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Abstract

Commonly used scheduling algorithms in high-level syn-
thesis are not capable of sharing resources across process
boundaries. This results in the usage of at least one re-
source per operation type and process. A new method is
proposed in order to overcome these restrictions and to
share high-cost or limited resources within a process group.
This allows the use of less than one resource per operation
type and process, while keeping the mutual independence
of the involved processes. The method which represents an
extension of general scheduling algorithms is not tied to a
specific algorithm. The method is explained by using the
common List Scheduling and further on applied to exam-
ples.

1. Introduction

The most customary model for the specification of an
independent task for implementation into hardware is the
process. For the realization of a complex system, mostly
several such processes are needed. When using this sys-
tems in a non deterministic environment, events may occur
at unpredictable times. In this case, implementing the sys-
tem by using independent processes is mandatory. Usually
the tasks have to be finished within predefined time limits.
Systems of this kind are called real-time systems, or, if a
timing violation causes a serious system failure, hard real-
time systems.

Synthesis of such systems using traditional scheduling
algorithms leads to a minimum of one resource per oper-
ation type and process. The same problem can be exam-
ined at loops with an unbound iteration count. Traditional
scheduling algorithms won’t allow resource sharing with
blocks outside these loops.

1.1. Resource sharing of conventional static
scheduling algorithms

In the following a survey of resource sharing concepts
within a group of processes or across loop hierarchies is
given. In this paper, resources are defined by elementary
operations like multiplications or single bus- or memory-
accesses. We only consider synchronous systems with a
common clock.

Common static scheduling algorithms [1, 2, 3, 4] for
high-level synthesis assign a control step to each operation
of a block. Here, a block is understood as a connected sub-
set of a process description. The control step determines the
execution time of the operation relatively to the starting time
of the block, all scheduled operations receive a fixed tempo-
ral relation. Thus, an assignment of resources to operations
within this group at synthesis time is possible. However, the
set of the processed operations in these algorithms is always
a subset from one process. Therefore, resource sharing at
synthesis time can only be considered by these procedures
within oneprocess.

Process merging transformations are able to extend the
set of operations for scheduling and therefore the scope of
resource sharing initially defined by the process boundaries.
However, strong restrictions to process behaviours are im-
posed by techniques like process unrolling or latency adap-
tion [5]. E.g. merging processes is not applicable in case
of unpredictable block starting times. So if a process con-
tains operations of unknown execution time or loops with
unbound iteration count, a different method must be used.

A less restrictive approach to share resources within a
set of processes is proposed by the Interface Matching al-
gorithm [6]. Blocking communication results in a temporal
synchronisation of two processes. By iterative scheduling
the algorithm attempts to maximize the synchronized pe-
riod. In addition to communication channels also common
resources can be shared within this time range. However,
that also means resource sharing is only possible in this lim-
ited time period and when blocking operation pairs exist.

The problem of sharing resources across loop hierarchies
is discussed in the CADDY-II synthesis system [7]. The



blocks are synthesized in a bottom-up manner. At each level
resources from already scheduled blocks can be used in the
current block if no access conflicts may arise. The con-
flicts are detected by the calculation of Clock Cycle Spaces
of the involved modules (block hierarchies) followed by an
examination of the corresponding Collision Set. Like in the
method mentioned above, blocking operations are used as
calculation anchors. Still both methods cannot cope with
loops of unbound iteration count or an operation with un-
known execution time.

2. Problem definition

In minimum area applications it is necessary to maxi-
mize the resource sharing under given timing constraints.
Certain constraints like reactivity, performance and inde-
pendence of individual processes needed by the former sys-
tems, will restrict or not allow the use of the methods for
static resource sharing described above. Even if there is
only low utilization of limited or high-cost resources in such
a system,one fullresource is needed by each operation type
and process when using traditional static scheduling algo-
rithms. A scheduling algorithm without these restrictions is
needed to further reduce the resource requirements of such
systems.

3. Modulo Scheduling

A new universal method for the extension of conven-
tional scheduling algorithms is presented. The method is
based upon a time-dependent and periodic assignment of re-
sources to processes and does not require a certain schedul-
ing algorithm. This assignment is determined at synthesis
time and must not be mixed up with a runtime-executive
solving access conflicts. The method is explained by a re-
source constrained scheduling procedure but can also be ap-
plied to a time constrained algorithm.

