
Combined Instruction and Loop Parallelism in Array
Synthesis for FPGAs∗

Steven Derrien
IRISA

Rennes, France

sderrien@irisa.fr

Sanjay Rajopadhye
IRISA

Rennes, France

rajopadhye@irisa.fr

Susmita Sur Kolay
Indian Statistical Institute

Calcutta, India

ssk@isical.ac.in

ABSTRACT
Compiling perfect, uniform dependence loops to fpga based
co-processors normally yields processor (pe) arrays where a
pe executes one instance of the loop body per clock cycle.
We develop a transformation framework in which the de-
rived pe can be systematically and automatically pipelined
through retiming. We use well known transformations—
skewing and serialization, by which an arbitrary number
of registers may be placed at the pe outputs. They are then
moved into the pe data-path using standard commerecial
circuit retimers. Our experiments (based on performance es-
timates after place-and-route) have been very encouraging.
For a number of examples we have seen dramatic perfor-
mance improvements: speed increases of an order of mag-
nitude with relatively little (always less than 100%) area
overhead.

Keywords
Instruction Level Parallelism, Programmable Logic, Retim-
ing, Regular Processors Arrays

1. INTRODUCTION
High-performance embedded systems are an exploding mar-

ket, with many applications. These systems often have to
deal with very stringent performance (both speed as well as
area and power) constraints. Hence, their design is a real
challenge, especially in the context of current time to mar-
ket pressure. Automating the design requires that (i) the
application is specified at a high level through standard lan-
guages (such as C or Matlab), (ii) the generated system is
formally correct with respect to the initial specification, and
(iii) the design tool is flexible enough to allow a relatively
wide user-driven design-space exploration.

∗Supported in part by IFCPAR project 1802-1: COR-
CoP Compilation and Optimization for Reconfigurable Co-
Processors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’01, October 1-3, 2001, Montréal, Québec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/0010 ...$5.00.

Critical portions of embedded applications often consist
of regular computations generally expressed as nested loop-
s. Hence, the ability to compile loops to specialized parallel
circuits should help attain the above objectives and meet
performance and power consumption constraints. Several
such tools exist in the research community some of which
have reached a relative maturity [1, 5]. These tools act as
specialized silicon compilers: they generate a structural de-
scription (RTL level) of a regular (systolic) array and its
associated control from a loop description expressed in a
high level specification language. The RTL description can
then be used by standard CAD tools to target either an asic

or an fpga.
Choosing an adequate target technology is not straight-

forward. Although some applications still require an asic

implementation, the advent of dense and cheap fpgas has
made them a viable alternative. However, fpgas are not
as efficient as asics, leading to disappointing performance.
This is especially true when operations involved in the loop
are complex and/or numerous: since traditional array syn-
thesis algorithms implement the loop body as a combina-
tional data-path, the critical path of the resulting design
tends to be large, leading to low clock frequency.

However, it is also well known that hand tuned fpga de-
signs can compete and sometimes even beat Asic implemen-
tations (see [7]). These high performance designs usually
take advantage of very fine grain parallelism for which re-
cent fpga architectures are very well suited: large number
of flip-flops, and programmable delay-lines with small area
cost. By exploiting similar techniques, we may expect to im-
prove fpga processing power by pipelining the internal pe

structure, so that performance would benefit from intra as
well as inter pe parallelism. Our objective is thus to provide
tools which will automatically transform a given processor
array architecture to take advantage of fine grain pipeline,
while preserving its functionality.

In this paper, we propose high-level architectural transfor-
mations, which enable very fine grain pipelining in processor
arrays. We also propose a heuristic to choose the transfor-
mation parameters. Since our transformations are based on
the formal foundations of space-time mappings, we can en-
sure their correctness and incorporate them at a higher level
of the design flow, within an array synthesis tool. Our ap-
proach is validated experimentally on several examples and
shows very encouraging results.

