
A Multi-Level Strategy for Software Power Estimation

C. Brandolese, W. Fornaciari, L. Pomante, F. Salice, D. Sciuto
Politecnico di Milano, P.zza L. da Vinci, 32 - 20133 Milano, Italy

fbrandole,fornacia,pomante,salice,sciutog@elet.polimi.it

Abstract

In this paper a comprehensive methodology for soft-
ware power estimation is presented. The methodology
is supported by rigorous mathematical models of power
consumption at three different levels of abstraction. The
methodology has been validated in a complete framework
developed within the TOSCA co-design environment.

1 Introduction

Embedded system development requires fine tuning of
a number of specific constraints, since such applications
strive for high volumes and there is a pay-off for size,
power and speed optimization techniques. The current
pervasiveness of microprocessor-based architectures, is en-
forcing the importance of concurrently design (co-design)
hardware and software. A typical need is the possibility
of working with models at different levels of granularity
and accuracy, to enable fast exploration of alternative de-
signs and to deal with the presence of partially character-
ized components, such as the microprocessors. Further-
more, the steady shifting toward nomadic applications is
increasing the importance of analyzing power issues even
during the software development process [2, 3, 4]. Recent
analysis and optimization techniques[1], focused on spe-
cific aspects of the software power consumption, such as I/O
management, memory requirements, system bus traffic op-
timization and instruction–set optimization but, according
to our best knowledge, no one is attempting a systematic
power/performance–aware analysis flow for the software.
The goal of this paper is to describe how the different ac-
tivities of the TOSCA hw/sw codesign flow, have been ex-
tended to enable power analysis of the software. In partic-
ular, due to space reasons, this paper includes only the de-
scription of the different models developed to power char-
acterize the software and two examples of their practical
use. The paper is organized as follows. Section 2 describes
the compilation steps we are considering for the software
and the related abstraction levels. Section 3 presents the
analysis models we developed to characterize in power the

instruction set of a microprocessor and how this informa-
tion are processed to back-annotate the results towards the
upper abstraction levels. Section 4 show how the identi-
fied model can be assembled into a comprehensive power
estimation flow allowing the designer to navigate between
different levels of abstraction and estimation accuracy. Fi-
nally Section 5, reports some experimental results obtained
by considering two commercial microprocessors showing
the achievements of the proposed methodology in terms of
accuracy and analysis speed.

2 Software Compilation

The complete design flow presented in this paper has
been developed with two main goals: on one hand, to pro-
vide a tool to compare the power consumption of different
algorithms on the same microprocessor, on the other hand,
to help a designer in the choice of the best suited micropro-
cessor under performance and power constraints. To allow
the comparison of the power requirements of the same algo-
rithm over different microprocessors, the compilation pro-
cess have to be retargetable. To this purpose, an intermedi-
ate representation based on the pseudo–assembly language
VIS (Virtual Instruction Set) has been introduced [7]. The
compilation flow is composed of two steps:

� Compilation: from source code to VIS language.

� Mapping: from VIS code onto target assembly.

Most of the complexity of the compilation is hidden in
the first step, making thus the second phase much sim-
pler and time–effective. Throughout the whole compilation
flow, track is kept on the transformations being performed,
to allow back–annotation of the information across the dif-
ferent levels of abstraction. Figure 1 depicts the compilation
flow.

2.1 Compilation

The translation from the source, high–level, language to
VIS is an actual compilation. The source code is parsed

1

source VIS code assembly

referencesreferences

compiler mapper

Figure 1. The compilation flow

and a syntax–tree is built in memory: all subsequent op-
erations are performed on this internal model. First of all,
expressions and conditionals are analyzed to determine the
number of temporary variables necessary for calculations;
these variables will then be associated either to registers, to
the stack or to the local frame. With these information an-
notated on the syntax–tree, op–code selection and code gen-
eration can be performed. Note that the result of this com-
pilation is a virtual assembly and is thus not related to any
existing architecture. In particular, the number of registers
available is not known during this phase (unless a specific
target architecture has already been envisaged) and can thus
be either selected by the designer or left unspecified. If a
specific register–file size is selected, register binding is per-
formed while, if it is left unspecified, all registers that the
algorithm requires are allocated. The last compilation step
adds to the purely “functional” code, the system calls neces-
sary to manage concurrency and communication, whenever
present in the specification.

