
UC Irvine
ICS Technical Reports

Title
Interoperability as a design issue in C++ based modeling environments

Permalink
https://escholarship.org/uc/item/6qk835dj

Authors
Doucet, Frederic
Shukla, Sandeep K.
Gupta, Rajesh K.
et al.

Publication Date
2001-09-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6qk835dj
https://escholarship.org/uc/item/6qk835dj#author
https://escholarship.org
http://www.cdlib.org/

Interoperability as a Design Issue in C++
Based Modeling
Environments

Frederic Doucet
Sandeep K. Shukla

Rajesh K. Gupta
Masato Otsuka

Patrick Schaumont

ICS
TECHNICAL REPORT

Technical Report# 01-53
(September 17, 2001)

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425

Information and Computer Science
University of California, Irvine

Interoperability as a Design Issue in C++ Based Modeling
Environments

Frederic Doucet Sandeep K. Shukla Rajesh K. Gupta
Center for Embedded Computer Systems,

Department of Information and Computer Science,
University of California at Irvine,

Irvine, CA 92697
{ doucet,skshukla,rgupta} @ics.uci.edu

Masato Otsuka
FUJITSU Ltd,

Kawasaki, Japan
otsuka.masato@jp.fujitsu.com

Patrick Schaumont
Departement of Electrical Engineering,

University of California,

1

Los Angeles, CA 90095-1594
schaum@ee.ucla.edu

Contents

1 Introduction

2 C++ Based Design Environments
2.1 Modeling Dimensions
2.2 Mapping of Modeling Dimensions

2.2. l Temporal Detail
2.2.2 Data Value Detail .
2.2.3 Functional Detail
2.2.4 Structural Detail

3 Interoperability Strategies
3.1 Interoperability with Inheritance
3.2 Interoperability with Dynamic Composition

4 Discussion and Future Work

5 Acknowledgments

List of Figures

2

3
5
5
6
7.
8
9

10
10
13

15

16

1 Generic Model of Concurrency in C++ Modeling Libraries 6
2 Example for Interoperability 11
3 Wrapper implementation strategies: (a) by inheritance (b) by composition 13
4 Layered composition with Split Level Interface wrappers (in gray) around design and

tool components . 14

List of Tables

1 C++ Based Design Environments . 4

2

Abstract

The increasing heterogeneity and complexity of VLSI systems has made the use of C++ popular for
building simulation and synthesis models at higher levels of abstraction. Currently, there are several
different embodiments of C + + based environments, mostly in the fonn of hardware modeling libraries
built on top of C++. However, the semantic gap between hardware modeling concepts, and the soft­
ware programming language constructs, poses several issues which require critical examination. In this
paper, we address the issue of interoperability between models built using different C + + based mod­
eling libraries, or even modeling "styles" including home-grown C++ models. Model interoperability
is the ability to use C++ based descriptions across different C++ based modeling environments. Two
important aspects of interoperability are model composability, and model reusability. In this paper we
focus on model reusability, analyzing various dimensions of the re usability of C + + based models, in an
integration environment for building SOC models. We show how an inheritance based composition may
be used to make two distinct C + + based class libraries interoperate. We also outline the implementation
of a dynamic composition environment, which allows automatic run-time delegation based composition,
to achieve interoperability. These strategies allow system integrators to focus on design composition,
rather than software programming details inherent in the current inheritance based solutions.

1

1 Introduction

System architects and verification engineers build C++ models of hardware systems, and testbenches,

for architectural exploration, fast prototyping, hardware/software co-design, etc. C++ provides them

with increased functionality/abstraction over other languages. Often these C++ based models need to

express hardware concepts such as concurrency, structural hierarchy, and data types. The C++ syntax to

express these hardware concepts vary from one environment to the other. In the transition of C++ from

a software programming language to a language for high level modeling of micro-electronic systems

various artifacts are introduced into the language, often in the form of library elements to express such

hardware concepts. This is one of the major advantage of an extensible language like C++, but this

also gives rise to the issue of semantic mismatch of the hardware concepts, and software programming

artifacts. For instance, consider a hardware module with a 7-bit output, and another module with 7-bit

input. From a hardware semantics perspective, they should be composable along their interfaces (pro­

vided the timing requirements are satisfied). However, in C++, 7 bits might be represented differently in

the different modeling libraries. (For example, bit vector, or a parameterized class for a collection of n­

bits.) To compose these two models, additional programming, or other modifications of the source code

may be needed. The problem in this example is actually an easier one to solve than other problems ger­

mane in the semantic gap, such as differing models of concurrency in two modeling libraries, interfacing

along combinational paths, differing functional accuracy in the models, differing timing accuracy in the

models, and so on. Some of these problems might dictate imposition of methodological and notational

requirements to high-level modeling styles using C++. We will not concern ourselves with those in this

paper. For a treatment of methodological issues, the reader is referred to [5] [6].

