pair of xi and s.

3.1 Topological Ordering of Data Path Elements

For a given false-loop-free RTL design, we can derive an
architectural graph to model its data path architecture and
control unit to facilitate our false loop identification algo-
rithm. A node in the architectural graph represents either
a data path element or the control unit (CU). The state flip-
flops in the CU are not represented in the graph for our loop
detection purpose. There are two types of arcs in the graph:
solid arcs and dashed arcs. A solid arc from nodes a to b

corresponds to a physical connection from a’s output to b’s
input in the RTL design. To simplify the graph, no solid arc
is used to represent connections from the CU node to a regis-
ter node and vice versa, because obviously a combinational
loop cannot have a register on it. A dashed arc from nodes
a to b represents a control dependency in the RTL data path
where a’s output controls the execution of b. Notice that
such a control dependency is implied only by data path oper-
ators and does not correspond exactly to a physical connec-
tion in the circuit. Figure 3 shows an example of architec-
tural graph for a false-loop-free RTL design. We can see that
the two dashed arcs are used to denote the control dependen-



CU

QD

clk

+ /

<

11

2

mux

4
/+

=
6

a d b

de

g

3

5

c

a b

d
+

1

*

mux
3

4 3

cu_out

2
cu_in

3

Figure 3. An example of architectural graph.

cies from the comparator< to two multiplexers respectively.
There are no physical connections in the RTL design corre-
sponding exactly to the dashed arcs.

Topological ordering from inputs to outputs is first per-
formed on the nodes corresponding only to the data path ele-
ments. Since registers break combinational paths, the nodes
of registers are not considered for ordering, and their out-
puts are treated as primary inputs. A level number can be
assigned accordingly based on the topological order. That
is, excluding the register nodes as well as the CU node, the
level number of each node equals to 1 plus the largest level
number among immediate parent nodes. Figure 3 shows the
level numbers assigned to the nodes according to the topo-
logical order.

The level numbers are then propagated to the input and
output arcs of the CU node for false loop detection purpose.
For an input arc from node a to the CU node, a’s level num-
ber is assigned to the arc. As to the output arcs, since a con-
trol output signal can have multiple fanout nodes and each
fanout connection has a corresponding output arc, we assign
to all these arcs the same level number which is the smallest
one of the fanout nodes. In Figure 3, the arc for input cu in
of the CU node is assigned to the same level number of <.
For the output cu out which has two fanout arcs, the small-
est level number of the two fanout nodes, which are the same
in this case, is assigned to the arcs.

3.2 False Loop Identification

A false loop can be identified by traversing the architec-
tural graph using a depth-first search or breadth-first search
algorithm. However, since there can be numerous false

QD

clk
muxmux

CU

* <

x
y

z

d

fecb

1

2

2

a

1

2

1
1

sel1 sel2

Figure 4. Architectural graph of Figure 2(a)
and (b)

loops, direct application of such an algorithm to identify
each of them can be computational expensive. To reduce
complexity, a filter is devised which is based on checking
the level numbers assigned to the input/output arcs of the CU
nodes in the architectural graph.

For any control input/output pair (xi; s) in a given RTL
design with xi in the support of s, if (xi; s) obeys correct
topological order, then the circuit is guaranteed to be false-
loop-free. That is, if the level number of s (output of CU)
is larger than the level of xi (input of CU) for any (xi; s),
the circuit must be false-loop-free. This is because, for the
data path elementsOs andOxi that determine the level num-
bers of s andxi respectively,Os must also have a larger level
number than Oxi , which implies there cannot exist a path in
the data path from Os to Oxi according to the topological
ordering policy. Therefore, no loop can be formed. The cir-
cuit in Figure 3 gives one such example where the control
input/output pair (cu in; cu out) has correct topological or-
der. Therefore, if the topological order of (xi; s) is obeyed,
there is no need to traverse the architectural graph from s for
loop detection.

