A Constructive Method for Exploiting Code Motion

Luiz C. V. dos SantdsM.J.M. Heijligers, C.A.J. van Eijk, J.T.J. van Eijndhoven and J.A.G. Jess
Design Automation Section, Eindhoven University of Technology
P.0.Box 513, 5600 MB Eindhoven, The Netherlands

Abstract have a solution explorer which is based on a local search
)] __algorithm [15]. The constructor is driven by a permutafion
In this paper we address a resource—constrained optimizaof the operations in the data flow graph. The explorer handles
tion problem for behavioral descriptions containing encoded solutions and uses a solution constructor to evaluate
conditionals. In high—level synthesis of ASICs or in codeheir cost. A code—motion pruning is embedded in the
generation for ASIPs, most methods use greedy choices #bnstructor to reduce the search space.
such a way that the search space is limited by the applied

heuristics. For example, they might miss opportunities to explorer

optimize across basic block boundaries when treating II cost
conditional execution. We propose an approach based on

local search and present a constructive method to allow | constructor
unrestricted types of code motion, while keeping optimal Figure 1 — An outline of the approach

solutions in the search space. A code—motion pruning The main contributions of our approach are:

technique is presented for cost functions optimizing schedulg) A method to encode BB scheduling and code motion as
lengths. A technique for treating concurrent flows of an unified problem such that unrestricted code motions
execution is also described. can be induced:

) b) A code—motion pruning technique which preserves opti-
1. Introduction mal solutions in the search space;
c) A technique for treating concurrent flows of execution

In the high—level synthesis of an application—specific * \\hen a single flow of control is targeted.

integrated circuit (ASIC) or in the code generation for an
application—specific instruction set processor (ASIP), four2 The Problem
main difficulties have to be faced when conditionals are pres-"

ent in the behavioral description: . Definition 1 A control data flow graptDFG = (U, E) is
a) the NP—completeness of the resource—constrained schegldirected graph where the nodes represent operations and the
uling problem itself. edges represent the dependencies between them. We assume

b) the limited parallelism of operations enclosed by basiahat the DFG contains conditional constructs.
blocks, as they might not use all available resources com- Definition 2 An execution condition is associated with
pletely. every operation, represented as a boolean function, here
c) the possibility of state explosion because the number ofalled apredicate An execution instancéEXI) is a set of
paths may explode in the presence of conditionals. operations executed under a given predicate.
d) the possibility of state expansion due to limited resource Definition 3 A basic block(BB) is a set of operations
sharing of mutually exclusive operations (which is lim- which all have the same execution condition.
ited by the timely availability of test results). Definition 4 A basic block control flow grapBBCG =
Most methods apply different heuristics for each subprob{v, F) is a directed graph where the nodes represent basic
lem (BB scheduling, code motion, code size reduction) as iblocks and the edges represent the flow of control. We allow
they were independent. An heuristic is used to decide thghat an operation initially associated with a given BB be
order of the operations during scheduling (like the many fla*moved” to another BB; this is callesbde motion
vors of priority lists), another to decide whether a particular Definition 5 Each traversal in the BBCG from an input
code motion is worth doing [6, 17], yet another for a reducnode to an output node such that only BBs which execute
tion on the number of states [18]. As a result, thes&inder a same predicate are visited definpath A path
approaches might miss optimal solutions. defines a sequence of BBs which enclose all the operations
We propose a formulation to encode potential solutionsyelonging to an EX| of the DFG. Each path in the BBCG cor-
for the interdependent subproblems. We show that optimalesponds to exactly one EXI in the DFG.
solutions are kept in the search space. The formulation QOptimization problenfOP): Given a numbef of func-
abstracts from the linear—time model and allows us to contional units and an acyclic DFG, find a control sequence rep-
centrate on the order of operations and availability ofresented by a state machine graph, in which precedence
resources. Figure 1 shows the outline of our approach. Weonstraints of the DFG are obeyed and the resource
1. On leave from INE, Fed. Univ. of Santa Catarina, Brazil. Partially constraints are satisfied for each functional unit type, such
supported by CNPq (Brazil) under fellowship award n. 200283/94-4. that a cost functio is minimized.

