A New Optimization Techniquefor Improving Resour ce Exploitation
and Critical Path Minimization

Birger Landwehr, Peter Marwedel

Dept. of Computer Science XI1, University of Dortmund
D-44221 Dortmund, Germany

Abstract

This paper presents a novel approach to algebraic op-
timization of data-flow graphs in the domain of computa-
tionally intensive applications. The presented approach
is based upon the paradigm of simulated evolution which
has been proven to be a powerful method for solving large
non-linear optimization problems. We introduce a genetic
algorithmwith a new chromosomal representation of data-
flow graphsthat servesasa basisfor preserving the correct-
ness of algebraic transformations and allows an efficient
implementation of the genetic operators. Furthermore, we
introduce a new class of hardware-related transformation
rules which for the first time allow to take existing com-
ponent librariesinto account. The efficiency of our method
is demonstrated by encouraging experimental results for
several standard benchmarks.

1 Introduction

Thevery first stepinthedesign-flow of digital systemsis
concerned with formulating the behavioral specification in
a hardware description language such as VHDL [9]. This
behaviora description forms the basis for al subsequent
design steps starting with behavioral (or high-level) syn-
thesis at the algorithmic level. High-level synthesis dedls
with the transformation of the behavioral descriptionintoa
netlist of RT-level componentsand is generally understood
as a mapping of operations of the data-flow graph (DFG)
to control steps and to suitable components of an existing
library [16]. Since high-level synthesis systems directly
operate on theinterna representation of the behaviora de-
scription it is quite obvious that the chosen formulation
style has alasting effect to later design steps and therefore
to the final result.

Although the use of high-level synthesis systems has
gained acceptance during the recent years, the actual ques-

tion of how to suitably formulate a behavioral description
has often been underrated. Thisquestion particularly arises
in thedomain of digital signa applicationswhich are char-
acterized by complex arithmetical computations resulting
in complex data-flow graphs.

Figure 1 demonstrates the effect of different transform-
ationsfor expression ((a * ¢) + (b ¢)) + d with respect to
time and resource equirements.

(@* o + (bx J)+d (@* o +(b* 9 +d

a) critical path: 3 cs b) critical path: 3 cs

1 adder 1 adder
2 multiplier 1 multiplier
a MAC

[B,

(@* 0 +d)+(b* 0 (c* (a+ b)+d
C) critical path: 3 cs
1 adder
1 multiplier

d) critical path: 3 cs
1 adder
1 multiplier

critical path: 2 cs
1 multiplier-adder

Figure 1. Time and resource requirements for
equiva ent expressions

Figure 1apresents the original expression requiring one
adder and two multiplierswith a critical path of 3 control
steps'. After applying the associativity law (figure 1b), the
order of operations has been changed such that component
sharing could be improved. Therefore, only one multi-
plier is required after the transformation. The additional
exploitation of commutativity shown in figure 1c neither
leads to a further improvement of resource sharing nor to
a shorter critical path, but may increase the applicability
of other transformation rules. Figure 1d shows the expres-
sion after exploiting distributivity. Although implementa
tion costs and critical path have not further changed, the
application of a special component-driven transformation
(x *y) + 2z < MAC(z, y, z) ispossible. Thisruleimplies
a mapping of the two operations to a single multiplier-
adder-accumulator (MAC) in contrast to a separate imple-
mentation by one multiplier and one adder. As we can
recognize, the use of this component-directed transforma:
tion has amajor impact on the synthesisresult: inthelatter
case, only one MAC is required because this component
can a so be employed as asimple multiplier or adder by ap-
plying the particul ar identity e ement to the corresponding
input port. Since components like MACs are capable of
performing two ore more operations in one execution step
we call such functiona units complex componentsor BIC
(built-in-chaining)-components[15].

Even this simple example has shown that synthesisres-
ults are strongly dependent on the choice of a certain for-
mulation style of the behaviora description. Obvioudly, it
might be difficult to recognize in advance how to formulate
abehavioral description that leadsto the best synthesisres-
ult. Thisbecomes amost impossiblefor complex data-flow
dominated circuits. The goal of applying algebraic trans-
formations can thus be stated as making synthesis results
mostly independent of the formulation style or to trans-
formthe input description such that synthesis yields better
results than for the original description.