2. BACKGROUND
We now recap the techniques of array processor synthesis,

develop some constraints that we impose on the derived ar-
chitecture and the corresponding transformations. In doing
so we also introduce our notations and conventions.

2.1 Loop parallelization
We only consider a restricted class of loop nests, for which

well established methodologies exist. Specifically, we assume
perfectly nested loops with uniform flow dependences and
statically known bounds. Let I denote the loop domain
defined by a set of linear inequalities. Let −→x denote the
loop index vector [x1 . . . xn]. The computation of the
loop body is characterized by m data dependence vectors
represented as a matrix D =

� −→
d1 . . .

−→
dm � . Consider

the loop nest description for N × N matrix multiplication:

for(i=0;i<N;i++)

for(j=0;j<N;j++)

{

c[i][j]=0;

for(k=0;k<N;k++)

c[i][j]=a[i][k]*b[k][j]+c[i][j];

}

The dependencies are the unit vectors
−→
i ,

−→
j , and

−→
k ,

and the iteration space is a three-dimensional cube in the
(
−→
i ,

−→
j ,

−→
k) index space. Following well established meth-

ods [8], the parallelization of such a loop nest consists of two
steps, namely scheduling and allocation.

The scheduling function maps iteration −→x to time instant
t = τ (−→x), this function must ensure that all data dependen-
cies are satisfied. The schedule is normally an affine func-
tion, and we have t = −→τ −→x + c0. The condition for the
schedule to be valid (with respect to the data dependen-

cies) can be written as −→τ
−→
dk > 0 where dk is the kth data

dependence vector.
The allocation function assigns iteration −→x to a pe −→p in

the processor index space. As with scheduling, we consider
linear allocation functions (specified by a projection vector
−→v). They map the n-dimensional iteration space to an (n−
1)-dimensional processor space. Let π denote this projection
matrix, so that −→p = π−→x . The whole transformation is

expressed as
−→
x′ = Π−→x + −→c , where Π =

�
τ
π � . For the

transformation to be valid, there should be no conflicts (i.e.,
only one iteration allocated to a pe at any time), and it is
well known that this implies that Π should be non-singular.

Note that for each dependence, dk, the vector π
−→
dk gives

the corresponding interconnection link in the architecture
and τdk gives its associated delay (in terms of clock cycles).

In addition to the standard constraints described above,
we impose two restrictions over π and −→τ (for a formal jus-
tification please refer to the extented version of this paper
[10].

• We only allow unidirectional communications in our
array, which translates as π

−→
dk � 0.

• We only allow nearest neighbor interconnections, which

trasnlates as ∀k, −→τ
−→
dk ≥ ���

π
−→
dk ���

.

2.2 Resulting hardware characteristics
The scheduling and allocation functions yield a processor

array where each pe consists of a data-path connected to a
set of registers (see Fig. 1 which we shall use as a running
example). There are two types of registers in the pe.

Datapath Datapath

(a) (b)

Figure 1: (a) Spatio-Temporal registers in the orig-
inal architecture (b) modified architecture with non
ambiguous register type.

• Temporal registers act as local memory within the pe

data-path.

• Spatial registers connect two pes along one processor
space dimension (for i = 1 . . . n − 1).

When a register drives both a local (i.e, temporal) register
and a neighboring pe, It can be considered as both spatial
and temporal. In such a case we choose to duplicate this
register (by means of retiming) such that the resulting reg-
isters are either spatial or temporal but not both (see figure
1).

The data-path is modeled as a directed acyclic graph of
combinational operators, and performs the computations as-
sociated with the loop body. It contains n different types of
paths (n being the loop dimension).

• A spatial path in the ith dimension (i = 1 . . . n − 1) is
a path starting from any register output or pe input,
and driving a spatial register in this dimension.

• A temporal path (i.e., a path in the n-th or the time
dimension) is a path starting from any register output
or pe input and driving a temporal register.

Note that it is the register at the end of the path that de-
termines its dimension.