Our motivation to address this resource—constrained In [16], an exact symbolic technique for control depen-
problemis due to the increasing interest to find the balancedent scheduling is presented. However, restrictions are
between architectural synthesis and code generation tecknposed on the speculative execution model. Besides, the
niques (e.g. application—domain ASIPS). use of an exact method in early (more iterative) phases of a

General instances of the OPhe method presented in this designis unlikely, especially because no pruning is presented
paper addresses instances of the OP for arbitrary cost funt cope with the larger search space due to code motions.
tions which can be extended to include not only schedule A method could be envisaged where no restriction is
length, but also issues like register and interconnect usagéhposed neither on the kind of code motion, nor on the order
and number of states. This is convenient especially in latéhe operations are taken to be scheduled.
phases of a design flow, where optimization has to take sey,
eral design issues into account. 4 The method

Particular instances of the Ol early phases of adesign 4.1. Outline of the method
flow, the optimization objectives are dictated by the real-

time requirements of embedded systems design. The slowest ,]Tshiﬁglul?,gfgtg?gcstgf t?gﬁs_l"i‘e%%rnmUtgts'ogo?‘;éhee?jpf?g%
possible execution time of a piece of code must meet reals gen olution. Iqu W
}ge constructive topological sorted scheduler [8] are used,

time constraints [4]. At the other hand, as these early phasjt\)ecause it has the important property that there always exists

tend to be iterated several times, runtime efficiency i ; X : . X
imperative. For these reasons we propose a pruning tecﬁﬁgeirsmgé?,t;mQ’fg&cgﬂfscﬂltfh'g %gfﬁﬂgﬁﬁogf?gi|§ﬁ§hf\%'
nique to tackle instances of the OP for which the cost funCt'O'Lc':peration to be scheduled is selected among read o

: . y operations
can be written a@thz f(Ty, Ty, ..., Tn), whereT,isthe sched- (ynscheduled operations whose predecessors are all sched-
ule length of the' path in the BBCG and is a monotoni- jjeq) following the order in the permutation. Each selected

cally increasing function. This pruning guarantees the presgperation is attempted to be scheduled at the as early as pos-
ence of optimal solutions in the search space in terms aljpje time where a free resource is available.

schedule lengths (see [8] and proof in Appendix A).

o
D
3. Related Work DFG |+—> eld
medye f
In path-based scheduling (PBS) [3, 2] a so—called as— 9
fast—as—possible (AFAP) schedule is found for each patlyg (c)

independently, provided that a fixed order of operations be

chosenin advance. Due to the fixed order and to the fact that
scheduling is cast as a clique covering problem on aninterval
graph, code motions resulting in speculative execution are

not allowed. Thus, the method has limited capability of [T []@[][d[][d]][Ed]][d]]
exploiting parallelism with complex control flow [13]. This GqI1d]] d1] dl]d]] [08
limitation is released in tree—based scheduling (TBS) [10], Ld]| L&d | ed | B2
by allowing boosting and duplication code motions. BT (o[[] B[] 30)
Condition vector list scheduling (CVLS) [18] allows code (b) @
motion and supports speculative execution. However, the Lld 119]

underlying mutual exclusion representation is limited [1].

In Trace—scheduling (TS) [6] a main path (trace) is chosen))
to be scheduled first and independently of other paths, thehigure 2 — Using the topological sorted scheduler
another trace is chosen and scheduled, and so on. TS doesn'’tin figure 2, a linear-time sequence is constructed for a
allow certain types of code motion across the main trace. given permutation. See [5] for an explanation of the symbols

In [17] an approach is presented where code—motions angsed. The topological sorted scheduler is applied on purpose
exploited. BBs are scheduled using a list scheduler and than a very straightforward way (figure 2b). No information
code motions are allowed. One priority function is used in theabout mutual exclusion is used. When such information is
BB scheduler and another for code motion. Code motion isised,b can be scheduled at the second step by sharing an
allowed only inside windows containing a few BBs to keepadder with operatioa (figure 2c). We are assuming that the
runtime low, but then iterative improvement is needed not tamutcome of is not available inside the first step to all@and
restrict too much the kind of code motions allowed. b to conditionally share a resource. The resulting schedule