The remainder of this paper is organized as follows:
Section 2 gives an overview of the research on agebraic
optimization in different areas. After introducing some
hardware-related transformations in section 3 we describe
the genetic algorithm including the chromosomal repres-
entation and the genetic operatorsin section 4. Section 5
presents experimental results for several standard bench-
marks, and section 6 concludes the paper.

2 Reated work

The use of agebraic transformations has been estab-
lished in different domains: In classica computer-algebra

tIn this exampleall operationsare assumed to be single-cycled.

systems suchasMAPLE [5] or MATHEMATICA [21] they
are indispensablefor the transformation and simplification
of algebraic expressions. In the domain of high-level-
language compilers (see [2] for an overview) algebraic
transformations are mainly used for tree height reduction,
common subexpression elimination, constant folding, con-
stant propagation and rather simpl e optimizationsbased on
strength reduction.

In the area of high-level synthesis agebraic transform-
ations have been particularly used for improving resource
utilization [18] [17], tree-height minimization [6] [7], the
maximization of data throughput [8] [10] and minimiza
tion of power consumption [3]. The use of agebraic trans-
formationsin combination with complex components (e.g.
MACSs) wasfirst proposedin[14]. However, to theauthor’s
knowledge there is no optimization technique that exploits
component-directed transformationsin the same extent as
the approach presented in this paper.

An approach based upon evolutionary programming
for an area efficient design of Application Specific Pro-
grammable Processors (ASPP) has been publishedin [22].
ASPPs are programmabl e architectures which are designed
for aset of different algorithms. The underlying approach
is based on agenetic algorithm for transforming the partic-
ular data-flow graphs such that a given behaviora kernel
(defined by a set of RT-level components) is optimally ex-
ploited by the algorithms.

Concerning the chromosoma representation of data-
flow graphsand genetic operators (mutation and crossover),
our method appears similar to [22]. However, it combines
the concept of evolutionary programming with the algeb-
raic optimization techniques for critical path minimization
and improved resource exploitation on afiner level of gran-
ularity.

3 Overview of algebraic optimizations

The introducing example has aready shown that apart
from the exploitation of agebraic laws eg. commutativ-
ity, associativity, distributivity etc., even hardware-related
transformati ons have the potentia of a considerable reduc-
tion of hardware costs and the critical path. In this section
we demonstrate how hardware-rel ated transformations can
be specificaly employed in order to reduce resource re-
quirements.

3.1 General hardware-related transform-
ations

First let us consider the expression = * ¢. Let ¢ be a
congtant with ¢ = 2™. Obviously, the expression can be
implemented in severa ways. @) using a multiplier, b)

using ashifter, or) by an offset in thewiring pattern. The
transformation of themultiplicationto apossibly hardwired
shift-operationiswell known as strength reduction[2], i.e.
an expression with a cost intensive redlization is aways
replaced by a “cheaper” expression. This optimization
techniqueisusually exploited in almost all modern software
compilers, however rarely in synthesis systems.

The exploitation of powers of two is not restricted
to multiplications: Consider the expression z[mgy.0) + ¥-
[msb:0] represents the bit-slice! of =, and y = 27 is
a congtant again. Since an addition with 2™ incre-
ments only the upper bits [msh:n] whereas the lower bits
[n-1:0] are not affected, we can state the following trans-
formations. = + 2" < (2men] + 1) & 210 &
inc(mspn]) & x[n—1.0)- Hence, additionswith a power of
two can be replaced by increment operations and thus lead
to cheaper hardware redlization. The same transformations
also hold for « <2™, however applying adecrement opera-
tion. Thereduction of an addition to anincrement operation
can a'so be exploited in order to find acost efficient imple-
mentation for 1 <z with only oneincrementer and onein-
verter: 1<z < 2+l & 742 < inC(Zmepa)) & 20.0)-

