
Quick Conservative Causality Analysis

Ellen M. Sentovich
Cadence Berkeley Laboratories

1919 Addison Street Suite 303-304
Berkeley, CA 94704-1144

Abstract

The causality problem is that of determining if a combi-
national circuit with cycles has acceptable behavior: that
for all inputs the outputs are well-defined and stable. While
the problem manifests itself at the circuit level, it usually
originates at the system level. It may arise when a system
is designed as a collection of modules: when composed, cy-
cles are discovered in the ensemble. One must analyze these
cycles to correct possible errors or to capture the correct
behavior appropriately for further synthesis. Previously
published algorithms use iterated ternary logic simulation.
This is correct and robust, but expensive and in many cases
overkill. In this work, a more efficient but conservative
algorithm is proposed based on applying standard logic
synthesis techniques of increasing power. We present initial
results to demonstrate the practicality of this approach.

1. Introduction

1.1. The causality problem

The causality problem here is that of determining if a
combinational circuit with cycles has acceptable behavior.
Acceptable circuit behavior is often defined as behavior that
has an input/output-equivalent acyclic circuit implementa-
tion. That is, for each input of the cyclic combinational
circuit, the outputs are well-defined and stable. Any algo-
rithm for causality analysis relies on a particular definition of
acceptable behavior, which specifies equivalence and stabil-
ity conditions. This behavior in turn relies on an underlying
delay model. At a higher level, causality can be viewed as
the property that a module has well-defined, stable behavior
at the outputs for each possible input.

The causality problem may arise in several contexts:

� An implicit specification of a single circuit or state
machine may not have a well-defined causal imple-
mentation (i.e., with an acyclic combinational part).

� A set of causal circuits composed together may exhibit
non-causal behavior.

� In system specification, where the design is composed
of individual modules, combinational loops between
modules may be accidentally or deliberately (e.g.,
shared resources) designed in.

In many cases, the design has been well-conceived, and the
cycles are in fact false: they are static cycles that are never
active dynamically.

With ESTEREL[2] specifications, causality problems can
arise in two ways. First, due to the powerful language con-
structs and implicit nature of state-machine specification, an
individual module may exhibit causality problems. Second,
during module composition, individually causal modules
may produce a system with causality problems. A number
of examples of the first type, some causal and some non-
causal, are given in [1]. An example of the second type,
which is a real bus arbiter that is causal but cyclic, is given
in [4]. The specification has a circuit implementation that is
statically cyclic but dynamically acyclic. Causality analysis
is used in the compiler now to determine which systems are
truly causal despite their structural cycles.

Another application is in behavioral specifications,where
resources may be shared in such a way as to create a static
cycle in the specification. An example is given in [6]: two
operators ADD and SHIFT may be performed in either order
depending on the value of a select variable. Hence there are
paths from ADD to SHIFT and from SHIFT to ADD, but
they are never active simultaneously.

When combinational cycles are detected, causality anal-
ysis is usually carried out before synthesis and optimization
proceeds. If the circuit is correct (causal), it can be re-
implemented as an acyclic circuit. If incorrect, one must find
the undesirable behavior and correct it. One can certainly
generate cyclic hardware and software implementations for
cyclic specifications immediately, skipping causality analy-
sis. However, without this analysis, there is no guarantee of
correct behavior, and without generation of the equivalent
acyclic implementation, there are currently no methods for



synthesis and optimization.

1.2. Previous work

In [6], a definition of combinational circuits1 was given
with an algorithm for determining if a cyclic circuit is in fact
combinational. The algorithm is based on symbolic simula-
tion using the 3-valued Scott Boolean domain: f0; 1;?g. It
consists of breaking all cycles in the circuit, assigning bro-
ken wires the undefined value?, and iteratively simulating,
assigning newly-determined simulation values to the broken
feedback wires at each iteration. The algorithm is mono-
tonic and guaranteed to converge. This paper also provides
good motivation and references for the causality problem
(e.g., [11] which solves the problem of cycles in the context
of resource sharing by restricting the sharings considered).