The interoperability in the context of C++ models, means the ability to use C++ descriptions across

different C++ based modeling environments. These may include interfacing of standard library based

hardware models to legacy C++ code. Two major aspects of interoperability, are model composability,

and model reusability. We want to construct models of a system, using components modeled in different

libraries or different versions of the same library. However, we want the models to compose without

having to change the models themselves. One can argue that composability, and reusability are the

two sides of the same coin. Composability can be thought of as the problem of composing existing

component models with maximal reuse of the components. Consequently, reusability is the main focus

2

of our work. We often use the terms 'composability', and 'reusability' interchangeably in this paper, not

to mean, that they are the same, but with the understanding that our objective is to achieve composability

of C++ models, with maximum reuse of existing modules. Reusability is a major requirement due to the

increased expectation of model integration in C++ (including home grown C++ models), and also due to

extensive flexibility, and therefore diversity in modeling using C++ based libraries.

When building larger models by assembling smaller component models, the major technical chal­

lenges for achieving composability are: (1) Differing models of computation in the different models; (2)

Differing levels of abstraction in the different models; (3) Different data types to represent the interfaces;

(4) C++ being too flexible a language, the same hardware concepts can be progr.ammed in completely

different ways in the different models; (5) Differences in the notions and implementation of concurrency

between hardware and software. Clearly not all these problems are related to the semantic gap problem.

In fact, one major source of problems is differing models of computation in the models, which has been

previously addressed extensively in the context of Ptolemy [14, 6, 7]. In this paper, we focus on the

problems related to the semantic gap, because interoperability across differing models of computation,

is not specific to C++ based modeling, and is present in most system modeling languages. This problem

is important since software engineering and programming issues are becoming the problem of the hard­

ware engineer when he/she uses C++ for modeling hardware systems. This also poses a difficult human

resources challenge which is beyond the scope of this paper. However, ideally, the solutions to the prob­

lem of reusability should be such, that the hardware designers can focus on the hardware semantics, and

design issues, rather than struggling with programming issues, and hacks· in order to make a composed

system work.

2 C++ Based Design Environments

A number of C++ based micro-electronic high level modeling approaches have been proposed and

discussed extensively in [10, 9, 12, 8, 13, 19, 20, 18]. C++ as a general syntax is often too complicated

for a hardware designer. As a result, some environments are so designed that the models are expressed

in a reduced syntax (like e.g. Cyn++ from Cynapps [19]) or a graphical one (like VCC from Cadence

[18]). A preprocessor then translates the restricted syntax to C++, which is then linked with a modeling

library. Consequently, a C++ design environment can have different embodiments that make it seem

3

/Name I Origin j Embodiment

SystemC OSCI C++ library

Cynlib Cynapps C++ library

OCAPI IMEC C++ library

Cruise Conexant In-house C++ system

simulation environment

Cyn++ Cynapps Macro package on

top of Cynlib

vcc Cadence Graphical notation

using underlying

C++ objects

Spece UC Irvine Dedicated language

compiled into C++

based simulation

ART /Library Frontier Design C++ Library

(focus on datatypes)

Testbuilder Cadence C++ Library

(focus on testbenches)

Table I. C++ Based Design Environments

different from the traditional software development compile-link cycle. We want to stress however that

this difference is mainly dependent on where one sees the interaction with the end-user. The core of the

design environment can be a C++ modeling library even though the user writes a specialized language.

Therefore, the interoperability problem extends into those environments as well, but rather from a tool

API standardization perspective. Some examples are given in Table 1. This list is far from ex~austive

and only targets to show that C++ is beginning to be used in a wide variety of environments.

4

2.1 Modeling Dimensions

The complexity of the design modeling (and consequently the complexity of the C++ programs)

quickly becomes clear by considering a system level design modeling taxonomy. The VSI SLD Taxon­

omy [15] is a good guideline to this. It distinguishes four orthogonal design model characteristics.

1. Temporal detail: which expresses the degree of precision of the ordering of the modeled events.

This includes partial-ordered event accurate models, token-cycle accurate models, instruction­

cycle accurate models, clock-cycle accurate models, clock-phase accurate models, and so on.