All transformations presented above are accompan-
ied by an immediate reduction of the redlization costs.
However, we gtill have to take transformati onsinto account
which temporarily have the opposite effect:

Constant Unfolding is a technique that promises a fur-
ther improvement in terms of cost and speed by splitting
congtants into a power of two and a remainder. Consider
therulec = [e<r)t +r, where [c<r] = 2" isa
constant. We can split expression 9 * x into (2% + 1) * z,
whichisequivalent to 23 + = + z. Since 23 + z = x &000
can be implemented by an offset in the wiring pattern,
only one adder instead of amultiplierisrequired to redlize
the expression. Another transformation rule is concerned
with introducing identity elements which may be neces-
sary toincreasethe applicability of further transformations:
at+a < (axl)+(axl) & ax(l+1) < ax2.
Obvioudly, the use of identity elementsisnecessary for the
formal proof of equivalence without knowledge of the rule
a+ a < ax 2. Although the introduction of identity
elements helps to find new formulations of an initia ex-
pression, it aso temporarily increases the implementation
costs. Concerning the length of the critica path it was
shown in [13] that the creation of additional operationsin
the DFG may have a positive effect on synthesis results.
Therefore it is essentia that the underlying optimization
method does not reject transformationswhich temporarily

tCorresponding to the VHDL [9] notation x : Bit _vector
(msb DOWNTO 0) where nsb denotes the most significant bit, i.e.
msb := x' LENGTH - 1.

$The brackets mean an instant evaluation of the subexpression, e.g.
constantc = 9issplittedinto [9 — 1]+ 1 =8 + 1.

lead to suboptimal results.
3.2 Component-driven transformations

As we saw in the introduction, the use of a
special component-driven transformation for employing
multiplier-adders has the potentia of a further reduction
of both hardware costs and the critical path. In the fol-
lowing example we demonstrate how such transforma-
tions can be applied in order to exploit existing library
components more efficiently: Consider the transformation
ruez +y+ 2z < CADD(z,y,z), with z € {0,1}.
This rule implies that expression z + y + = is mapped
to one carry-adder. In combination with the transform-
ations presented above the following rule alows to im-
plement = + y <z with y = 2" by only one carry-
adder and one inverter: (¢ + Zimen] + 1) & Zjn—10) &
CADD(Z‘, Z[msbin]) 1) & Zln—1:0]-

This section has shown the applicability and the positive
impact of hardware-related transformation rules concern-
ing hardware costsand speed. We a so have recogni zed that
some transformations temporarily may increase the costs
but alow the application of further rules which globally
may decrease the costs. Since cost-driven heuristics do not
work appropriately in thiscase, we formulated the problem
using aprobabilistic approach based on agenetic algorithm
which will be presented in the following section.

4 Algebraic optimization by genetic al-
gorithm

Thegenera principleinnatura evolution aswell asevol -
utionary algorithms is the optimization of a population’s
fitness in the course of generations driven by the random-
ized processes of sélection, recombination and mutation.
Genetic algorithms as one representative of evolutionary
algorithms (see [1] for an overview) have been proven to
be very powerful for searching vast solution spaces. Solu-
tionsfound by genetic a gorithmsare generally close to the
global optimum.

4.1 Chromosomal representation

Each chromosome of the popul ation represents one se-
mantically equivalent formulation of an initial data-flow
graph. The genes which are located on the chromosome—
or the gene positions, to be precise—represent the opera-
tionsof the DFG together with referencesto the predecessor
operations.

Example: We use expression ((a¢ * 2) + (b*+2)) + 1 asa
running example in order to demonstrate the chromosomal rep-
resentation and the particular genetic operators. Figure 2 depicts

the chromosome representation « — 3 — v — § with its genes
a:B+1, B:v+6, v:ax2, and §:bx*2.