In [8], the algorithm was extended to sequential circuits,
and an efficient implementation was outlined. In [9], a proof
of correctness of the algorithm under the up-bounded inertial
delay model was given.

In parallel, the notion of constructive causality [1] was
being developed and imposed as a requirement for correct
ESTEREL specifications. In the ESTEREL language, one spec-
ifies a synchronous, reactive, control system as a set of
interacting modules. The language is based on communi-
cation of signals, and provides constructs for concurrency
and pre-emption. The ESTEREL compiler translates the set of
modules into an equivalent Boolean circuit, which is another
implicit representation of the underlying state machine.

The implicit specification method and rich signal con-
structs imply that non-causal behavior can be given. The
compiler performs a static causality check on the input pro-
gram translated to a dependency graph. This approximation
to the definition of causality held at the time turned out
to be too weak. As a result, constructive causality was
born. Its complete semantics at the behavioral, operational,
and circuit levels, is given in [1]. The basic idea is that a
design must be reactive (have at least one response per in-
put), deterministic (at most one response), and constructive
(the solution is derived by fact propagation rather than self-
justification). The key result is that a constructively causal
design has a stable, well-defined circuit equivalent. There-
fore, the complete causality analysis program in ESTEREL,
sccausal [5], is based on the results in [6, 8, 9, 1] and
is applied to the Boolean circuit representation of ESTEREL

programs.

1A combinational circuit hereafter is a circuit with no delay elements
that has “acceptable” behavior, as described in the beginning of this intro-
duction and formally defined in [9].

g2

I X

Y

g1

J

B

Figure 1. Simple non-causal circuit

1.3. E�cient causality analysis

We present here an algorithm that is built on the same
assumptions (delay model, ternary simulation) but that uses
standard logic synthesis and optimization. It is more effi-
cient since it does not require a three-valued model, it does
not perform iteration, and it uses a variety of efficient al-
gorithms applied successively to the circuit rather than full
symbolic simulation at the outset. It is also conservative in
that it may declare a causal circuit non-causal. We focus
on the analysis of cyclic combinational circuits to determine
an acyclic equivalent. The extension to sequential circuits
is not trivial, but has been done in [8]; that method can be
easily modified to work with the causality analysis method
proposed here. Of course, combinational causality analysis
can be applied to sequential circuits directly, but the anal-
ysis will only be carried out statically: as though all states
are reachable. We present results on real combinational and
sequential circuits generated from ESTEREL.

2. Example

A simple example illustrates the notion of causality,
causality analysis, previous algorithms, and the contribu-
tion of this work.

Consider the circuit shown in Figure 1. It is electrically
non-causal: when I and J are both 1, X = Ȳ and Y = X̄ .
While stable solutions exist (X = 1, Y = 0; X = 0,
Y = 1), there is no guarantee that the wires will stabilize
given the delays, and there is no way of knowing which of the
two stable solutions will be reached. The ternary simulation
algorithm would break the cycle at, for example, point B,
creating a new input and output, Bin and Bout. Assigning
Bin to ? (unknown), and allowing the inputs to assume all
values, we obtainBout = I � Ȳ = I � (J̄+Bin) = IJ̄ +I?.
Iterating, Bout = I � (J̄ + (I � J̄ + I � ?)) = IJ̄ + I?.
There is no change, so the iteration stops and the circuit is
non-causal since Bout cannot be assigned a stable value for
each value of the input.

Now consider a modification of this circuit, where the
f1; 1g input to the cross-coupled gates is prohibited by the
environment. This is modeled by the circuit in Figure 2.
Again breaking the cycle at B, Bout = I0Ȳ = I0 � (J̄ 0 +

Bin) = IJ̄ �(I+J̄+Bin) = IJ̄+IJ̄? = IJ̄ and stability is



g1

g2

I

I’

J’J

X

Y

B

Figure 2. Restricted inputs creates a causal

version

I

J

X

Y

Figure 3. Acyclic version

reached. Bin is now implemented by IJ̄ . The final acyclic
version of the circuit is shown in Figure 3.