2. Data value detail: which expresses the representation or format of data values specified in a model.

Data values could be enumerated values, word-level values, bit-true representations, etc.

3. Functional detail: which expresses the level of detail in the functionality of a model, ranging from

mathematical formulae to detailed intermediate operations (gate-level or instruction level).

4. Structural detail: which expresses the level of detail in the structure of a model, ranging from

single-block code to multiple levels.

While these are theoretically orthogonal design axes, in practice they are never described or explored

separately. Instead, designers often use well-defined combinations of modeling precision to express a

model of computation. For example, DSP hardware might be expressed using the data-flow model of

computation, which expresses partial ordering (temporal level), actor-primitive code (functional level),

flow-graphs (structural level). An executable simulation always fixes a "working point" oh each ·of the

four axes. Thus, if we want to simulate the dataftow computational model (that fixes temporal detail,

functional detail and structural detail), we will also have to make a decision on the data value detail of

the simulation by choosing the data type of the tokens.

2.2 Mapping of Modeling Dimensions

When a design model is constructed in C++, a supporting design model library is often used. This

library contains a number of classes that allow expression of different modeling dimensions.

5

QoC

Simulation Kernel

QoC OoC

Update onces each
set of QoC

Figure 1. Generic Model of Concurrency in C++ Modeling Libraries

2.2.1 Temporal Detail

The standard C++ language is executed sequentially, with no notion of time. However, concurrency

and parallelism are fundamental in hardware models. A modeling environment can explicitly reference

the time or else make it implicit through simulation cycles. Therefore, the introduction of concurrency

and time characteristics always require specific classes and modelin~ support. The approaches used

in C++ models are very often a derived form of Figure l. The modeling library provides a scheduler

that manages the simulation clock. The scheduler also decides when computation in the user model

should be executed. The user model itself consists of several pieces of behavior called Quantum of

Computation. A QoC is all activity in a user model that can happen in one .step, without interaction with

the simulation model environment. Concurrency is simulated in this model by calling several different

QoC before updating the simulation clock. Thus, to the observer of the model, it looks like time has not

advanced while several different QoC are executing: their activity seems concurrent. Cycle simulation is

a frequently implemented time model in current C++ libraries and is often extended with the delta-cycle

concept from HDL simulation. It works as follows. The QoC in the user model describe one cycle of

processing. The QoC communicate through state variables or direct connections. Each state variable has

a present- and a next-value. The overall simulation works in a two-phase approach. During the evaluate

phase (phase 1), the execution of a QoC reads the present-value of the state variables and writes the

next-value. During the update phase, next-value in state variables is copied to the present-value, and the

simulation time is advanced. Additionally, the evaluate-phase might be driven by a value-change sensing

6

mechanism (upon QoC inputs) to support relaxation-types of simulation (called the delta cycle in HDL

simulation). This style of temporal modeling is reasonably simple, but yet many different approaches

can be used in implementing it in C++. The actual implementation of a scheduler, of the simulation

clock and the QoC can be done in a variety of ways: native execution or interpreter based, call-back

mechanisms, multiple threads, etc.

While a detailed discussion of each of those approaches is beyond the scope here, it should be clear

that there are can be as many implementations of the evaluate/update mechanism as there are C++ design

environments. For example, different libraries can use different thread packages [4], and synchronization

mechanisms. By itself, the synchronization interoperability can be very complex if it introduces many

ordering protocols. Before two C++ environments can be interconnected, it must be clear how they

implement the temporal axis in a model. The simulation detail (level of abstraction) should match, but

in addition the implementation approach (API) must also match.

2.2.2 Data Value Detail

One of the big advantages in using C++ is the ability to introduce new data types (and classes). Most

C++ design environments offer a wide spectrum of data representation and detail. Typically included are

various types of scalar values with specific quantization characteristics. However, this kind of flexibility

adversely affects interoperability. A common base of information representation is needed in order to

transfer information from one environment to the other. There are three approaches in modeling data

values.

1. Direct use of built-in types. C++ has a wide range of built-in types. Those values might be

applicable for the model. In addition, the C++ built-in data types are interoperable by themselves.

2. We can use a class model of the actual representation of data values. For example, a bitvector can

be modeled as an array of bits. This array can be stored as a private member of a class.

3. Sometimes an abstracted representation of data values, with operational behavior is used. For

example, the operations on a bitvector (of limited word-length) might perfectly be done in terms

of the built-in type "int" if we are only interested in the aggregate data value of the bitvector.