30,
B - .
g
/(Q“
i @ X
5 -
Chromosome |

Figure 2: Representation of expression
((a*2)+ (b*2))+ 1 by asequence of genes

Each gene has a specific phenotype, caled its alde.
We distinguish different alleles of the same gene by roman
numbers I, I, etc. Operations of the origina data-flow
graph are thus represented by the alleles oy, 5, etc. The
set of aleles for one specific gene represents the set of
functionally equivalent expressions. Since dll alelesof the
same gene are semantically equivalent they are mutually
replacable without changing the functionality of the entire
DFG. Neverthel ess, theresulting DFG can be distinguished
by potentialy different hardware costs and critica path
lengths.

alternative
alleles

Figure 3: Alternative alleles

Figure3 showsnew dternativealelesfor thegeneé after
applying the transformationsb « 2 = b+ b = bshl 1 =

b & 0. Obvioudly, each allele of gene é can be replaced
by any other alele without changing the semantics of the
expression. Inthesameway, agebraic transformationscan
be applied to the other genes of the chromosome.

Figure 4 presents the gene pool for our example after
applying associativity, distributivity and the demonstrated
simplification of multiplications. The gene pool servesasa
basisfor thecreation of theinitial population: for each chro-
mosomethat represents oneindividual of the popul ationwe
can arbitrarily select onealeleat each gene position (figure
4). Duetothefact that each chromosomeimplicitly repres-
ents the structure of a data-flow graph, the crestion of any
DFG can beperformedinlinear timeO(n). Inthisexample,
the chromosome a; — B — mv — i — a1 — ¢
represents the expression inc((« + &) shl 1). It should be
mentioned that chromosomes may also contain some re-
dundant genes (in thisexample: ¥ — 6§ — ¢) which have
no direct influence on the crested DFG. However, redund-
ant genes can be reactivated instantly by small mutations
of the chromosome.

Aswe have seen, thechromosomal representation intro-
duced above guarantees that al subexpressions referenced
by different aleles at the same gene position are semantic-
aly equivalent. This means that every possible alele sub-
gtitution at any gene position will subsequently lead to a
new semantically equivalent data-flow graph. This prop-
erty is crucia for preserving the correctness of the used
genetic operators, namely mutation and crossover.

4.2 Genetic operators

421 Mutation

The principleof mutationwasimplicitly showninfigure 3:
Without changing the entire semantics we can transform a
data-flow graph by a simple gene mutation that substitutes
the selected alele by another one at the same gene position.
For example, the substitution of alele 6, by éy represents
thetransformation (a*2)+(b+2)+1 < (a*2)+(b & 0)+1.

Obvioudly, the mutation operator can be implemented
intime O(1).

4.2.2 Crossover

The goal of crossover is to recombine the parental prop-
erties and its transmission to the new offspring. In the
meaning of transforming algebraic expressions, crossover
recombi nes subexpressions of theparenta data-flow graphs
and can be sketched asfollows:

1. Create two new chromosomes representing the chil-
dren.

2. Select an arbitrary gene position.

a
'O =

I 4 @P
)
a ird
I (o)
[o
v
B o
@ U
1%
) /@»
® U
o)
€
4

0

I L

[FO 0]
g © g’
] o]
JOu 2
® U 3
0

selected alleles

(b)

Figure 4: (a) Extended gene pool for the running example and
(b) exemplary creation of a DFG by selecting alleles at each gene position

3. Copy dl dlelesfrom first (second) chromosome up to
the selected gene position to thefirst (second) child.

4. Copy the remainder of thefirst (second) chromosome
the second (first) child.

Also crossover benefits from the underlying representation
and alwayscreates only those DFGswhich are semantically
equivaent to the initial specification. Obvioudly, crossover
can beimplemented inlinear time O(n) wheren represents
the chromosome length.

cadd ((a & 0), (b & 0), 1) cadd ((a & 0), (12), 1)

ay-B-Yvr0v-§-¢ O oy - B=Yos =0-¢-

G_B\'y'a'eu'c u a-B-vi- -&y-&24

(a02) + (b012) +1 (ad2) + (b & 0) +1

Figure4: Crossover

Figure 4 demonstrates crossover for our running ex-
ample. Asinitial chromosomesweuseay — 5 — yv —
8iy — e — ¢ corresponding to cadd((a & 0), (b & 0), 1)
and o) — B — v — & — e — ¢ which correspondsto
((a+2) 4+ (b+2)) + 1. The crossover position has been
chosen at gene position é. In the resulting expressions,
(b & 0) and (b * 2) have been interchanged.