Now suppose we take the original circuits, cut the
B arcs, and ask the question “is Bout independent of
Bin?” For the non-causal circuit, Bout = IJ̄ + IBin,
BoutBin

�BoutBin

= Ī + J̄ 6= 1 and the answer is no.
For the causal circuit, Bout = IJ̄ and the answer is yes.
This simple analysis is equivalent to a single iteration of the
ternary symbolic simulation, but note that there are many
ways of determining the independence of Bout from Bin

using logic synthesis techniques. For example, in the sim-
plest case, constant propagation in the circuit may reveal
independence. Efficient ATPG techniques can be used to
determine independence, as can logic simplification. In the
limit, the BDD for Bout can be built and tested for inde-
pendence: BoutBin

� BoutBin

? Or even more simply,
does Bin appear as a variable in BDD(Bout)? The inde-
pendence check is of course computationally equivalent to
exhaustive simulation of an output with respect to an input,
but by viewing the problem this way, and noting that in
many cases full analysis is not required, a better algorithm
can be devised. Simple logic synthesis algorithms are not
performed a priori in the ternary simulation analysis method
because an alteration of the logic may destroy the causality
properties of the circuit.

Such simple arc-breaking followed by dependency anal-
ysis is not by itself a correct algorithm for causality deter-
mination, as the next example illustrates.

Example 2.1 Consider the following simple non-causal cir-
cuit.

XB

This circuit is reactive and deterministic, and hence logically
correct. However, it is not constructively causal since it

I Xon

Yon

Yoff

Xoff

g1

J

g2

h1

h2

B

A

Figure 4. Dual-rail encoding of IJ-example

stabilizes only due to feedback. See [1] for the precise
definition of constructive causality and the reasons behind
this choice.

Breaking the two cycles by cutting before the fanout point
results in Bout = Bin + Bin = 1, which is not the correct
result. Breaking the two cycles using the two feedback arcs
does retain the dependency needed to demonstrate that this
circuit is non-causal. The difference, of course, is precisely
what one obtains using ternary versus binary simulation.

3. Method

Several observations about causality analysis and
ESTEREL-generated circuits lead to our new algorithm, as
described in this section.

Observation 3.1 Ternary simulation is equivalent to dual-
rail encoding and binary simulation.

This is formally proven in [3]. This observation implies
that in the complete causality analysis algorithm, one can
replace a ternary simulation iteration by a transformation of
the circuit to the dual-rail encoded version followed by a
binary simulation. The dual-rail encoded version of the IJ-
example circuit is shown in Figure 4. Note that each internal
signal is encoded by a pair of signals, and that all the gates
in the circuit are positive unate (no negations) with respect
to the internal signals. In practice, it is most efficient to
first break the cycles and dual-rail encode only the signals
corresponding to the broken cycles, and all the signals in
their transitive fanout cones.

Example 3.1 The dual-rail encoding of the OR-gate with
feedback is given by

Xon

Xoff



Control

X_is_on

X_is_off

X

Figure 5. ESTEREL version of OR-gate example

The reader can verify that cycle breaking and dependency
analysis will now yield the correct result: Xonout and
Xoffout will depend on Xonin and Xoff

in
respectively,

regardless of where the feedback is broken.

Observation 3.2 Often in practice iteration is not neces-
sary, especially if one breaks the feedback judiciously.

This observation indicates that a non-iterating, conservative
computation will often suffice to correctly compute causal-
ity. In [6], it was demonstrated that convergence is reached
in � k iterations, where k is the number of feedback arcs
broken. It follows that if only one arc is broken, the non-
iterating algorithm produces the correct result.

Thus, it is very important to choose the feedback set
carefully. If simulation is iterated, a poor choice still leads
to a correct result, but after many iterations. (For example,
consider the case of breaking all the internal wires of a
circuit.) If simulation is not iterated, fewer feedback arcs
provides increased reliability of results as less information
flows across the feedback boundary.

Observation 3.3 ESTEREL-generated circuits are partially
dual-rail encoded.