Similarly, fixed point DSP calculations can perfectly be done using floating point C++ built-in

7

types. In both cases, we need to take quantization effects (overflow and rounding) into account in

the functional description.

The interoperability of (scalar) data values has been more successful than the other axes of modeling

dimensions. A VSIA data-type standard [16] is under development as a reference for data values. Data

types for which C++ libraries are available include 2-value and 4-value bits and bitvectors, arbitrary

sized signed and unsigned integers, and fixed point values.

The interoperability of different C++ design environments implies that different data types can be

cast across environments without loss of precision. If the target environment has. no direct support for

a particular datatype (for example, fixed point), then two situations can occur. First, there can be a data

type in the target environment that has sufficient range. In that case a "converter stub" is needed to

translate data values between the two environments. Second, the target environment can lack a type

that has sufficient range. In that case, the target environment must be extended with an "emulator" that

supports this data type. But, the interoperability problems can occur when this is to be specified, and

checked. There is two approaches that can be used: (1) static type checks, and replacements in the

compilation phase (2) dynamic conversions at runtime through stubs. Type systems have been used

to infer types and provide some type looseness in programming languages such as ML or Ptolemy.

As we discuss later in this paper, our solution is based on a run-time type inference and delayed type

instantiation [2].

2.2.3 Functional Detail

The third axis of detail is the functional one. It expresses the precision of the model functionality. Each

executable description implements the behavior of a model of computation.

The C++ Semantics: The C++ language uses a sequential consistency for correctness and compo­

sition. The language is designed for the implementation of software programs. The usage of classes

makes C++ very convenient to capture real world structures as object in the software environment. The

C++ language has no formal semantics, and is very flexible and extensible. In that sense, the usage of

the syntactic constructs can be different from the original semantic intent. For example, the usage of ex­

ceptions is recommended for handling software error condition, but it has been used to model interrupt

behavior in hardware systems. When different C++ environments are matched to each other, they will

8

need similar styles of software design at their matching points.

Syntactic variations with C++: Modeling flexibility inherent in C++ often creates additional pro­

gramming overhead for the IC designer. Consider, for instance, modeling of state machines, which of

course, have a well understood semantic model. A common technique is to use a nested switch with

a scalar state variable, or in more complex cases sparse arrays of actions and transitions for each state,

with actions as function pointers. In object oriented modeling states are often treated as subclasses

with common interface defined by a super class. Events are modeled as methods in the interface, and a

separate "evaluate-class" is used to send events for processing to the current state object. Therefore, a

state transition changes the current state object. Here inheritance is used for state ·addition to the model

(by subclassing_), and for adding events (by adding new functions to the subclass, or overwriting virtual

methods of the super class). In order to execute the model correctly, the state machine needs to be in­

tegrated with other objects in the environment. This introduces context dependencies from the FSM to

other software components, reducing the reusability. In other words, execution of the FSM model relies

on the existence of other objects which are not a part of the FSM model. As a result, to use the FSM

Model in different environments, one has to program the environment objects in the new environment

agam.

2.2.4 Structural Detail

The final modeling axis relates to structural detail. All modeling environments have the concept of a

"block" that encapsulates other blocks or leaf behavior. In addition, the blocks recognize port and/or port

lists that provide handles to express communication. The structural detail in a model allows relating it to

an implementation view. Structural interoperability meanslliaf'one··enViroriment is' able to encapsulate a

block from another environment.

However, structure can also include design pattems [3], which rely on C++ programming techniques

such as polymorphism and component substitutability [11]. Organizing a C++ model at this level of ab­

straction provides a higher abstraction and flexibility than the entity-port-entity connection models. An

open problem in this approach is how should these patterns be used in C++ hardware system modeling,

and their impact on interoperability since the discrete event semantics rely on port-signal-port-process

semantics.

9

3 Interoperability Strategies

Interoperability is often achieved, by creating wrappers around the existing C++ descriptions that

allows communication of data values between different modules and co-ordination between them. How­

ever, wrappers can be implemented in many ways. The first and most common strategy is by using

inheritance. In this approach, the wrapper is programmed by manually inserting code to align vari­

ous design axes inside the inherited class. The component and the wrapper have a cornmon self in this

implementation [11]; i.e. the wrapper and the component are the same object. As a result, the the inter­

operability issues related to typing are resolved at compile time, and the wrapper and component have

strong dependencies.