Among those methods, only PBS is exact, but it solves éength is reduced to 5 steps for both EXls, even though the
partial problem where speculative execution is not allowedEXI (t, b, g) could be scheduled on its own in only two steps.
TBS and CVLS address BB scheduling and code motiongnformation about mutual exclusion is clearly not enough
simultaneously, but use classical list scheduler heuristics. T@nd the limitation is the linear—-time model. To allow a more
combines both subproblems in a per trace basis, but mairefficient solution, some mechanism has to split the linear—
trace—first heuristics are applied. In [17] a different heuristictime sequence by exposing a flow of control. Our mechanism
is applied to each subproblem. All those methods mays based on initial links, as we will explain in the next subsec-
exclude optimal solutions from the search space. tions.

v

scheduling evolution

4.2. Initial links from an operation into a BBv is given the following attrib-
utes: a)xondition(execution condition afl when its predi-

In our method we want to capture the freedom for codecate is completely evaluated); Hggin(operation starting
motions without restrictions and for this purpose wetime ofuin BB V); c) end(completion time ofi in BB V).
introduce the notion of a link. Ank connects an operation Assignments representelative—timeencoding. The abso-
uin the DFG with a BB/ in the BBCG. Its interpretation is lute time is given by the instant BBtarts execution plus the
that u may be executed under the predicate which defines thealue in attributdegin
execution of operations in A same operation can be linked Freedom for code motiof®perations may be redundant
to several mutually exclusive BBs. Figure 3 illustrates thefor some paths in a behavioral description [10]. TBS uses
link concept. Amerge node (M) represeddta selectiomnd tree optimization to remove redundancies by propagating
a branch node (B) representmtrol selection each operation to the latest BB where it is to be used. CVLS

v eliminates them by using extended condition vectors [18].

Even though they remove redundancies, those methods don't
succeed to encode the freedom for code motion. Tree opti-
mization works well for (nested) conditional trees, but in the
case of parallel flows of execution, the quality of a solution
may depend on the description. In figure 4, after tree opti-
mization, the unconditional operatioh would remain
associated to the BB wherein it was originally described.

V 5 Merging concurrent flows of executio@ur initial links
Figure 3 — Paths and execution instances do not only handle redundancies, but also encode freedom

o L ; .~ for code motion. In figure 4 may be linked to BB4, to both
Initial links: We will encode the freedom for code motion . e

by using a set of initial links. First, we look for each operationB 55 @nd BB2 or to BBla; istheinitial link, because the only
whose result has to be available before a control or data selef2ntrol dependency to be satisfied is fieatecute before the
tion point in a given EXI. Such an operation is said to be utput is available. As operatibnan be executed in BB1 or
terminal Each terminal is linked to the BB which precedes!" @1y Preceding BB as soon as resource and data dependency
the corresponding selection point in the BBCG. In figure 3'const.ralnts are satisfied, unrestricted code motions can be
initial links are shown for terminalsandd (due to data cXPloited, even for concurrent flows of execution.
selection) and(due to control selection).Then, we link each 4 3 The solution constructor
ancestor of a terminal to the same BB to which the latter is
linked. Operatiomis not a terminal and will have initial links Traversing in topological ordeil he solution constructor
(not shown in figure) to both BB2 and BB3will have a follows the flow of tokens in the DFG while the BBCG is tra-
single initial link pointing to BB3. Each link points to the lat- versed in topological order. An operation can be assigned to
est BB in a given path where the respective operation can stifiny traversed BB, as soon as data precedence and resource
be executed. This means that each operatifireésto be constraints allow. If more than one operation satisfies these
executed inside any preceding BB on the same path as soeanstraints, an operation will be chosen based on the order in
asdata precedence and resource constraints allow (the onlyhe permutation. Such an assignment is not compulsory as
control dependency to be satisfied is the need to execute tHeng as the BB to which the operation was initially linked is
operation at the latest inside the BB pointed by the initialnot reached. As a result, an initial link>v might become
link).The underlying idea is to traverse the BBCG in topolog-a final assignment, but it will be revokediiSucceeds to be
ical order trying to schedule operations in traversed BBs. Icheduled inside any ancestovahducing a code motion.