However, if the topological order is not obeyed, which
means the level number of s is equal to or smaller than the
level number of xi, then whether or not there exists a false
loop passing throughs andxi needs to be verified by travers-
ing the architectural graph from s. This is because although
Os has its level number equal to or smaller than Oxi , Os

does not necessarily have a path to Oxi . This can be illus-
trated by the architecture graph depicted in Figure 4. The
control input/output pair (z; sel1) violates topological order
but contains no false loop after verification by traversal. We
can see that there is no path from the multiplexer controlled
by sel1 to the comparator< generating z. However, for the
control input/output pair (z; sel2) that violates topological
order, the false loop will be detected by traversal. There-
fore, traversal is required to verify if false loops actually ex-



for each output signal s = fs(x1; � � � ; xns) of the control path f
X = ;;
for each xi, 1 � i � nx f

if ((xi; s) violate topological order) f
perform depth-�rst traversal from s in architecture graph;

record in X all xk's that are on detected false loops;

if (X 6= ;) f
perform false loop removal with X for s; /* Section 3.3 */

break;

g
g

g
g

Figure 5. False loop identification algorithm.

*

b ca
2.remove

connection

1.duplicate

1

3.assign 1

e f

<

d

sel2 sel2’

sel1

yx z

Figure 6. Illustration of false loop removal for
the RTL design in Figure 2(b).

ist when topological order is violated.
Based on the discussion above, a false loop identification

algorithm is described in Figure 5. In the algorithm, check-
ing topological order is used as a filter to avoid traversing for
each (xi; s) if the order is correct. In case the order is incor-
rect, a depth-first traversal of the architecture graph starting
from s is performed to identify all the false loops passing
through s. All the control input/output pairs that are identi-
fied on these false loops are recorded in a variable X , which
will be used in the false loop removal step to be discussed in
Section 3.3.

3.3 False Loop Removal

Given the control output signal s and the variable X

which stores all xk’s by the false loop identification algo-
rithm discussed in Section 3.2, the false loop removal algo-
rithm can be described by the following four steps:

The algorithm can be illustrated by applying to

step 1: Duplicate in s0 the logic of s = fs(x1; � � � ; xns
) and

its input/output connections.

Since the false loop problem was caused by control
logic sharing, this step undoes the sharing by duplicat-
ing s.

step 2: Disconnect the output of s.

This is because s0 will be responsible for the function-
ality of s. In this step, all the false loops passing s are
broken.

step 3: Assign 0 or 1 to each control input xk of s0 if xk is
in X .

Since each xk is considered don’t care to s0, the
boolean difference of s0 = fs(x1; � � � ; xns

) with re-
spect to xk should be 0. That is,

dfs

dxk
= fs(xk = 0)� fs(xk = 1) = 0;

which means fs(xk = 0) = fs(xk = 1). So, by Shan-
non expansion of fs, we have

fs = xk � fs(xk = 1) + xk � fs(xk = 0)

= xk � fs(xk = 1) + xk � fs(xk = 1)

= fs(xk = 0)

= fs(xk = 1):

So we can assign either 0 or 1 to these don’t care inputs
without changing the actual functionality of fs.

step 4: Perform control logic synthesis again to s and s0

separately to remove redundancy without creating false
loops again.

In this step, the information of the don’t care inputs of
s0 assigned with 0 or 1 and the disconnected output of
s is used by logic optimization to remove the redun-
dant logic introduced by duplicating s in step 1. No-
tice that the logic synthesis is re-applied separately on
both original and duplicate logic. This is to prevent the
regeneration of false loops just removed.

the RTL design in Figure 2(b) to remove the false loop
passing z and sel2. The removal steps are shown in Figure 6.
The logic cone of sel2 and its input/output connections are
first duplicated into sel2

0. Then, the output of sel2 is discon-
nected, and 1 is assigned to z of sel20. Logic optimization
can then be performed to remove redundancy logic.