2.3 Improving Array performance
Obviously, a large combinational path in the data-path is

a performance bottleneck, especially for floating point imple-
mentations, where FPGAs clock speed implementations can
not go beyond 12MHz, although conventional microproces-
sors attain GHz frequencies. We therefore seek to to pipeline
our data-path whenever possible. There are three reasons
for this: (i) we expect significant gains in clock speed, (ii)
fpga register resources are generally underutilized, and (iii)
in our context, we expect to pipeline aggressively, and tuned
to the application at hand.

The pipelining is achieved by “retiming”, a technique o-
riginally introduced by Leiserson and Saxe [2]. It is a syn-
chronous circuit transformation preserving the behavior of
the design while permitting to reorganize the registers of the
circuit.

Our goal is here to increase the array achievable clock fre-
quency through retiming. We assume that the pe data-path
is represented as a net-list of standard fpga combinational
primitives (each with a predefined delay), so that we can
estimate the delay along all combinational paths. Since in-
terconnect delay cannot be estimated prior to the place and
route phase, we base our delay estimation on the number of
combinational primitives in a path. As in Section 2.2, we
partition the pe paths into n subsets, one per dimension.

70ns

60ns

86ns

Datapath

PE Axis i

P
E

 A
xi

s
j

Datapath
Datapath

(a) (b) (c)

Figure 2: Impact of skewing and serialization. The
original PE (a), skewed along the j axis with λj = 2
(b), and then serialized along the j axis with σj = 2.

If we can arbitrarily increase the number of its registers
in any dimension, we can pipeline this large combinational
path to an arbitrary degree. Of course, the more the regis-
ters that we create in a given dimension, the smaller will be
the final critical path.

3. TRANSFORMATIONS
We now present two space-time transformations (skewing

and serialization) which allow us to tune the number of reg-
isters in the various paths of the pe architecture by affecting
both the scheduling and mapping functions.

3.1 Skewing
The skewing transformation increases latency between

iterations mapped to neighboring pes. Since this addition-
al latency materializes as registers, which can be used for
retiming, we can expect this transformation to allow some
clock speed improvement.

The skewing transformation is specified by a vector
−→
λ ,

its component λi being the latency between computations
mapped to neighboring pes along the ith processor index
axis;

The modified schedule is then given below. Note that this
transformation is only valid for arrays with unidirectional
connections (i.e., where π.

−→
dk > 0, the restriction we imposed

in 2.1).

τ ′(−→x) = τ (−→x) +
−→
λ .π(−→x)

It is easy to show that after skewing, a spatial register
along a given processor axis i is appended at its input by
λi temporal registers. This transformation hence increases
the number of registers associated with all original spatial
paths. However, skewing does not affect temporal registers,
hence in architectures with temporal loops, skewing alone
cannot provide registers at appropriate places for retiming.
An example of skewing is shown figure 2.b.

3.2 Serialization (Clustering)
The serialization transformation is well known space-

time transformation that has been widely studied [3, 4, 6,
11]. As opposed to classic systolic synthesis, it is non-linear.
The key idea is to group pes derived from the systolisation
process into “clusters” in which the original pe’s iterations
are performed sequentially. The virtual array obtained from
the systolisation is hence transformed into a smaller physical
array.

Serialization has been used for parallelizing loops on fixed
size arrays [6] (also called active clustering) or for improving

the efficiency of arrays obtained by non-unimodular space-
time mappings [3] (called passive clustering). Finally, it is
also useful for IO bandwidth adaptation [12, 9] and data
reuse.

Clustering consists of two coupled sub-problems (i) defin-
ing the cluster geometry (ii) specifying the schedule within
and between clusters. In the scope of this paper, to ease
the derivation and to simplify the control of the serialized
architecture, we choose rectangular cluster shape with edges
parallel to the communication channels.