The OR-gate example treated in the previous section
might be specified in ESTEREL as follows:

module OR:

signal X in
present X then emit X else emit X end
end signal

end module

The direct translation to a circuit as described in [1] leads
to the circuit shown in Figure 5.2 While Xon and Xoff are
not explicitly modeled by wires as they are for full dual-rail,
the positive and negative tests for X being ON and OFF
are explicitly modeled by wires X is on and X is off as
shown in the figure. The present test of a signal in ESTEREL

always generates two gates in this manner and hence two

2This is only part of the circuit generated. There is additional circuitry
implementing initialization and the termination codes.

fanout arcs. Note also that fanout points are not modeled:
gates have multiple fanout arcs. If the signal is on a cycle
and its fanout does not reconverge, effectively both arcs
must be broken to break all feedback (which is equivalent
to dual-rail). If there is reconvergence, it is possible that
only one arc is broken (where two must be broken in the
dual-rail version). This may still return a correct causality
result depending on the function at reconvergence, but not
always. The circuits in Figures 1 and 2, for example, are
correctly analyzed with one broken feedback arc. Still,
we can take advantage of this pseudo-dual-rail property of
ESTEREL circuits to build and test a quick prototypecausality
checker. In summary:

� Observation 3.1 implies that an iteration of the ternary
simulation-based causality checking algorithm can be
performed by first dual-rail encoding the circuit and
then performing binary simulation. Furthermore, any
binary-based transformations (e.g., standard logic op-
timization) can be performed on the dual-rail version
without destroying causality properties.

� Observation 3.2 implies that in many cases, and cer-
tainly if only one arc is broken, a single simulation
iteration suffices to determine causality. If multiple
iterations are required for a causal circuit, at the com-
pletion of the first iteration the information is simply
inconclusive: it will appear as though the values of
the feedback arcs are unknown, when in fact further
iteration would determine these values. Hence, single-
iteration simulation is usually correct by observation
3.2, and at least conservative (a non-causal conclusion
may be made for a causal circuit).

� Observation 3.3 implies that in many cases, one need
not fully dual-rail encode a circuit to use the binary
simulation method for causality determination: the
ESTEREL-generated circuit already duplicates enough
signals that arc-breaking and binary simulation suf-
fices to determine causality. The result in this case is
not conservative as a non-causal circuit may be deemed
causal. However, one can use this notion to implement
a prototype causality checker to compare the perfor-
mance of a binary-simulation-based algorithm to that
of the full ternary one.

These are the main ideas behind our method. The algo-
rithm is described more thoroughly in the next section.

4. Algorithm

Observations from the previous section indicate that a
conservative alternative algorithm to iterated ternary simu-
lation would consist of:



� breaking a minimal number of feedback wires

� transforming the circuit into the dual-rail encoded
version by dual-rail-duplicating gates (adding the
DeMorgan-equivalent gate) in the transitive fanout of
each broken-arc input

� performing dependency analysis (binary simulation).

Observation 3.3 only indicates that one may omit the dual-
rail encoding step and still obtain the correct result in some
cases. (In all of our cases, we obtain the correct result, both
for causal and non-causal circuits.) We use this observation
to quickly build a prototype of our algorithm to test it against
the current version, though in practice this is of less use since
it is not conservative, and thus conservative or full causality
will have to be run subsequently anyway (except in the cases
where it determines a circuit to be non-causal, and produces
a meaningful error trace). The prototype algorithm simply

1. breaks cycles

2. performs a dependency computation

3. creates an acyclic equivalent version if possible, or
produces an input pattern exhibiting the causality error.

4.1. Breaking combinational cycles

As noted in Section 3, it is desirable to break as few
arcs as possible. We implemented two algorithms for cycle-
breaking. The first is guaranteed to break the minimum
number of arcs, and was published in [10]. It is very fast
even on large graphs. The second is the very simple but fast
depth-first search algorithm of Tarjan. In our experiments,
as we had quite small examples or large examples with small
strongly connected components, we always used the more
robust exact algorithm.

4.2. Dependency computation

The second step in the algorithm is to determine whether
or not the broken feedback outputs logically depend on the
broken feedback inputs; if not, they can be expressed in-
dependently, and the broken arcs reconnected to create an
acyclic equivalent circuit.