operationu is given arinitial link to BB v andv is reached =~ Splitting the linear-time sequend¢@nly when an opera-
in the traversal, them must be scheduled inside it. We say tion is compulsory in a BB, it is allowed to "allocate” extra
that the assignment afto BB v is compulsory. time steps inside that BB. This will make room for schedul-

ing non—compulsory operations in idle resources. We claim
that the underlying pruning associated with this criterion to

split the linear-time sequence doesn't discard any better
solutions (see section 2 and proof in Appendix A).

Example In figure 5 the same example as in figure 2 is
scheduled to illustrate the method. It is shown in figure 5b
how each EXI could be scheduled independently. EXI1 ={t,

) o - v a, ¢, e,d, f, g}is scheduled in five steps and EXI2 = {t, b, g}
Figure 4 — Linking unconditional operations is scheduled in 2 steps. It is not possible to overlap those
Final assignmentsEach linka will be called here an sequences, becausandb cannot share the adder (the out-

operation assignmer{from now on called simply assign- come of test is not available inside the first step). Even
ment) when it obeys precedence constraints and it doesrthough each path can be AFAP scheduled for the dien
imply the need for more than the available functional unitsthere is a conflict between them so that if one sequence is
Assignments which might increase registers and/or interconchosen, the other will be imposed an extra step. Figure 5¢
nect usage are included in the search space. Each assignmsinbws the initial links. Figures 5d to 5k show the evolution

w=1[a c d e b, f, g, 1

@nEafE@lElE]Er

CRNNCANCERICARICARICAN

[ld |[ed 1[ed | [dd] [ed]
fLLIELT]

Figure 5 — Splitting the linear—time sequence

for each operation ifY. Circles in bold mark the current BB maxTop(C) returns BBs in a arbitrary topological order. A
being traversed. Note in figure 5d that, even though othecandidate assignmeatis created for each pair,y) and the
ready operationg(eandb) precedein 77, tis the scheduled condition unscheduled(a)A scheduledpreds(c) IS evaluated. If
one because itis the only compulsory operation in the currerthis condition holds, the earliest steinith a free resource
BB. Thena is scheduled (figure 5e) in the same step, as affo(@)) will be found. FunctionisSuitable(e,o(c)) decides
idle adder exists. At that point no other ready operations cawhethera should be committed or revoked. When all com-
be scheduled in that BB, as they would require the allocatiopulsory operations are scheduled and there is no room for
of extra steps. Then, another BB is taken (figure 5f) and secheduling others, a new BB is taken.

on. Figure 5k shows the final result. It is the same as obtainenstruct_solution(C, 1)

by scheduling EXI1 independently (figure 5b), but EXI2 wasWwhile C = § _

imposed an extra step. Note thaa éindb were exchanged }’:':‘O'T’aXTOp(C)'

in 17, the solution in 5b for EXI2 would be obtained, while whilej <||

EXI1 would be imposed an extra step. When a conflict hap- u=TI[j++];

pens between paths, the method solves it in a certain way i‘f‘kfjﬁggg%’é’&‘l‘égt((gj")\;scheduIedpreds(a)).

induced bwyT, but there exists another permutatigrwhich then o(a):=asap(a);
induces a solution in the opposite way (no limitation in o(o):=satisfyResConstraints(a, o(a));
search space). Note that the assignment of operations if isSuitable(a, o(a)) _
to the first step represents speculative execution. If we don't then gglr\‘,%tgf)ed(g,\',l‘(’)(gg)ﬁ(a);
allow speculative executidmoth EXIs will be imposed an j:=0;
extra step, resulting in schedule lengths of 3 and 6. update(C); .