The extension allows a static resolution of conflicts aris-
ing from independent processes with at synthesis time un-
known execution times or data dependent loops trying to
access shared resources. In this way, the method allows the
use of less thanoneresource per operation type and process
needed by traditional scheduling algorithms. Possible mini-
mum area implementations can now be explored beyond the
traditional limit.

Any block composition of a process is supported by the
method if the following two conditions are met:

(C1) Each single block must also be processable by thenon
modifiedscheduling algorithm. Time steps must be as-
signed statically by the scheduling procedure.

(C2) Two blocks with unknown timing relation using at
least one common resource within one process are not

allowed to overlap in execution. A possibly overlap-
ping block in this context must be considered as a sep-
arate process.

Operations having unknown execution delays at synthe-
sis time may be placed arbitrarily between the individual
blocks. In this way also loops of any depth with unbound
iteration count running concurrently with other blocks can
be handled. The first condition concerning the static time
step assignment can be relaxed for algorithms such as the
Relative Scheduling [8] if additional restrictions are applied
to the allowed operations of unbound execution delay: The
operation following e.g. an alternation with case dependent
execution latency must be considered as a new block start.
The timing restriction concerning block starting times will
be derived in the following text.

When using a resource constrained scheduling algorithm
the procedure can be subdivided into three steps.

(S1) The available resource count ofeach type is selected.
The resources are assigned to the processes. For each
assignment a decision between a local and global as-
signment must be done.

(S2) An authorization function is assigned to each of the
global resources. This function determines a time-
dependent selection of one process permitted toaccess
the resource.

(S3) A modified scheduling algorithm is applied separately
to every process block.

The first two steps will establish a time-dependent as-
signment from resources to processes. As opposed to tradi-
tional static scheduling algorithms, an assignment to a pro-
cess group is allowed. In the last step these assignment in-
formations are used by the modified scheduling algorithm.

Periodicity over time is an important quality of every
global assignment. Only by taking care of this periodicity
an independent and conflict-free resourceaccess of all pro-
cesses can be achieved. However, restrictions will arise for
the possible starting times of individual blocks. The infor-
mation from step (S1) and the periodicity of global assign-
ments from step (S2) are required for their determination.
On the other hand, restrictions of the block starting times,
resulting e.g. by latency constraints or maximum reaction
times to spontaneous input events, affect the possible deci-
sions of the first two steps. This correlation is pointed out
later in section 3.2..

3.1. Assignment of resources to processes

The current implementation requires a manual choice for
the first step (S1). While a local assignment is correspond-
ing to the traditional resource allocation step, the newly



introduced global assignment defines a group of processes
sharing a single resource.

Let R be the set of all resources andP the set of all
processes of the overall system. All local resourcesrl 2 R

are assigned only to one processp. A resourcerg 2 R

is called global if it is assigned to more than one process.
Every resourcerg defines a subsetPrg = f p j p usesrgg �

P of all processes withjPrg j > 1. LetRp;l be the set of all
resources locally assigned to the processp andRp;g the set
of the globally assigned resources.

3.2. Authorization function of a global resource

An authorization functionarg (t) is attached to each
globally assigned resource. This function unambiguously
assigns the resourcerg to a processprg 2 Prg depending
on control stept. Let Ag be the set of all global authoriza-
tion functionsarg (t). Local assignments of a resourcerl
to a process are defined by a time invariant authorization
functionarl . With Al being the set of allarl , the union set
A = Ag [ Al defines the complete unambiguous assign-
ment of all resourcesR to all processesP , which is time-
dependent in the case of existing global resources. Assum-
ing that every processprg only accesses the resourcerg at
its authorized times, the conflict-freeaccess of all processes
P onto the resourcesR follows from the unambiguity ofA.

The authorization functionarg (t) is periodic int. With
aprg being the period, the following equation holds:

8 t 2 IN+

0 : arg (t) = arg(t mod aprg ): (1)

The resource assignment chosen in step (S1) must be
guaranteed byarg(t). Therefore, all processesprg 2 Prg

must be authorized at least once within the period. Consid-
ering the unambiguity ofarg (t), we obtain

aprg � jPrg j > 1 (2)

for the minimum periodaprg of a 1-cycle or pipelined op-
eration. Non-pipelined multi-cycle operations are using a
resource for a certain count of consecutive cycles, the re-
sultingaprg of equation 2 have to be multiplied with this
cycle count.