423 Sedlection

Selection isacrucia process in (smulated) evolution that
favorsindividualsof higher fitnessto survive (“survival of
the fittest”) and thus become the co-founders of the next
population. Generally, we presume the probability of an
individual to be selected is proportional to itsfitness. This
enables even individua swith alower fitness to be selected
and thusto transmit their gene information to the offspring.

In the meaning of the final hardware redization we
define the fitness as weighted sum of the required func-
tional unitsand thelength of thecritica path. In contrast to
thecritical path computation that can be donein linear time
by an ASAP (or ALAP) scheduling, the exact computation
of resource costs is NP-complete. Therefore, we have to
employ resource estimation techniques (e.g. [19]) in order
to value the effect of performed transformations. Surpris-
ingly, experimental results have shown that even simple
fitness functions are sufficient for producing excellent op-
timization results (see figure 56 and table 2). We used a
combination of the critical-path length and hardware costs
computed by direct compilation, i.e. each operation of the
data-flow is associated with certain hardware costs. An
advantage of using direct compilation is its efficient im-
plementation in linear time and is thus crucia for the fast
execution time of the optimization routine.

4.3 Skeleton of the genetic algorithm

Figure 5 presents the genetic algorithm that serves as a
basisfor agebraic optimization and takes pattern from the
standard algorithmin [4].

1 initialize individuals of the population p

2 FOR EACH epoche DO

2.1 apply transformation rules to the current population p
2.2 FOR EACH generation g DO

221 computefitnessof al individuals

222 selectindividualsaccording to their fitness

223 createoffspring by crossover

224 mutate offspring

225 replaceindividualsof the current population by the offspring
22,6 exitloop, if criterion T isfulfilled

2.2 END

2.3 terminate, if criterion T'z is fulfilled

2" END

Figure5: Skeleton of the genetic algorithm

The algorithm consists of an outer and an inner [oop.
The inner loop repeats the tasks of fitness computation, se-
lection, crossover, mutation and replacement of individuals
as long as the loop-exit criterion 7 is not fulfilled. The
loop exit isusually controlled by the state of the generation
counter or by theyielded gain of the popul ation’sfitness.

The outer loop isrequired in order to extend the current
genepool intwodirections: Onthe onehand weintroduced
the new aldes 4, &) and &y in our example to represent
thetransformationsa *2 = a+a = ashl 1 = a & 0. On
the other hand the chromosome is extended by new genes
along with their aleles. In our example, we introduced
gene ¢ withits dleles ¢; and ¢, and the new alele «, in
order to exploit the associativity.

In contrast to the actual composition of new DFGs in-
cluding their recombination, mutation and selectionin pro-
gresswiththe generations, we call the continuousextension
of the current gene pool by transformations epochs. The
termination of theentirea gorithmiscontrolled by fulfilling
Tg that can be redized in the same way as the loop-exit
criterion T

5 Experimental results

We applied the presented agorithm to several standard
benchmarks. For each example we achieved a gain of up
to 30 % concerning the critical path and an area gain of
up to 26 %. On the basis of empirica tests we determ-
ined the following genetic parameters. populationsize: 80
individuals; number of individualsin the population to be
replaced by the offspring: 60; number of generations: 40,
Mutationrate: 0.1.

All presented results have been computed on a SparcSta-
tion 20. The execution time of the optimizationroutinewas
for all examples approximately one minute for the chosen
parameters.

Figure6 and 7 present theinitial and the optimized data-
flow graph of the 5th-order dliptical wave filter [11], re-
spectively. All operations are assumed to be single-cycled.
The macro-nodes in fig. 7 represent multiply-add subex-
pressionswhich have been bound to MACSs. These complex
components can also be used for computing additions by
simply applying the corresponding identity elementsto the
appropriate inports (control steps 3, 8, 9, 11 infig. 8).