The dependency computation interleaves logic optimiza-
tion and dependency check. The simple dependency check
processes nodes in topological order searching for a path
from each Bin to each Bout and using this information to
compute on-the-fly whether cycles would appear in the cir-
cuit were the arcs to be reconnected. If not, the check is
successful. If only a single arc is broken, this computation
simplifies to a check for a path from Bin to Bout. The
complete dependency computation proceeds as follows:

� simple constant propagation; simple dependency check

� simple logic optimization, collapsing small nodes to-
gether and simplifying node functions; simple depen-
dency check

� introduce external don’t care conditions from the ES-
TEREL specification and repeat simple logic optimiza-
tion; simple dependency check

� build BDDs for all Bout variables; check for BDD
dependencies of each Bout on its corresponding Bin,
determine the existence of cycles.

The last is the most robust, and returns an exact answer
as to whether an output depends on an input. It is not too
expensive in practice, as the strongly connected components
in the original circuit graph are small (and hence the logic
cones between temporary inputs and outputs), and the circuit
has already been optimized before building the BDDs.

In general, it is not sufficient to check simply that each
Bout is independent of its corresponding Bin. With more
than one feedback arc, interdependencies could still lead to
a cyclic circuit on reconnection. For this, it suffices to build
a dependency graph using the dependency information com-
puted above (from simple to robust) and perform acyclicity
checks on this graph. The on-the-fly cycle check mentioned
above is an efficient implementation of this. In practice,
we never observed interdependencies leading to additional
cycles.

4.3. Creating the acyclic circuit or produc-
ing an error trace

If the simple dependency check is successful, an acyclic
version of the circuit can be created by simply reconnecting
the broken feedback arcs. A negative simple dependency
check result implies there is no path from the input to the
output of interest (or no cycle-forming set of paths), so
simple reconnection will result in an acyclic circuit. (This
will only happen after some logic alteration, such as constant
propagation. Before this, it is known that there is at least
one topological path between the two or there would not
have been a cycle.)

If simple dependency fails but BDD dependency suc-
ceeds, the acyclic circuit must be created using logic func-
tions derived from the BDD and then reconnecting the feed-
back arcs. That is, the function for each feedback arc out-
put is completely re-implemented based on its BDD. This
step can imply a significant logic increase depending on the
functions: the ADD/SHIFT example mentioned in the in-
troduction would require duplication of these operators. In
practice, this step is not too expensive as the BDDs are lim-
ited to only the necessary scope in the circuit. Furthermore,



our examples were limited to circuits described in ESTEREL,
which tend to be control-based.

If the circuit is dual-rail encoded before the dependency
check, a circuit equivalent to the original is obtained by
merging the dual rail (feedback) inputs and removing the
negative dual rail outputs before reconnecting the feedback
arcs. This is followed by simple logic optimization and/or
explicit merging of the duplicated internal signals to recover
the area overhead incurred in dual-rail encoding.

If the circuit is determined to be non-causal, an error
condition is produced simply by: Input error = BoutBin

�
BoutBin

. For sequential circuits, an additional constraint
is imposed that the Input error contain the initial state, to
ensure that it is a valid condition.3

4.4. Optimizing cyclic circuits

We have cast the algorithm as one for causality analysis,
but it can be used as a cyclic circuit optimizer as well. Sup-
pose one has a cyclic implementation, and one would like to
retain this form since it is more efficient. There are currently
no logic optimization programs that can optimize cyclic cir-
cuits. In addition, for the same reason that ternary simulation
must be used to perform causality analysis, acyclic subcir-
cuits of a cyclic circuit cannot be abstracted and optimized
with standard techniques while maintaining the causality
properties. The simple algorithm proposed here is a cyclic
circuit optimizer: cycles are dual-rail encoded, standard
logic optimization is applied, dual-rail signals and gates are
merged to recuperate the overhead, and a final logic opti-
mization is applied.