Let H be a diagonal rational matrix � σ−1
1 . . . σ−1

p � , in
which σi are positive integers. The clustered processor map-
ping is then −→p = bHπ−→x c, and the number of iterations to
be performed in a cluster is given by Πn

i=0σi.
Once the cluster geometry is set, iterations within this

cluster have to be scheduled. Finding the optimal schedule
within a cluster has been studied by several authors, either
in the scope of resource constraints (minimizing memory re-
quirements, adequate use of functional units [11]) or to pro-
vide simple control logic while preserving the scheduling ef-
ficiency [4]. To ease the derivation of the clustered architec-
ture (and hence be able to predict the number and position
of all registers), we restrict ourselves to simple scheduling,
knowing that (i) cluster boundaries are parallel to the pro-
cessor space index axes, and (ii) all virtual pes (i.e., before
clustering) are active in a given clock cycle.

For active clustering, these concerns are not relevant. We
therefore use a very simple local schedule: iterations are exe-
cuted in an axis-major order as if our p-dimensional cluster-
ing consisted of a sequence of uni-dimensional serializations
along each dimension of the cluster. Of course, since such
serializations are quasi-linear transformations, the order in
which they are performed is crucial.

To determine the resulting architecture, we just need to
understand the impact of a serialization along a given clus-
ter axis. The following rules which can be used to build a
serialized architecture

• All temporal registers are duplicated by a factor σi.
The number of registers associated with the temporal
paths (i.e., the depth of the delay line driven by the
path output) is thus increased.

• If serialization is done along ith processor axis, feed
back loops (and their associated multiplexers) are cre-
ated (as shown in figure 2.b) for all spatial registers
along the corresponding dimension.

• The control logic commanding the feed-back loop mul-
tiplexer associated to dimension i hence simply con-
sists of a periodically active signal (the signal period
is a simple function of the order of serializations and
the cluster dimensions).

3.3 Combining all transformations
It is possible to apply these transformations in any or-

der and along any space dimension. However the order in
which they are applied has a strong impact on the result-
ing architecture. This is easy to understand: skewing adds
temporal registers in all spatial paths, and serialization du-
plicates these temporal registers. If skewing is performed
before serialization its additional registers will be duplicated
by serialization, if skewing is performed after serialization,
its additional register will not get affected. This leads to the

following transformation rules for a p = n − 1 dimensional
processor space.

• A skewing transformation performed along ith clus-
ter axis induces λi additional temporal registers on
all paths in the ith processor space axis. These ad-
ditional registers (which are temporal) will hence be
duplicated by all subsequent serializations. Assum-
ing that all serializations are performed in the lexico-
graphic order of the pe space (starting with dimension
−→
k), we can write the succession of serializations as
σk, σk+1, . . . , σp. Since all the temporal registers due
to skewing will be duplicated by each subsequent seri-
alization, the number of registers generated in the final
architecture is λiΠ

p
n=kσi (see figure 3.a for the impact

of a skewing with λj = 1, and figures 3.b and 3.c for
the effect of subsequent serializations).

• A serialization transformation along the ith cluster ax-
is has two effects: (i) it duplicates all temporal regis-
ters by the serialization factor σi, and (ii) it creates
feed-back loops (with one temporal register and a mul-
tiplexer) for all spatial paths along the ith processor
axis. These temporal registers will not be affected by
subsequent skewing, but they will be duplicated by all
subsequent serializations. Again, if σk, σk+1, . . . , σp is
the sequence of transformations following our initial
serialization (assuming i /∈ [k, p]), the number of reg-
isters present in the final pe ith axis feed-back loop is
Πp

i=kσi (eg. the feed-back registers that appeared in
3.b are duplicated by σi = 2 as shown in 3.c)

• When, for a given index i, skewing is performed af-
ter all serializations, all the λi new temporal register-
s appear outside the feed-back loop induced by the
preceding serializations. They can then moved within
the data-path if and only if there are enough registers
associated to the serialization feed-back loop at that
time. In other words, since Πp

i=kσi denotes the delay-
line depth associated with these registers, the num-
ber of registers that can be used for pipelining is then
min(Πp

i=kσi, λi) (see figure 3.e for the skewing and 3.f
for the register factorization).