Steps (S1) and (S2) imply restrictions on the block start-
ing times. They can be formulated as follows: Under the
assumptionAg 6= ; the resource assignmentA defines a
time-dependent access regulation of processesprg onto re-
sourcesrg through its functionsarg (t). A static scheduling
algorithm assigns a control step relative to a starting time
tst, chosen implicitly at procedure entry, to all operations of
a block. For this task, the modified scheduling algorithmad-
ditionally takes into account the time dependent assignment
A. Unlike non modified procedures, the scheduling result
of the modified algorithm becomes dependent on starting
time tst.

Let pbg be a block of processpg using at least one global
resource. Ifexactly oneglobal resource is assigned to a
processpg1 byA, then the assignmentA concerning a block
pbg1 using this resource behaves periodic afteraprg1 control
steps. Therefore, a scheduling result ofpbg1 is valid for the
block starting times

tst;pbg1 2
�
t j t� tst mod aprg1 = 0

	
: (3)

In other words, an equidistant time grid with a spacing of
aprg1 is formed by the permitted block starting times.

If more than oneglobal resource is assigned to a process
pg by A, then the periodicity of the assignmentA concern-
ing a blockpbg using all resources is determined by multiple
possibly different periodsaprg . Each resourcerg 2 Rpg;g

generates a restriction onto the starting times of blockpbg
by equation 3. Making use of the least-common-multiple
function (lcm), this can be formulated for anyA:

tst;pbg 2

�
t j t� tst mod lcm

rg2Rpg ;g

aprg = 0

�
: (4)

If a block pbgp uses a subsetRpbgp;g � Rpg;g, only the
periods of the resourcesrg 2 Rpbgp;g determine the valid
starting times defined by equation 4. Consequently, blocks
without any global resource usage can arbitrarily started if
condition (C2) is still met.

Figure 1 illustrates a time controlled assignment of two
global resources to three processes. The mappings of the
authorization functions are drawn into their boxes. Fol-
lowing all dashed lines from one control step on the left
time axis to the authorization functions, one will get the
assignments from resources to processes depicted between
them. On the other hand, the authorized resource accesses
are drawn inside the process boxes, each also representing
a control step from the time axis above. The block starting
time restrictions formulated by equation 4 are now obvious
for e.g. processp1, which must to be on a grid with distance
lcm(2; 3) = 6.

The dependencies between the assignmentA and the re-
striction of the block starting times by equation 4 can also
be formulated into the reverse direction. The possible block
starting times can be quantified by the time spacingtdpg on
an equidistant grid. To achieve independence from the spe-
cific resource usage of the different blocks, we consider the
spacing obtained by using all resourcesrg 2 Rpg;g. This
maximum restricted spacing can be taken from equation 4:

tdpg = lcm
rg2Rpg;g

aprg : (5)

If the grid spacingstdpg of all processespg 2 Prg of
a global resourcerg are fixed, from equation 5 follows
aprg = gcd

pg2Prg

tdpg for the minimal period of an autho-

rization function.
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Figure 1. Assignment of two global resources
to three processes

3.3. Modified List Scheduling

Due to space limitations, the basic List Scheduling (LS )
algorithm [9] is not described here.

The unmodified LS algorithm uses a constant number of
resourcesjRyj for each operation typey to decide whether
or not the current control step will be assigned to an oper-
ation. For the modified algorithm, the number of available
resources for one operation type is replaced by a function
rcy(). The function setRC(), defined by allrcy(), serves
as an interface between the modified scheduling procedure
and the resource assignmentA. Consequently, these func-
tions are dependent from the current control stept and the
processp currently processed by the algorithm.rcy(p; t)
results from an addition of a local partrcy;l(p) and a global
partrcy;g(p; t).

Let Ry;g be the set of all global resourcesrg of a typey
andRy;l be the corresponding local set. The partrcy;l(p)
is determined by the assignmentAl of the local resource set
Rl and corresponds tojRyj of the traditional LS :

rcy;l(p) =
X

rl2Ry;l

�
1 if arl = p;

0 otherwise:
(6)

The global partrcy;g(p; t) is determined analogously by the
assignmentAg of the global resource setRg:

rcy;g(p; t) =
X

rg2Ry;g

�
1 if arg (t) = p;

0 otherwise:
(7)

The LS algorithm modified byRC(A) can now sched-
ule each blockpb of all processesp 2 P . The realizable
block structure of a process has to follow condition (C2).
The processed blocks can be started at any time of the grid

defined by equation 4. Operations of unknown execution
time can be placed arbitrarily between the single blocks of
a process. However, the restrictions of the block starting
times still apply.