An alternative is to use wrappers that, if needed, delegates to the design component. In this case, the

component is not modified, and the wrapper and the component are two distinct objects. Modules from

different libraries can be imported as is, and dynamically placed in wrappers at runtime. Let us review

both of these strategies in more details.

3.1 Interoperability with Inheritance

An example of inheritance based composition is shown in Figure 2. It shows how two models drawn

from different C++ based libraries (in this case, Ocapi and Cynlib), can be composed in a single exe­

cutable model. In Figure 2, the system shows a dataftow example where the modules are a mix of Cynlib

and Ocapi-1 blocks. The system consists of four actors (active modules), three of which will be under

the control of the Cynlib simulator, and one under control of the OCAPI simulator. For simplicity, all

communications and data types are also taken from the Ocapi domain.

As seen in the main function below, there is a main scheduling loop that calls the Cynlib and Ocapi

schedulers in alternating fashion, until all dataftow tokens are consumed out of the system.

void main () {

dfbf ix Ql (11 queuel 11
) ; /* OCAPI data type */

dfbf ix Q2 (11 queue2 11
) ;

dfbf ix Q3 ("queue3 11
) ;

dfbf ix Q4 (11 queue4 11
) ;

10

PassToken DupToken

~ Cynlib Blocks

D Ocapi Block

PrintToken

PrintToken

---- Ocapi Communication Channel

Figure 2. Example for Interoperability

PassToken2 Pl(Ql, Q2); II Cynlib block

DupToken P2(Q2, Q3, Q4); II Ocapi block

PrintToken P3(Q3);

PrintToken P4(Q4);

II Cynlib block

II Cynlib block

sysgen ocapisystem("ocapisystem"); I* OCAPI *I

elk ocapiclk; I* OCAPI clock *I

ocapisystem << P2;

Ql.put(0.1);

Ql.put(0.2);

Ql.put(0.3);

Ql.put(0.4);

while (Ql. getSize ()

Q2. getSize ()

Q3. getSize ()

Q4. getSize ()

> 0 II
> 0 II
> 0 II
> 0) {

ocapisystem.run(ocapiclk);

I* simulates one ocapi clock *I

CynTick();

I* simulates one cynlib clock *I

}

CynFinish(); I* clean up for cynlib *I

11

design stand point.

Our wrapper generator in BALBOA is a compiler, that parses component descriptions described in

a special interface definition language (called BALBOA IDL or BIDL), and automatically builds smart

customized wrappers. The use of BIDL is optional for the system designer since the description are au­

tomatically generated by the library builder. In addition to wrapper generation, the system also provides

appropriate type determination in the context in which an object is used. Our dynamic typing mecha­

nism, implements a delayed typing useful to compose objects since in some cases, in order to compose

hardware and software objects, the designer may not know the exact object types used by the C++ li­

braries to implement the model. Our environment, upon getting a request for composition, enables the

designer to figure out such details without having to go through the source code, and can rely on the

tool to instantiate the types correctly for interoperability of the components. Note that it can also fail to

instantiate the composition request due to incompatibilities in the designers choices.

BALBOA provides an interpretive command shell to instantiate and compose objects. The wrappers

are visible from the user command shell. This visibility enable designers to manipulate the components

by writing composition scripts. A composition language, called Component Integration Language is

used to control the wrapper layer. In the current implementation, the interpreter is built using an extended

OTcl interpreter. We call the wrappers Split Level Interfaces. This is because they are the link between

the compiled C++ domain and the interpreted composition domain. Figure 4 shows the runtime view of

Composition Commands -
Interpreter

Simulation Commands · · · · · · ·

6:'·.·.···<·······.
···

Figure 4. Layered composition with Split Level Interface wrappers (in gray) around design and tool components

the object interactions in the environment. The split level interfaces are in gray and execute composition

commands. The simulation control flow is in the compiled hierarchy, from the discrete event simulator

(DES) to the components Cl, C2 and C3. Whenever possible, usually the interpreter is not involved in

the simulation loop for efficiency reasons.

14

The split level interface allows introspection, or reflection [1], of the attributes of the component mod­

els from the component library layer to the command interpreter layer. As a result, the designer or the

tool can query a component for its characteristics (such as structural information, type, connectivity,

attributes, methods), allowing dynamic composition decisions to be made. In BIDL, the component's

exportable interface is described, along with certain other meta-level information about the component.

For example, abstraction levels can be specified (behavioral, structural). The split level interface inher­

itance hierarchy, such as in Figure 3(b), is specified in this language. The BIDL compiler generates the

C++ code for the split level interfaces, and the code is compiled into a library and loaded in the environ­

ment. The implementation of such a "smart" composition environment is quite challenging. However,

this requires little (if any) changes in the existing C++ library environments.