LEOL986
BENRMEC S

GHS;
26,
O
OnE
B

WRITE

:
® o] I't
@ @[T

N AN
SeT
A

Figure 6: Initial DFG of the EWF-benchmark

tin contrast to some existing formulations of this benchmark contain-
ing only multiplications by 2, we dispense with the exploitation of the
specia transformation rule z * 2 — z & 0. l.e. we assumed multi-
plications with different coefficientsin order to produce results for rather
realistic applications

benchmark? | #cs | add sub mult mac | gain(are) | gain (#c9)
2405kA? | 2433kA? | 14717kA? | 15435kA? are@‘;’}gm"’l‘;ee"”’ #cs”#gmtcsm

EWFyig 14 3 0 2 0

EWF g5t 10 2 0 0 2 26 % 28.6 %

FFTorig 8 3 4 12 0

FFT opt 8 0 4 5 4 25.1% 0%

FIRorig 10 2 0 2 0

FIRopt 7 2 0 1 1 2% 30.0%

FDCT orig 6 4 2 8 0

FDCT gt 6 1 2 3 3 26.1% 0%

BForig 15 2 1 2 0

BFopt 14 0 1 0 2 9.1% 6.7%

Edgeurig 10 2 2 4 0

Edgegp: 9 0 2 1 3 39% 10.0%

Table 2: Optimization results

3EWF: elliptical wave filter, FFT: fast fourier transformation, FIR: finite impulse response filter,
FDCT: fast discrete cosine transformation, BF: bandpassfilter, Edge: edge detection

barea of allocated functional units

Slols

EQ

&,
RS
= ;@
1@
| & | ;@j |
géaA@ﬁy

WRITE

: +) (e ’ ()
@ @

Figure 7: Optimized DFG of the EWF-benchmark

o

It seems to be quite obvious, that manualy formulat-
ing a behavioral description with the same qudity of the
presented optimized DFG is virtualy impossible. In this
example, the critical path has been shortened from 14 to
10 control-steps requiring only two MACs and two adders
instead of three adders and two multipliers.

Table 2 shows the synthesis results for several bench-

marks before and after algebrai c optimization. We used the
high-level synthesis system OSCAR [12] for synthesizing
theoriginal and the optimized design. Duetoitsunderlying
integer programming formulation all presented results are
optimal concerning the overal costs of functiona units.
Areas and delayst of functional units have been adopted
from the underlying 1.0 VLS| component library [20].
The execution times of high-level synthesis were always
less than one second.

6 Conclusion

We presented a genetic algorithm based approach for
algebraic optimization of data-flow graphs. Dueto the un-
derlying chromosomal representation all genetic operators
are correctness preserving and can beimplemented very ef-
ficiently. Apart from standard transformation rules such as
commutativity, associativity and distributivity, we al so sup-
port hardware-related transformations. It has been shown
that even these transformations have a positive effect to the
quality of the achieved synthesis results. Since al rules
are stored in an externa library, they can be modified or
extended by the designer.

The system has been implemented as a front end to
an ILP-based synthesis system [12] and benefits from
its capability of supporting complex component libraries.
However, the approach can aso be easily redized as a
source-to-source (e.g. VHDL-to-VHDL) optimizer that

tadd [vdpladd001]: 16.1ns, sub [vdp1lsub001]: 16.7 ns, mult
[vdp3m t 004]: 112.1 ns, mac [vdp3mni t 006]: 112.1 ns

enables the empl oyed synthesis system to support complex
functional units (e.g. MACs).

The experimental results have shown the efficiency of
our method. For all examined benchmarks (EWF, FFT,
FDCT, FIR-Filter, Bandpass Filter, Edge Detection) we
could achieve a considerable reduction of the critical path
and/or the area

References

[1] T.Béack and F. Hoffmeister. Global Optimization by
Means of Evolutionary Algorithms. in: A. N. Ant-
amoshkin (Ed): Random Search asa Method for Ad-
aption and Optimization of Complex Systems, pages
17-21, Divnogor sk, UdSSR, March 1991, Krasnojar sk
Foace Technology University, 1991.

[2] D.F Bacon, S. L. Graham, and O. J. Sharp. Compiler
Transformations for High-Performance Computing.
ACM Computing Surveys, \Wol. 26, No. 4, pages 345—
420, 1994.