Notion of order dominant over notion of time sté&s Algorithm 1 — The solution constructor

opposed to other approaches [18, 12], this method doesn't Runtime complexity_etn be the number of operations in

use time as a primary issue to decide on the position an oper#; bthe number of BBfthe number of paths anthe num-

tion will be assigned to. Instead, a notion of order and availber of conditionals. The search for the first ready operation

ability of resources in control flow is used. As assignmentsn I7 takesO(lg n). As this search may be repeated for each

incorporate a relative—time encoding, time is only used tmperation and for each BB, the worst case complexity of

manage resource utilizatiomside BBs. Our approach algorithm 1 isO(b n Ig n). The runtime efficiency of our

doesn’t enumerate exhaustively combinations of time stepapproach doesn’t depend pr(which can grow exponen-

to schedule an operation, which exempts the use of greedially in c), as opposed to path—based methods.

choices to decide on the position of an operation in differen . . .

paths [12] and to control the number of states [18]. h'4' Exploiting unrestricted code motions
The solution constructor is summarized in algorithm 1. In this section we summarize the relationship between ini-

is a permutationC is the set of BBsii is an operationy is tial links, assignments and code motions. A detailed analysis

aBB,ais an assignment amrd.) is a real number. Function of code motions can be found in [17].

guaranteedly don’tinduce better solutions (see Appendix A).

a—t a Impact on different application domair@ontrol— domi-
o nated applications normally require that each path be opti-
y—-a ali, adis mized as much as possible. Here the role of code motion is

obvious. However, in DSP applications, it is unnecessary to
optimize beyond the given global time constraint [14]. Even
though highly optimized code might not be imperative, the
role of code motions should not be overlooked even in DSP
applications, because code motions can reduce the schedule
length of the longest control path. The tighter the constraints
the scope of a single conditionduplication—up(a),boost- are, the more important the code motions become. In our
ing—up(b), unification(c) anduseful(d). a;represents afinal approach, the advantage of taking code motions into account
assignment and; an initial link. A circle in bold represents is not bestowed at the expense of a "much larger search
the current BB being traversed. Onegesucceeds, the cov- space”, due to our code—motion pruning. Code motion is
ereda;'s are revoked. Even though only upward motions areespecially important when simple controllers are used for
explicitly shown, downward motions are implicitly sup- code retargetability [11].

ported, as the initial links encode the maximum freedom for

code motions downwards. 5. Experimental results

The method has been implemented in the NEAT system
[7]. A genetic algorithm is used as solution explorer in the

] (b)
Figure 6 — Basic code motions
Basic code motiong-igure 6 illustrates code motions in

(d)

\
\ / current implementation. For the representation of predicates
\ / we are using the BDD package developed by Geert Janssen.
N /‘ [Table 1 — Results for Wakabayashi's example

/ \ I method | case| #alu | #add| #sub| chain | lengths
I l l a 0 1 1 1 447
\ / \ ours b 0 1 1 2 34,7
y \ c 2 0 0 2 3,4,6
\ a 0 1 1 1 447
\ TBS b 0 1 1 2 3,4,7
N\ c 2 0 0 2 3,4,6
HRA a 0 1 1 1 44,7
Figure 7 — Generalized code motions 2 g (l) (1) % ggg
Generalized code motionkigure 7 shows generalized | CVLS a 0 1 1 1 4,57
code motions supported in our approach. Arrows indicate PBS b 0 1 1 2 3,6,7
possible upward motions from an origin BB to a destinatio c 2 0 0 2 3.5,6

BB. Gray circles illustrate more local code motions, which Table 2 — Results for maha and parker

are handled by most methods. Either they correspond to th maha ke
basic code motions of figure 6 or to a few combinations of method maximin_ | avg max/rl:;lin g
them. In [17] these combinations are attempted via iterative ours Vil 255 4 500
improvement inside windows containing a few BBs. Black CVLS 4/1 2.38 4/1 238
circles illustrate more global code motions also supported in [16] 4/— 2.25 4/— 2.13
our method. Note that such "compound” motions are deter- #adders = 2; # subtractors = 3