4. Implementation

The Modulo Scheduling method using the LS algorithm
was implemented in a system called IPS and is based
on parts of the Olympus Synthesis System [10]. An en-
hanced version of the tool Hercules is used to transform a
HardwareC-description into a control-data flow graph. The
LS algorithm uses the ALAP time as the priority function.

Step (S1) and specifying the allowed range of time spac-
ing tdpg is to be done manually first. Based on these infor-
mations, all possible assignmentsA are generated through
a 3-stage permutation. The first stage calculates a set of pe-
riodsaprg , the second gives out the count of slots a process
owns atarg(t) and the last places these slots at a specific
time. The number of assignmentsA for a chosen set of pe-
riodsaprg is limited by

Q
rg2Rg

jPrg j
aprg , while maximalQ

pg2Pg
(tdpg;max� tdpg;min+1) sets ofaprg are possible.

At each stage various checks are made to detect invalid and
redundant assignments as soon as possibly. Mainly equa-
tions 2 and 5 are used for this purpose at stage 1. The need
of at least one assigned resource for each operation type
used in a process is exploited at stage 2.

For each assignmentA, a modified LS of all processes
p 2 P is carried out and results are recorded. In this way the
procedure explores the whole scheduling space of a hard-
ware description available by the modified LS under the
chosen resource constraints.

5. Experiments

The 5th order elliptical wave filter and the main loop of
the differential equation solver from the High-Level Syn-
thesis (HLS) Benchmarks 1991 were used for the first two
examples 1a and 1b. The equation solver was modified by
replacing the comparator with a subtracter. The execution
time of an addition and a subtraction was fixed to 1 cycle
and that of a pipelined multiplication to 2. The process set
was formed by two elliptical filtersp0; p1 and the main loop
of the equation solverp2. One local adder was assigned to
each filter and one local subtracter was assigned to the equa-
tion solver. All processes were sharing an adderradd;g and
a multiplier rmul;g as global resources. The grid spacing
tdpg was restricted to a range from 1 to 5 for all processes.
Please note, that although these processes can be merged
into one, we consider the processes as triggered by sponta-
neous events. This is impossible to handle by merging, but
canbe scheduled with our new approach.



The resulting 22068 assignmentsA were calculated and
a modified LS for all processes was carried out. The whole
task takes 88 sec. on a Pentium II 233 MHz. By removing
entries with identical latencies for all processes, the number
of results was reduced to 1250. For illustrating the results,
two of three latency pair plots are shown in figure 2 and 3.
Figure 2 shows the latency pair results of both elliptical fil-
ters for each of the generated assignmentsA. In addition
to the direct results, the latency pairs corrected by equation
4 are plotted in the figure as squares. The obvious symme-
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Figure 2. Latency pairs of both filters
parametrized by assignments A.

try of the results is caused by the identical filters and the
symmetric assignment of resources concerning step (S1).

Figure 3 contains the results of the modified LS for the
first filter and the equation solver. Due to the former men-
tioned symmetry, the results of the third possible constella-
tion are redundant and therefore not depicted here.

For the evaluation of the latency resultstl, fitted to the

time grid,
qP

pi2P
(ci � tlpi )

2 is chosen for the costs.

In example 1a, all weightsci are set to one. A minimum
cost of 47.34 is obtained by two assignments (twelve in the
raw result set). Both assignments,A13 andA19, lead to
30 cycles for each filter and to 21 cycles for the equation
solver main loop. The assignment functions of both global
resources can be taken from table 1.

Table 1. A13 and A19 of example 1a.

no. aradd;g (t) : t! pi armul;g
(t) : t! pi

13 0! 2; 1! 1; 2! 0 0! 1; 1! 2; 2! 0

19 0! 2; 1! 1; 2! 0 0! 0; 1! 2; 2! 1

Using asymmetrical weightsc1 = 0:5 for the first filter
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Figure 3. Latency pairs of first filter and equa-
tion solver parametrized by assignments A.

and c2; c3 = 1 for the other processes in example 1b, a
minimum cost of 38.41 is achieved. The latency time of
the first filter is now 50 cycles, while the second filter needs
25 cycles and one equation solver iteration executes in 15
cycles.