5. Implementation and results

The program cheap cause has been implemented in-
side the SIS logic synthesis program [7]. A dependency
graph is created for the cyclic circuit and used to compute
the set of feedback arcs. The corresponding wires are bro-
ken in the network and the dependency analysis performed.
Dual-rail encoding was not implemented for this prototype
implementation; in fact, with the simple reliance on the
partial dual-rail encoding obtained with the ESTEREL trans-
lation, the correct causality result was obtained in all cases.
Furthermore, the advantage of this method in terms of final
logic area will not be affected by the overhead incurred by
dual-rail encoding: duplicated gates and signals can later be
merged.

3It may be valid in another state, but we do not yet do the analysis to
determine the valid reachable states. In all experiments, an error condition
was found at the initial state.

5.1. Comparison with sccausal

For comparison, we describe the sccausal algorithm
[5] and note some of its properties. First, three-valued func-
tions (TVFs) for each node computed using two variables
per node, and using a BDD representation. This is expensive
since the number of variables is doubled; it has a dramatic
effect on the efficiency of the BDD computations. Next,
a weak topological ordering (WTO) is computed for the
nodes: rather than compute feedback arcs directly, an or-
dering is computed for node processing during simulation.
This ordering is not a static one-pass through all nodes,
but rather contains cycles within that are iterated to con-
vergence. The algorithm iterates to convergence, correctly
handles full ESTEREL (the algorithm described here handles
only pure ESTEREL), and handles sequential circuits. Fi-
nally, if the circuit is causal, an acyclic version is built based
on the BDDs. This is another source of inefficiency, since
the structure of the initial implementation is lost completely.

5.2. Experiments

A number of experiments have been run on the pro-
totype version of cheap cause, and comparisons made
with sccausal. However, we note the following points.
First, neither sccausal nor cheap cause are fully op-
timized: sccausal has been released in a beta version,
and cheap cause is still a prototype. Second, though
in some cases cheap cause may return the correct result
immediately (in all cases, in our examples), even with full
dual-rail encoding it is conservative since it performs no
iteration. Therefore, its utility is intended more as a prepro-
cessor to sccausal, and as an optimization scheme for
cyclic circuits, than as a causality analysis program in its
own right.

We have run our program on all the anomalous causal-
ity programs P1–P13 described in [1]. In all cases,
cheap cause returned the correct result very quickly.
Comparison of computation times with sccausal is not
meaningful since the circuits are so small.

The program was applied to an industrial example for
in-vehicle communication [12] called prosa. The original
version is causal but has cycles. sccausalmakes this de-
termination and computes the acyclic circuit in 720 seconds
on a sun4. cheap cause was able to correctly deter-
mine this with only one broken arc (the original graph of
1989 vertices and 3463 edges is reduced to a single strongly
connected component with 82 vertices and 118 edges), and
simple constant propagation, in 19.4 seconds. The circuit
produced by sccausal has 8346(6842) literals in sum-of-
products (factored) form, and 64 latches; after optimization
in SIS, it has 1099(839) literals and 44 latches. The circuit
produced by cheap cause has 1268(1268) literals and 73



latches; after optimization, 838(761) literals and 71 latches.
On a second, non-causal version of prosa, sccausal

completes in 987 seconds, cheap cause in 61 seconds.
The error traces cannot be compared since sccausal re-
turns values on internal sc format wires and corresponding
lines in ESTEREL code (useful for source-code debugging),
and cheap cause returns values on the circuit I/O signals
(useful in the ESTEREL simulators).

The second example, mejia, is an industrial control de-
sign which is causal but contains cycles. sccausal per-
forms the analysis and writes the result in 44 seconds. The
circuit has 2910(2454) literals and 28 latches, reduced to
637(484) literals and 21 latches by SIS. cheap cause
breaks one arc and performs the analysis in 25 seconds,
with a resulting circuit of 878(878) literals and 43 latches,
reduced to 543(439) literals and 43 latches by SIS.

It is interesting to note the difference in the number of
registers. sccausal is able to reduce this number on the
fly during the reachable states computation. In both cases,
the initial circuit is considerably smaller forcheap cause,
which could make a decidable difference for further opti-
mization of large circuits.

These are of course good scenarios on the type of de-
signs that cheap cause can handle. We mention these
results simply as indication that the proposed algorithms
have practical use; more experimentation is warranted.