mined at once by the permutation and are not the result of
successive application of basic code motions. We do not In table 1, our method is compared with others for the
search for the best code motions inside a solution, we dexample in [18]. Results were collected from [10], [18] and
search for the best solution whose underlying code motiongl2]. Our solution for caseis as good as TBS and HRA[12]
induce the best overall cost. and better than CVLS. In caseur method, TBS and HRA
Impact of code motions on the search spake any reach the same results which are better than PBS. Far, case
assignment determined by a permutation may induce a codmth our method and TBS are better than HRA and PBS. In
motion, unrestricted types of code motions are possible. Agable 2 we compare our results for benchmankhaand
a result, the search space is not limited by any restriction oparkerused in [19] and [16]. Our method reaches the same
the nature, amount or scope of code motions. This is conveverage values for those methods during exploration (2.25,
nient in the late phases of a design, when optimization goal2.38 and 2.13), but a better average value (2.00) is found.
include usage of registers and interconnect and number of Althoughwe certainly need to perform more experiments,
states (which might all be affected by code motions). these first results are encouraging. They seem to confirm that
Code—motion pruningHowever, in early phases of a our method is able to find the code motions which induce the
design, we need a fast but accurate estimate only in terms bétter solutions.
schedule length [4, 9]. In this scenario, we can allow some Figures 8 and 9 show the impact of our code—motion prun-
reduction in search space by pruning code motions whicling. For the experiment, 50 solutions were constructed

induced by randomly generated permutations. Figure 8= L(q)=I(q)-0+ [delayu)],L(s)=1(s)-0+ [delayu)],

shows results with (black) and without (gray) pruning. TheL(r) =I()-[delayu)]=L =l andl = |;

height of a bar represents the number of solutions countelg) o was assigned to and allocates) steps insideéoth gand s
under different assumptions. In case (®)aka(3) and =L(@)=(@)+d, L(s)A(s)+0, L(n) =I(N-d0=L = and = |;
meha(3), soluons are disinguished by comparng the)oes ssaned s alocacs scps s S LpRloL
Ien_gth of each path._ In cases (1) and (2), solutions are d'St“gsigned 0 q anpd s (topological sorted construction) P
guished only by their overall cost. Case (1) usesT;asa _ L(@)=1(q), LS)A(s), L(H) =I(N-0=L; =k andlj =,

cost function and case (2) usesT,. Inwaka(3)for example, For a given17, solution § have “path lengths greater than or equal
32 different solutions are identified without pruning, but only tothose in . As compound code motions can be built out of these
5 with pruning. This reduction will lead to effectivaeduc- ~ Pasic code motions, armstis monotonically increasing, we can
tion in search space, which depends on the chosen cost furf@"¢lude without loss of generality trats(Sn) = cos(Sm).

tion (comparevaka(l)and(2)). 10
50 0.8
40 0.6
30 0.4
20 0.2
10 ’_L waka(1) waka(2) maha(1) maha(2)
0 - m Figure 9 — Compaction on cost range

waka(1) waka(2) waka(3) maha(1) maha(2) maha(3)
References

Figure 8 — Reduction of the number of solutions i _) o
.) [1] S. Amellal and B. Kaminska, "Functional Synthesis of Digital
Not only the number of solutions is reduced, but also the*[sz)]/sléergs with TASEJ'EtEIlE T”r;lns. CA(;D%}(?)i 537—55c2), l:/_lay 1£t9_94.)
range of cost values. The cost range ratio "no pruning/pruni<] ~. Bergamaschi et al,, ‘Area and Ferformance Uptimizations in
ing” is 2.5 forwaka(1)andmaha(1) 3.5 forwaka(2) and Eg_tggf_sgfosigg?‘“ng' in Prégurop. Conf.on Des. Automation
1.55 formaha(2) These ratios are shown in figure 9, normal- 3] R. Camposano, "Path—based scheduling for syntha&gE
ized with respect to the "no pruning” cost range. This com-Trans. on CAD10(1): 85-93, Jan. 1991.

paction on cost range suggests a higher probability of reaci¢] R. Camposano and J. Wilberg, "Embedded System Design, "
Design Autom. for Embedded Syst. Journall, pp. 5-50, 1996.