2.2 Mapping

The transformation of the VIS code into the target as-
sembly is a mapping process based on mapping libraries.
A mapping library is a collection of rules, each specifying
how one or more VIS instruction are to be translated into
the target assembler. Mapping rules are written in C, with
the support of a number of functions and macro definitions,
and compiled into a dynamic library. The mapper kernel
loads and parses the VIS code, links the selected mapping
library and applies the suitable rules to produce as output
the assembly code.

3 Power Estimation Models

At the end of the compilation flow, three representa-
tions, at different abstraction levels, are available. At as-
sembly level, on one hand, the representation is extremely
detailed and allows a very accurate calculation of the power
consumption, on the other hand the raw power figures are
hardly usable by the designer. At source level, the limited
detail results in a less precise, but much more readable and

useful, power estimate. The VIS level represents a trade–off
between these two boundaries.

The methodology presented in the following considers
all the three levels and provides models and tools to per-
form estimates with the desired level of detail. This section
presents the models on which the power estimation is based.

3.1 Assembly–level model

The basic idea is to characterize each assembly instruc-
tion and addressing mode with an average, i.e. data inde-
pendent, power consumption figure. Since the clock fre-
quency and power supply voltage are known, power is often
specified as an average current drawn per clock cycle.

Under this assumption, the energy requirements of a
given assembly code can easily be derived once the spe-
cific instruction set is completely characterized. It is worth
noting that, currently, only few processor vendors can pro-
vide this type of information and even fewer disclose them.
Deriving the current absorption of each instruction, with its
different addressing modes is a lengthy process that requires
measuring the current drawn by the microprocessor core
during execution of long sequences of the same instruction
with varying data. Furthermore, setting up a suitable mea-
surement environment is not trivial since typical develop-
ment boards rarely provide access to the power supply pins
of the core and have thus to be modified and, in addition,
costly equipment is necessary to perform current measures
at frequencies as high as 40 to 200 MHz or even more. To
overcome all these problems, the model briefly presented in
the following has been developed.

The model is based on a functional analysis and decom-
position of the activities performed by a microprocessor as
it executes a specific instruction. The key idea behind the
model is the concept of functionality that is a set of activi-
ties, aimed at a specific goal, involving, partially or totally,
one or more architectural units of a generic microproces-
sor. Functionalities must be either time–disjoint or space–
disjoint or both. Two functionalities F1 and F2 are time–
disjoint if they operate in different clock cycles; they are
space–disjoint if they stimulate different architectural units.
Under these constraints, the execution of an instruction can
be modeled as the combination of a certain number of func-
tionalities. A detailed analysis has led to set of functionali-
ties of table 1.

As an example consider the Intel 80486DX instruc-
tion ADD R3, (R2)+: the op–code uses F&D and
A&L, the destination operand R3 uses WrReg and
the source operand (R2)+ uses Ld&St, A&L and
WrReg. The completion of the instruction stimulates thus
fF&D;A&Lg [fWrRegg [fLd&St;A&L;WrRegg
= fF&D;Ld&St;A&L;WrRegg.

Associating a current ifj to the j-th functionality, the en-

2

Functionality Activities

F&D Fetch and decode
Br Branch, calls
WrReg Register writing
A&L Arithmetic and logic
Ld&St Load, store and stack

Table 1. A possible functional decomposition

ergy absorbed by the processor core executing the instruc-
tion s can be expressed as:

es = Vddnck;s�is = Vddnck;s�
Pk

j=1 ifj � as;j (1)

where k = 5 is the number of functionalities and as;j is a
coefficient that specifies whether functionality j is involved
in the execution of instruction s. To derive the currents if j
a learning–set SL of power–characterized instructions can
be used [5]. Defining the matrices IN = fisnck;sg, A =
fas;jg and IF = fifjg, equation (1) can be rewritten as:

IN = A � IF + R (2)

where R is a residual vector. Solving equation 2 for IF in
the least square sense (which implies neglecting the resid-
ual) gives an estimate of the currents:

bIF = (AT � A)�1 � A � IN = A� � IN (3)

Substituting the estimate bIF into equation 2 allows de-
riving an estimate of the power consumption of instructions
not in SL. To verify the correctness of this model, its sta-
tistical properties must be derived and in particular the used
estimator (the least square method) must be proven unbi-
ased. Under the hypothesis of a gaussian residual G(0; �2),
the expectation value and the variance of the parameters are:

E[bIF] = IF (4)

VAR[bIF] = �2(AT � A)�1 (5)

Since �2, the input variance of the residual, is not known
it has to be substituted by its estimated value:

�̂2 = kcIN � INk2=(m� k) (6)

where m is the number of samples and k is the num-
ber of parameters. To verify the gaussian noise hypothesis,
a Z0:95 test can be performed: the null hypothesis is ac-
cepted if the mean value of the residual falls in the interval
�1:96�̂2=

p
m.

This model allows extrapolation of the power figures of
the whole instruction set, based on a limited number of mea-
sures (at least 10–15). Even when no measures are available
at all, it is still possible to compare different algorithms or

source codes with respect to their power consumption. An
accurate analysis of the currents absorbed by different mi-
croprocessors during the execution of a number of instruc-
tions has revealed that though the absolute value of the cur-
rents varies in a wide range (from 5–15 mA to 400–600 mA)
their relative values, with respect to a reference instruction,
lay in a much narrower range (1:0�0:2). This suggests that,
using these relative values and a set P of microprocessors,
a single general model can be derived. The relative current
is defined as:

irel;s =
is
iref

=
Pk

j=1

ifj
iref

as;j =
Pk

j=1 ifrel;jas;j (7)

For the generic q-th processor of P , characterized by A q

and IN rel;q = fis;rel �nck;sg, the following equation holds:

INrel;q = Aq � IFrel;q + Rrel;q (8)

where Rrel;j is, again, a residual vector. Solving the sys-
tem in the least square sense yields:

bIFrel;q = A�q � INrel;q (9)

The general model should depend on a unique set of pa-
rameters IF rel, rather than the processor–specific parame-
ters IF rel;j , and thus the model becomes:

INrel;q = Aq � IFrel + Rrel;q (10)

Combining equation 9 and 10 gives:

bIFrel;q = A�q � INrel;q = IFrel + A�q � Rrel;q (11)

Adding up equation (11) for all indices q corresponding
to the p processors, and dividing both sides by p, yields:

1
p

Pp

q=1
bIFrel;q = IFrel +

1
p

Pp

q=1 A�q � Rrel;q (12)

Equation 12 indicates that an estimator of the parameters
of the general model can be the average of the estimated
parameters of each processor in the set P . The statistical
properties of the residual Rrel;q and of the chosen estimator
are discussed in [5]. By applying the same method used for
the single–processor case, the expression for the variance
can be derived and results:

VAR[bIFrel] =
1
p2

Pp

q=1 VAR[bIFrel;q] (13)

The meaning of this last equation is that by increasing
the number p of considered processors, the variance of the
parameters of the general model decreases.

3.2 VIS–level model

The methodology presented in this section can be ap-
plied to derive the power characterization of the VIS in-
struction set for any target processor. A VIS instruction is

3

defined by a) op-code, the type of operation; b) addressing
mode, the type of operand, and c) operand value, the value
of the operands; The class of an instruction is defined by
its op-code and the addressing mode of its operands, but
ignoring the value of operands. For each instruction class,
thus, a set of instructions can be built, varying the value
of the operands. As an example, consider the VIS instruc-
tion MOVE.W #16, +5(R0): the op-code is MOVE.W,
the addressing modes of the two operands are immediate
(#16) and indirect (+5(R0)) and the values are 16 for the
first operand and the couple (5, R0) for the second. It is not
rare that instructions of the same class map to different as-
sembly codes and are thus characterized by different power
consumption [6].