Another possible approach to achieve interoperability is through interfacing the different simulators

at the simulation run-time. The distinction from the approach just described, and this approach, is that

in the first case, the interoperability is designed into the composed system at the environment run time,

and in the latter case, it is achieved at simulation run-time. In the currently available C++ simulation

libraries, there is no programming interface to the simulation kernels to make two distinct simulation

kernels exchange delta cycle events, or synchronize the increment of the simulation clock. However, we

can implement, or change existing simulation kernels to provide such APis. If the purpose of system

integration is to build a complete system simulation, this could be done by building a simulator by

composing single or multiple simulation kernels through these APis.

4 Discussion and Future Work

System level modeling and integration of components, using C++ models of micro-electronic systems

can be decomposed in four different dimensions. Doing so, the problem of interoperability is divided

in smaller chunks, such that each might be easier to conquer. In particular, the VSIA standards on data

types [16] already have addressed the problem in the data value details axis. In this paper, we elab­

orate on the interoperability problem, in terms of composability, and reusability of existing models in

an integration environment. We have presented the various solution strategies, and how they are imple­

mented in C++. However, the extendibility of C++, and the sequential model of execution inherent in

C++, lead to simulation and structural semantic gaps when composing models together. This is because

15

of the possible different implementations of a component, and the use of inheritance to build wrappers

around components that implement the function needed for the interoperability. We presented a solution

for model interoperability using composition based techniques. We then extended our solution to create

a dynamic composition environment that relies on composition and delegation. We also discussed the

automatic wrapper generation, configured by a specific language to capture hardware semantics. Fur­

ther experiments for matching different modeling dimensions and specifically their mapping to C++ are

under way as a part of our ongoing research on C++ based hardware/system modeling issues [17].

5 Acknowledgments

We gratefully acknowledge the support for this research from DARPA/ITO under contract DABT63-

98-C-004, the National Science Foundation (NSF), the Semiconductor Research Corporation (SRC) and

the Fond pour la Formation de Chercheurs et l' Aide a la Recherche (FCAR).

References

[l] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattem Oriented Software
Architecture: A System of Pattems. John Wiley and Sons, 1996.

[2] F. Doucet, M. Otsuka, R. Gupta, and S. Shukla. Efficient system level co-design environment for
split-level programming. Technical Report TR-01-34, CECS, Univ. of California, Irvine, 2001.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pattems: Elements of Reusable Object­
Oriented Softrvare. Addison-Wesley, 1995.

[4] P. Garg, S. Shukla, and R. Gupta. Efficient usage of concurrency models in an object-oriented
co-design framework. In DATE, 2001.

[5] M. Keating and P. Bricaud. Reuse Methodology Manual for System-on-a-Chip Designs. Kluwer
Academic Publishers, 1998.

[6] E. A. Lee. What's ahead for embedded software. IEEE Computer, September 2000.

[7] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of computation.
IEEE Trans. on CAD, December 1998.

[8] S. Liao, S. Tjiang, and R. Gupta. An efficient implementation of reactivity in modeling hardware
in the scenic synthesis and simulation environment. In DAC, 1997.

[9] G.D. Michelli. Hardware synthesis from CIC++ models. In DATE, 1999.

16

[10] L. Semeria and A. Ghosh. Methodology for hardware/ software co-verification in CIC++. In
HLDVT, 1999.

[11] C. Szyperski. Component Software: Beyond Object Oriented Programming. Addison-Wesley,
1998.

[12] C. Weiler, U. Kebschull, and W. Rosenstiel. C++ base classes for specification, simulation and
partitioning of a hardware/software system. In CS Workshop on VLSI, 1995.

[13] IEEE/DATC C++ Modeling Standardization Effort home page:
http://www.ics.uci.edu/rvrgupta/datc/.

[14] Ptolemy 2 project, UC Berkeley, home page: http://ptolemy.eecs.berkeley.edu/.

[15] VSI system level design taxonomy, vl.0, VSI alliance,
http://www.vsi.org/library/specs/summary.htm#sldtax.

[16] VSIA data type standard, under development.

[17] BALBOA Project home page: http://www.ics.uci.edu/ balboa.

[18] Cadence VCC home page: http://www.cadence.com/eda_solutions/hcdJ3_index.html.

[19] CynApps home page: http://www.cynapps.com.

[20] SystemC home page: http://www.systemc.org.

17