A minimum, pure local resource assignment needs one
subtracter, three adder and three multiplier. Scheduling this
system will lead to 29, 29 and 9 cycles latency with a cost of
41.99. Compared to example 1a using the same cost func-
tion, we need two more multipliers while only achieving a
cycle cost improvement of 11.3 %. We assume that all re-
sources have an area of 1, except the multiplier having an
area of 8. In this case, the cycle cost improvement implies
a worsening of area from 12 to 28. Considering the area-
cycle cost product, we get a factor of 2.07 in favour of the
Modulo Scheduling method.

The second example uses one frisc processor from the
same Benchmark set and two kalman filters of the HLS
Benchmarks 1992. Both designs contain loops and alterna-
tions. The implemented LS algorithm partitions the control-
data flow graph automatically to prevent possible violations
of condition (C2) and considers exclusive resource usage in
alternations. The block starting times are considered here
only for a loop (or process) not interrupted by any other
loop. Synchronization loss on other block boundaries are
not calculated. This is applicable, because inner loops con-
tribute the main part to the now hierarchical cost function,
reflecting the loop hierarchy.

In this example a weight of 1 is chosen for all process
blocks (outside any loop). The loop weights are recursively
calculated by a multiplicationof the assumed iteration count
of a loop with their outer block weight. The iteration counts
of the four first level loops in the kalman filters are (in the



order of their execution) 16, 3, 16 and 4. Both second level
loops iterate 16 times. The data dependent loop of the frisc
is assumed to be executed 128 times. Please note, that the
assumed iteration counts are used only for the cost function
and not for a resource conflict detection. In this way, the
loop exit conditions in the kalman filters may also be data
dependent.

Both filters were assigned a local equality comparator
and the processor a logical alu, each needing 1 cycle to
complete and consuming an area of 1 altogether. The filters
are sharing one global pipelined multiplierrmul;g needing
2 cycles and an area of 8. All processes also access a global
arithmetic aluralu;g executing in 1 cycle and occupying an
area of 1.

We scheduled 39616 assignments for a grid spacingtdpg
ranging from 1 to 6 for all processes. This needs 654 sec. to
complete and results in a best cost of 5996.79. The assign-
ment of this run is shown in table 2.

Table 2. A24143 of example 2.

t ! pi

aralu;g(t) 0! 1; 1! 0; 2! 0; 3! 2; 4! 2; 5! 1

armul;g
(t) 0! 2; 1! 1; 2! 2; 3! 1; 4! 1; 5! 2

A minimum, pure local resource assignment will addi-
tionally need one multiplier and two arithmetic alus. A
cycle cost of 4354.41 results from scheduling this system.
Again compared to the Modulo Scheduling method, the cy-
cle cost is decreased by 27.38 % while the area is doubled,
leading to a 1.45 times higher area-cycle cost product. The
less significant advantage of our new method in this exam-
ple is caused by a lower sharing of the cost intensive multi-
plier.

6. Conclusion and future work

A new method for extending the scope of resource shar-
ing in static scheduling algorithms beyond process bound-
aries was presented. It is based on a time dependent and
periodic assignment of resources to processes. The method
allows a static resolution of access conflicts from indepen-
dent processes onto shared resources without the need for
a runtime-executive. In this way, the requirements of tra-
ditional scheduling procedures of at least one resource per
operation type is further lowered to a fraction. This can
lead to substantial area savings. The method remains appli-
cable in reactive systems if the use of other methods such
as process merging or Interface-Matching is impossible or
ineffective.

Restrictions concerning the block starting times and their
dependencies from the resource assignment were explained.

The non modified LS was provided with an interface to
the time dependent resource assignment for usage with the
Modulo Scheduling method.

The method was successfully applied to two systems
containing independent running processesaccessing shared
resources, some including alternations and nested loops as-
sumed to be data dependent. These systems can not be han-
dled by traditional scheduling algorithms.

After manually choosing parts of the resource assign-
ment, the procedure finds the optimal solution by the au-
tomatic generation of all further parameters. Currently, the
suitability of a Branch and Bound Algorithm for an effec-
tive search space reduction is examined.
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