As an example consider the ARM7TDMI microproces-
sor: an immediate constant can be loaded into a 32-bit regis-
ter directly if and only if it falls in the range 0—255; when
the immediate value is greater than 255, its low and high
bytes must be loaded into the register separately, suitably
shifting the register content after the first load. To properly
account for these differences all the possible instructions
of a given instruction class must be analyzed. Let I be an
instruction class and ij 2 I a generic instruction with spe-
cific operands values. Using the estimation flow described
in section 4, all instructions in I can be annotated with the
actual timing tj = t(ij) and average current cj = c(ij).

To derive single values t(I) and c(I) for the VIS instruc-
tion class I, four different approaches have been adopted:

� Different translations only. The class timings and
currents are computed by averaging only the values t j
and cj corresponding to different translations.

� Different figures only. Timings and currents are com-
puted by averaging only the tj and cj that are numeri-
cally different.

� Complete uniform. Timings and currents are com-
puted averaging all the values tj and cj . This choice
neglects the semantics of instructions, assuming a uni-
form distribution of instructions within a class.

� Complete weighted. Timings and currents are com-
puted by averaging all the values tj and cj , weighted
with their relative frequencies obtained analyzing a
large set of benchmarks. The previous case, as men-
tioned, ignores the semantics of the instructions. This
hypothesis can be removed considering the fact that
some values are more likely to be used than others.
The measured relative frequency of each instruction is
thus considered an estimate of its probability.

Experiments performed on a large set of benchmarks
have led to the results summarized in table 2. The table
reports the relative errors obtained by applying the four ap-
proaches described. The comparison of the results shows

Method Error

Different figures only 7.21%
Different translations only 4.31%
Complete uniform 3.14%
Complete weighted 2.71%

Table 2. Relative errors

that the two best methods are the complete uniform and the
complete weighted, the latter being slightly more accurate.

3.3 Source–level model

At source–level, the degree of detail available is limited
but even a rough power estimate may be very helpful to
the designer. At this level of abstraction the current drawn
by the microprocessor during the execution of an assembly
instruction can be considered constant. Under this assump-
tion, a power characterization can be derived by calculating
the time needed to complete the execution of a given code.
The model outlined in the following addresses this prob-
lem. The time T (I) consumed by the complete execution
of a generic instruction I can be expressed as:

T (I) = cpi(I) � TSW (14)

where the function cpi(�) denotes the number of clock
cycles and TSW the clock period. This concept can be gen-
eralized to a process1 introducing the new function cpp(�):

T () = cpp() � TSW (15)

The two functions cpi(�) and cpp(�) are acronyms of
Clock–cycles Per Instruction and Clock–cycles Per Process,
respectively. Let Pi be a generic microprocessor and ISi its
instruction set. Let then P = fP1; P2; : : : ; Ppg be a set of
p processors supporting instructions with the same maxi-
mum number of operands (typically one, two or three). The
generic instruction set ISi can be partitioned into a fixed
number c of predefined instruction classes ICi;j performing
similar operations, such as data transfer, load/store, branch,
etc. The instruction classes must satisfy these relations:

ISi =
Sk

j=1 ICi;j (16)

ICi;j1 \ ICi;j2 = ; 8j1; j2 2 [1; k] (17)

Instruction sets of different processors may significantly
differ: for this reason a specific processor may have one or
more empty instruction classes. Two instructions I1 2 IS1
and I2 2 IS2 belonging to different instruction sets are said
to be compatible if and only if:

9j j I1 2 IC1;j ^ I2 2 IC2;j (18)

1In this context the term process is used to indicate a generic part of the
source code of an application or algorithm.

4

Considering all the p processors in P and their instruc-
tion sets ISi, it is possible to define a number k of compat-
ible instruction classes satisfying the following relation:

CICj =
(
; if 9i j ICi;j = ;Sp

i=1 ICi;j otherwise
(19)

These new instruction classes collect all the instructions
of different processors that are compatible in the sense that
all the instructions in the same class perform equivalent op-
erations. The union of all CICj classes can be thought of
as a generic instruction set denoted as CIS or Compatible
Instruction Set.