ing (near) optimal solutions during local search. [5] J.Eijndhoven and L.Stok, "A Data Flow Exchange Standard,” in
. Proc. Europ. Conf. on Des. Automatigop. 193-199, 1992.
6. Conclusions and Future Work [6]J. A. Fisher, "Trace Scheduling: A technique for global microcode

compaction,lEEE Trans. Computvol. 30, July 1981.
We have cast the resource—constrained OP for descrifiZl M.Heijligers et al., "NEAT: an Object Oriented High Level

. . . - ynthesisInterface”,in PraEEEISCAS'94,pp.1.233-1.236,1994.
tions with conditionals into a local search problem . The per 8] M.Heiligers and J.Jess, "High—Level Synthesis Scheduling and

mutation—driven constructor deals with code motionspjiocation using Genetic Algorithms based on Constructive
constructively while keeping optimal solutions in the searchTopological Scheduling Techniquesifit. Conf. Evol. Comyi994
space. The approach can be extended to include other issuf3J. Henkel and R. Ernst. "A Path—based Technique for Estimating

iti i ardware Runtime in HW/SW-cosynthesis”, in Pra€M/IEEE
Most methods for conditionals either break loops oraIIovv:'éSS,95 bp.116-121.

limited optimization between iterations. Our method could[107's Huang et al., "A tree-based scheduling algorithm for control
accommodate one of such approaches, but we prefer @minated circuits,” in ProdCM/IEEE DAC'93 pp-578-582
investigate loops as a further topic to prevent limitation on[11] A.Kifli et al.,"A Unified Scheduling Model for High—Level
the search space. We also intend to consider time constrainfnthesis and Codeeneration,in ProcED&TC'95, pp.234-238.
[12] T.Kimetal., A Scheduling Algorithm for Conditional Resource

i i i Sharing— A Hierarchical Reduction ApproadBEE Trans. on CAD
Appendix A. Proof of the pruning technique 13(4)- 425438, Apr 1994,

Theorem: Let Sy be a solution of the described OP constructed[13] ‘M. S. Lam and R. P. Wilson, "Limits of Control Flow on
with algorithm 1 for a givetZ and consider an operatiomssigned Parallelism,ACM/IEEE Int. Symp. Comput. Archit992, pp. 46-57.

to BBj in such a solution. Lel be [delay0)]. If a solution §is [14]R.Leupersand P.Marwedel, "Time constrained Code Compaction
obtained by moving from BBj into BBi and it allocates exactly ~for DSPs”, in Proc ACM/IEEE ISSS'95pp.54-59. o

o cycle steps inside BB thencos(Sn) = cog(Sm), wherecost [15] C. Papadimitriou and K Steiglitz. "Combinatorial optimization:
is a monotonically increasing function in terms of schedule lengths2/gorithms and complexity”. Prentice Hall, 1982.

Proof: Letl(k), L()E N be the schedule lengths of a BBefore (6] |.Radivojevic and F.BrewerA’New Symbolic Technique for
and after t(hg m(ot)ion, respectively. lgtq, T, g be BBs forming Control Dependent SchedulifitEEE Trans.CADL5(1):45-57,1996.

. ; 17] M. Rim, et al., "Global Scheduling with Code—Motions for
path: p—~g—r and path p—s—r. Letl, andL; be, respectively, L" : g0
/ gh-Level Synthesis ApplicationdEEE Trans. on VLSI Systems
the schedule lengths of patiefore and after motion. vol. 3, no. 3, Sept. 1995, pp. 379-392.

a)owas assigned tpand allocates steps inside = L(p)=I(p)+o [18] K. Wakabayashi and T. Yoshimura, "A resource sharing and

a.1) No operation assignedrtoan be moved in the allocated steps ¢gontrol synthesis method for conditional branches,” in Proc.

=L(N=I() , L(s)=I(s)-9, L(Q) =I(q)-d=L = | andl; = |; ACM/IEEE ICCAD'89, pp.62—65.

a.2) There is an operatiarassigned towhich can be moved inthe [19] K. Wakabayashi and H. Tanaka, "Global scheduling independent
allocated steps. Asdepends or has resource conflicts with opera-of control dependencies based on condition vectors,” in Proc.
tions assigned to q and s (topological sorted construction) ACM/IEEE DAC'92 pp.112-115.

	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