[3] A.P. Chandrakasan, M. Potkonjak, R. Mehra, J. Ra-
bagy, and R. W. Brodersen. Optimizing Power Using
Transformations. |EEE Transactions on CAD, \ol.
14, No. 1, pages 12-31, 1995.

[4] L. Davis. Handbook of Genetic Algorithms. Van
Nostrand Reinhold, 1991.

[5] K.O: Geddes, G.H. Gonnet, and B. W. Char. MAPLE
User'sManua (2nd ed.). Technical Report CS-82-40,
University of Waterloo, 1982.

[6] R. Hartley and A. E. Casavant. Tree-Height Min-
imization in Pipelined Architectures. Proceedings
of the International Conference on Computer-Aided
Design, pages 112-115, 1989.

[7] R. Hartley and A. E. Casavant. Optimizing Pipelined
Networks of Associativeand Commutative Operators.
|EEE Transactions on CAD, \ol. 13, No. 11, pages
14181425, 1994.

[8] S-H. Huang and J. M. Rabagy. Maximizing the
Throughput of High Performance Applications Us-
ing Behavioral Transformations. Proceedings of the
EDAC, pages 25-30, 1994.

[9] Design Automation Standards Subcommittee of the
IEEE. IEEE Standard VHDL Language Reference
Manua (IEEE Std. 1076-87). |EEE Inc., New York,
1988.

[10] Z. Igbal, M. Potkonjak, S. Dey, and A. Parker. Crit-
ical Path Optimization Using Retiming and Algebraic
Speed-Up. Proceedings of the 30th Design Automa-
tion Conference, pages 573-577, 1993.

[11] S Y. Kung, H. J. Whitehouse, and T. Khailath. VLS
and Modern Sgnal Processing. Prentice Hall, 1985.

[12] B. Landwehr, P Marwedel, and R. Domer. OSCAR:
Optimum Simultaneous Scheduling, Allocation and
Resource Binding Based on Integer Programming.
Proceedings of the EURO-DAC, pages 90-95, 1994.

[13] D. A. Lobo and B. M. Pangrle. Redundant Oper-
ator Creation: A Scheduling Optimization Technique.
Proceedings of the 28th Design Automation Confer-
ence, pages 775—778, 1991.

[14] P Marwedd. Matching System and Component Be-
haviour in the MIMOLA Synthesis Tools. Proceed-
ings of the EDAC, pages 146-156, 1990.

[15] P Marwedel, B. Landwehr, and R. Domer. Built-in
Chaining: Introducing Complex Componentsinto Ar-
chitectural Synthesis. Proceedings of the ASP-DAC,
1997.

[16] M. C. McFarland, A. C. Parker, and R. Camposano.
The High-Level Synthesis of Digita Systems. Pro-
ceedings of the IEEE, \ol. 78, No. 2, pages 301-318,
1990.

[17] M. Potkonjak and S. Dey. Optimizing Resource Util-
ization and Testability using Hot Potato Techniques.
Proceedings of the 31st Design Automation Confer-
ence, pages 201-205, 1994.

[18] M. Potkonjak and J. Rabaey. Optimizing Resource
Utilization by Transformations. |EEE Transactions
on CAD, \ol. 13, No. 3, pages 277-292, 1994.

[19] A. Sharmaand R. Jain. Estimating Architectural Re-
sources and Performance for High-Level Synthesis
Applications. |EEE Transactions on VLS Systems,
\ol. 1, No. 2, June 1993, 1993.

[20] VLSI Technology Inc. Library Manuals, 1993.

[21] S. Wolfram. Mathematica, A Systemfor Doing Math-
ematics by Computer. Addison Wesley, 1988.

[22] W. Zhao and C. A. Papachristou. An Evolution Pro-
gramming Approach on Multiple Behaviors for the
Design of Application Specific Programmable Pro-
cessors. Proceedings of ED & TC, 1996.

	CD-ROM Home Page
	ISSS97
	Front Matter
	Table of Contents
	Session Index
	Author Index