Let CICj = fIj;1; Ij;2; : : : ; Ij;Nj
g be the j-th compat-

ible instruction class and Nj its cardinality. We can deter-
mine two instructions IU;j and IL;j in each CICj such that
their cpi are maximum and minimum, respectively:

IU;j = MAX
Nj

n=1 cpi(Ij;n) (20)

IL;j = MIN
Nj

n=1 cpi(Ij;n) (21)

The two instructions IU;j and IL;j represent the bounding
cases for the j-th instruction class. Consider now a generic
instruction I executed in cpi(I) clock cycles. If I belongs to
the j-th compatible instruction class then an upper–bound
to its execution times is cpi(IU;j) and, similarly, a lower–

bound is cpi(IL;j). If I does not belong to any of the com-
patible instruction classes, then there exists no single in-
struction in the compatible instruction set that can perform
the same operation. Its functionality must thus be obtained
by combining more than one instruction in CIS.

The upper and lower bounds for the instruction I 2 CIS
can thus be formally defined introducing the following two
functions:

cpimax(I) = cpi(IU;j) j I 2 CICj (22)

cpimin(I) = cpi(IL;j) j I 2 CICj (23)

Thus far, only single instructions have been considered
while the microprocessor architecture has been neglected.
In particular, up to now we did not consider the number of
available registers, which is known to strongly influence the
timing properties of the software. To account for the differ-
ent number of registers available on different architectures
the technique described in the following has been adopted.

Consider the source code src of a process , two ideal
microprocessors P2 and P

1
, identical with respect to all

their characteristics except the number of registers. Let the
microprocessor P2 have 2 register and P

1
have an unlim-

ited number of registers, pre–loaded with all necessary data.
The source code, compiled for the two microprocessors,
will result in two different assembler codes:

�2 = [I2;1; I2;2; : : : ; I2;M2
] (24)

�
1

= [I
1;1; I1;2; : : : ; I1;M1] (25)

composed of M2 and M
1

instructions, respectively. On
this basis it is possible to define two bounding values for the
timing of the process as two functions:

cppmax() =
PM2

s=1 cpimax(I2;s) (26)

cppmin() =
PM1

s=1 cpimin(I
1;s) (27)

These conditions are referred to as worst–case and best–
case, respectively. The same source code src, compiled on
an actual processor Pi 2 P , results in an assembly code
�i = [Ii;1; : : : ; Ii;Mi

] whose actual timing is given by:

cpp() =
PMi

s=1 cpi(Ii;s) (28)

An estimate cppest(�i) of cpp(�i) of the timing of pro-
cess compiled for the generic processor P i is:

cppest() = cppmin()� � cppmax()(1��) (29)

The value of � depends on a number of factors: the spe-
cific process, the compiler used, the compilation options,
etc. To derive a good estimate of this parameter, bench-
marking is necessary. Let �r be the value correspond-
ing to the process r and consider different frameworks
fSW 2 FSW (compiler, options, etc.). An estimate �est;r

of �r can be obtained by minimizing the square error:

�2r =
P

fSW2FSW
[cpp(r)� cppest(r)]

2 (30)

The results of benchmarking can then be combined to
give the overall estimate �est of � according to the follow-
ing, simple, equation:

�est =
1
N

�
PN

r=1 �est;r (31)

where N is the number of processes considered.
Benchmarking has been performed on a large set of

etherogeneous source codes, yielding � = 0:75.

4 Power Estimation Flow

The models described in the previous section have been
implemented in a complete power estimation flow. The flow
operates at all the three levels of abstraction and allows dif-
ferent estimation paths, as depicted in figure 2. In the figure,
solid arrows represent power estimation processes and are
performed at a specific level of abstraction (source, VIS or
assembly), while dashed arrows indicate back–annotation
processes. To obtain a power characterization of the source
code, three different paths are possible:

� Fast. An estimate is derived directly from the source
code, based on the model described in Section 3.3. The
accuracy that can be expected is within a 15–20% error
and the estimation time is less than a second.