6. Conclusions and future work

We have presented an algorithm for efficient causality
checking. While it is conservative, it has been demon-
strated on a suite of examples to return correct results. It is
based on the observation that ternary simulation is equiva-
lent to dual-rail encoding of feedback signals followed by
binary simulation. The latter is implemented efficiently
by applying a series of logic optimization techniques of in-
creasing power. The results provide both a method for quick
causality analysis, and a method for optimization of cyclic
circuits. Furthermore, the final acyclic implementation may
be produced directly from the logic synthesis tools rather
than from BDDs, so it retains the structure of the initial
implementation as much as possible.

There are several areas for future work. First, full cheap
causality needs to be implemented with complete dual-rail
encoding of the circuits, rather than relying on the structure
of ESTEREL-generated circuits and the arc-breaking algo-
rithm to maintain some integrity of the causality analysis.
Second, a modified algorithmmust be developed for sequen-
tial circuits. This algorithm will simply be an iteration of
the causality analysis presented here, and a reachable states
computation (both done on the arc-broken acyclic circuit)
similar to the algorithm published in [8]. Third, more exam-
ples for causality analysis must be obtained and analyzed, so

that the gain of this new method over the complete method
can be assessed on practical designs. Finally, the techniques
should be applied to cyclic circuits as an a priori optimiza-
tion method, before full-causality is carried out. This should
improve the performance of sccausal significantly.

Acknowledgements

Helpful discussions with Gérard Berry are gratefully ac-
knowledged. This work was supported in part by the Na-
tional Science Foundation under grant INT-9505943.

References

[1] G. Berry. The Constructive Semantics of Pure Es-
terel. 1996. To Appear, available now at ftp:
//www.inria.fr/meije/esterel/papers/constructiveness.ps.gz.

[2] G. Berry and G. Gonthier. The Esterel Synchronous Pro-
gramming Language: Design Semantics, Implementation.
Science of Computer Programming, 19(2):87–152, 1992.

[3] G. Berry and E. Sentovich. On constructive causality, 1997.
Work in progress.

[4] R. DeSimone. Note: A small hardware bus arbiter speci-
fication leading naturally to correct cyclic description, Mar.
1996. Technical note.

[5] A. Girault, T. Shiple, and H. Toma. The sc-causal compiler,
1997. Documentation provided with the ESTEREL compiler.

[6] S. Malik. Analysis of Cyclic Combinational Circuits. In Pro-
ceedings of the IEEE International Conference on Computer-
Aided Design, pages 618–625, Nov. 1993.

[7] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton,
and A. Sangiovanni-Vincentelli. Sequential Circuit Design
Using Synthesis and Optimization. In Proc of the ICCD,
pages 328–333, Oct. 1992.

[8] T. Shiple, G. Berry, and H. Touati. Constructive Analysis of
Cyclic Circuits. In Proceedings of the European Design &
Test Conference, pages 328–333, Mar. 1996.

[9] T. R. Shiple. Formal Analysis of Synchronous Circuits. PhD
thesis, UC Berkeley, Electronics Research Laboratory, Col-
lege of Engineering, University of California, Berkeley, CA
94720, Oct. 1996. Memorandum No. UCB/ERL M96/76.

[10] G. Smith and R. Walford. The Identification of a Minimal
FeedbackVertex Set of a Directed Graph. IEEE Transactions
on Circuits and Systems, CAS-22(1):9–15, Jan. 1975.

[11] L. Stok. False Loops through Resource Sharing. In Proceed-
ings of the IEEE International Conference on Computer-
Aided Design, pages 345–348, Nov. 1992.

[12] R. v. Hanxleden, J. Bohne, L. Lavagno, and A. Sangiovanni-
Vincentelli. Hardware/software co-design of a fault-tolerant
communication protocol. In Proceedings of the IEEE In-
ternational Workshop on Embedded Fault-Tolerant Systems,
Dallas, Sept. 1996.


	CD-ROM Home Page
	ISSS97
	Front Matter
	Table of Contents
	Session Index
	Author Index