4 Experimental Result

We implemented the proposed approach in our high-level
synthesis compiler MEBS [3], and run it on a Sun Sparc
20 work station. Three examples which contain false loops
caused by control logic sharing were used for experiment.
The first example, Cone, is an example circuit used to test



Table 1. Experimental results of real cases
Examples Area of circuits which Area of circuits after

(Lines of contain false loops eliminating false loops

RTL code) Flip-Flop Logic Total Flip-Flip Logic Total Overhead

Cone(106) 43 61 104 43 62 105 0.96%

BJ(1354) 946 1362 2308 946 1363 2309 0.04%

Toner(1804) 2476 1950 4426 2476 1950 4426 0.00%

Table 2. Experimental results of cases with
false loop inserted

Examples Area of circuits which Area of circuits after
(Lines of contain false loops eliminating false loops
RTL code) Flip-Flop Logic Total Flip-Flip Logic Total Overhead

Answer(633) 616 948 1564 616 949 1565 0.06%

Ceps1(397) 3129 1400 4529 3129 1401 4530 0.02%

Vending(341) 277 224 501 277 225 502 0.19%

VCR(1235) 7229 2019 9248 7229 2020 9249 0.01%

Candy(656) 206 255 526 206 256 527 0.19%

Computer(438) 758 826 1584 758 827 1585 0.06%

the existence of false loops. The second example, BJ, is a
Black Jack game machine. The third example, Toner, is a
fuzzy logic controller for the copier toner. We compared the
areas, in terms of basic cells for a specific technology library,
before and after applying the false loop removal algorithm.
The results are shown in Table 1, which reports for each ex-
ample the areas of flip-flops, combinational logic of both
data path and control path, and the entire circuit. The size
of each example, in number of lines in RTL VHDL code, is
listed inside the parenthesis after each example name. Our
proposed algorithm detected 1 false loop in Cone, 2 in BJ,
and 3 in Toner. The results show that only slight area over-
head is imposed. In the case of Toner, we even see that the
areas before and after applying the false loop removal algo-
rithm are the same. This suggests that the overhead intro-
duced by duplicating logic for false loop removal can be lim-
ited if logic minimization is applied subsequently.

We wanted to further observe the average overhead in-
troduced by our algorithm. We selected six examples with
nested control paths and manually inserted conditions to
produce false loops during logic synthesis. Among these six
examples Answer is an answer machine, Ceps1 is a special
RAM, Vending is a vending machine, VCR is a VCR con-
troller, Candy is a candy machine, and Computer is a simple
4-bit computer. The experimental results shown in Table 2
still give low overhead. The average overhead of all exam-
ples in Tables 1 and 2 is 0.17%.

We also analyzed these examples and found only the por-
tion in the control path where the fanout violates the topo-
logical order is identified by the false loop detection algo-
rithm. Therefore, only a small number of gates in the control
logic are duplicated. Furthermore, in Step 2 of the false loop
removal algorithm, the fanout of the original logic being du-
plicated is disconnected, so the original logic may be elimi-
nated by reapplying the logic synthesis. Therefore, the lim-

Duplicate
logic

Original
logic

ba

mux

e

mux

<
c d

gf

h

mux

k

ji

=

1

2

3

4

5

6

7

1

3

5

6
C

B

A

A’

1

Data Path

Control Unit

7

2

>

<

2

4

Figure 7. An example to show small overhead
due to logic duplication.

ited overhead caused by logic duplication can be expected.
In Figure 7 for example, since one logic A fanin has larger
level number than the fanout, only logic A is duplicated and
its fanout is disconnected.

5 Conclusion

In this paper, we analyzed the false loops caused by con-
trol logic sharing due to the usage of don’t cares. We pro-
posed an effective false loop identification/removal algo-
rithm to eliminate such false loops. To reduce the compu-
tation complexity of false loop detection, a filter is devised
to efficiently screen out the cases where false loops are guar-
anteed not to exist. Although the proposed algorithm dupli-
cates logic for false loop removal, the experimental results
show the average area overhead is 0.17%.

References

[1] L. Stok. False loops through resource sharing. In Proceedings
of International Conference of Computer-Aided Design, pages
345–348, Nov. 1992.

[2] S. Huang, T. Liu, Y. Hsu, and Y. Oyang. Synthesis of false
loop free circuits. In Proceedings of Asia and South Pacific
Design Automation Conference, pages 55–60, 1995.

[3] Y. C. Hsu, T. Y. Liu, F. S. Tsai, S. Z. Lin, and C. Yu. Digital
design from concept to prototype in hours. In Asian-Pacific
Conference on Circuits and Systems, Dec. 1994.


	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