5

� Intermediate. The source code must first be compiled
to VIS then estimation is performed according to the
model described in Section 3.2. The power figures at
VIS level can be finally back–annotated to the source
code. The accuracy is within a 3–6% error and the
time necessary for the complete process (compilation,
estimation and back–annotation) is 1–5 seconds.

� Accurate. This path allows a very accurate estimate
but requires compiling the source code into VIS and
then mapping the VIS code to target assembly. On the
assembly code an estimation can be performed based
on the model described in Section 3.1. Data collected
at assembly level can be back–annotated to the VIS
and finally up to the source code. The accuracy ob-
tained with this procedure is within 1%.

source

code

estimated
figures

VIS code assembly

back

figures
annotated

Figure 2. The estimation flow

The computation times reported refer to a source code of
approximately 100 lines and errors are calculated with re-
spect to the results obtained with a power aware instruction–
set simulator.

5 Results and Conclusions

The models and the flow presented in this paper have
been applied to a wide variety of examples and to an indus-
trial application leading to the results summarized in tables
3 and 4. The largest software considered is a commercial
16-channel link controller ILC16 developed at Italtel R&D
Labs. The source code, written in OCCAM2, is 2840 lines
long and is composed of 54 procedures. This controller
makes extensive use of concurrency and blocking unidi-
rectional point–to–point communication with rendez-vous
semantics. The OCCAM2 language has been selected be-
cause it naturally allows the definition sequentiality as well
as concurrency at process level and provides an abstract
communication paradigm based on blocking channels. The
source code has been compiled for two target processors:
Motorola MC68000 and Arm Ltd. ARM7TDMI in Thumb

(low–power) mode [6]. The resulting assembly codes are
roughly 89000 and 75000 lines long. The flow has been run
on a single–processor Sun Enterprise 250 under Solaris 7.

Processor Assembly VIS Source

s 5.98 6.15 7.08
ARM7 mA 11.36 11.35 10.99

mJ 224.48 230.65 256.77

s 16.99 18.13 19.04
MC68K mA 13.85 13.50 13.20

mJ 776.52 807.69 829.38

Table 3. Estimates for the ILC16 design

Processor Accurate Intermediate Fast

ARM7 37.57 s 22.07 s 3.91 s
MC68K 53.17 s 29.96 s 4.12 s

Table 4. Run times for the ILC16 design

The time figures reported in table 3 refer to a run with
typical input data. The presented methodology still neglects
some dynamic effects such as cache misses and pipeline
stalls/refills. These problems are currently under investi-
gation and some refinements to the source–level model are
being studied. Nevertheless, the results obtained are en-
couraging and the accuracy achieved is acceptable for fast
design–space exploration.

References

[1] E. Macii, M. Pedram, F. Somenzi, ”High-Level Power Mod-
eling, Estimation, and Optimization,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 17, No. 11, 1998.

[2] P.W.Ong and R.H.Yan, ”Power-conscious software design:
a framework for modeling software on hardware,” Proc. of
1994 IEEE Symposium on Low Power Electronic, pp. 36-
37, San Diego, CA, Oct. 1994.

[3] V. Tiwari, S. Malik and A. Wolfe, ”Power Analysis of Em-
bedded Software: a First Step towards Software Power Min-
imization,” IEEE Transactions on VLSI Systems, Vol. 2, No.
4, pp. 437-445, Dec. 1994.

[4] V. Tiwari and M.T.-C. Lee, ”Power analysis of a 32-bit Em-
bedded Microcontroller,” VLSI Design Journal, 1996.

[5] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto ”An
Energy Estimation Model for 32-bit Microprocessors,”
DAC2000, Los Angeles, CA, June 2000.

[6] PEOPLE ESPRIT project n.26769, Deliverable D1.2.1.

[7] Online documentation of the PEOPLE ESPRIT Project
http://www.cefriel.it/Eda/Projects/

6

	Main Page
	ISSS'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