We now describe some of our assumptions about the order
of application of our transformations. First, we will make
a distinction between two kinds of skewing. Let λpre

i de-
note a dimension-i skewing operation performed just before
the σi transformation and λpost

i denote a skewing operation
performed after all serializations. We impose the following
restrictions.

1. We choose a sequence of axes in the processor space,
and for each dimension i in this sequence we execute a
pre-σ skewing λpre

i , followed by the σi transformation.

2. After step 1 is executed for all dimensions, we perfor-
m a succession of post-σ skewings by λpost

i for each
dimension i.

We now express the number of registers available for pipelin-
ing in each dimension: after all the serialization steps, all our
initial temporal paths now have Πp

i=1σi available registers.
We can also formulate the number of registers on the ith

spatial path: (i) the combination of pre-σ skew λpre
i and all

Datapath
Datapath Datapath

(a) (b) (c)

Datapath

8 8

Datapath

10

Datapath
4

5

6

(d) (e) (f)

Figure 3: Successive transformations for the PE of
Fig. 2.a: (a) Skewing λpre

j = 1; (b) Serialization
σj = 2; (c) Skewing λpre

i = 2; (d) Serialization σi = 2;
(e) Skewing λpost

j = 1; (f) final architecture.

its subsequent serializations provides λpre
i Πp

k=iσk additional

registers along ith spatial axis (ii) the post-σ skew λpost
i pro-

vides λpost
i registers, from which only min(Πp

k=i+1σk, λpost
i)

can be used for pipelining. The number of registers along
spatial axis i is then λpre

i Πp
k=iσk + min(Πp

k=i+1
σk, λpost

i).

3.4 Choice of tranformations
There is considerable freedom in choosing the order and

parameters of the transformations, and we seek one which
satisfies the constraints for a given desired throughput. Al-
though several transformations may satisfy these constraints,
they are not necessarily equivalent in terms of total regis-
ter cost. In this paper we use simple pragmatic heuristic to
determine a satisfactory, but not necessarily optimal solu-
tion. Let di denote the given constraints on the minimum
number of pipeline stage along dimension i (with dn for the
temporal dimesion).

Generally the cluster dimensions are either set to specif-
ic values or (more generally) have lower bounds, so that
they can match external (eg. bandwidth and resource) con-
straints. Hence we will assume that the cluster dimensions
are given and are chosen such that Πp

i=1σi > dn. The prob-
lem is then to choose (i) the order of serializations, and (ii)
the values of λpre

i ,λpost
i .

For (i), we propose the following: sort space indices in
the decreasing order of Tpathi

and execute the serializations
according to this order. This allows the most critical spatial
path to benefit most from the additional registers provided
by the subsequent serializations.

For (ii), we define ∆ = Πp
k=i+1

σk if i < p, ∆ = 1 oth-
erwise. The skewing parameters are then given by λpre

i =

min � 0, � di−∆

Π
p
k=i

σk ��� and λpost
i = min (di, ∆) − 1.

3.5 Example
To illustrate the transformation flow, consider the pe whose

architecture is shown in figure 2. Assume that we need to
meet the following set of inequality constraints over the num-
ber of registers required along each dimension of its data-
path. We set d3 ≥ 4 (4 stages along the temporal axis),
d1 ≥ 5 (5 stages along processor axis i) and d2 ≥ 6 (6 stages

along processor axis j). Given these constraints, the next
step is to choose the cluster size. In our case we will only
consider constraints over the clock period, hence any clus-
ter shape should be valid provided that the constraint on
the number of registers in the temporal paths is satisfied (in
other words, d3 ≥ 4 stages with σiσj = d3). To keep our
choice simple we will take σi = 2 and σj = 2. Since the
number of required stages along j axis dominates that for
i axis, serialization along j is performed before i. Let us
determine our transformation parameters:

• For axis
−→
j , we have Πp

k=i+1σk = 2. Since we need at
least 6 stages along this dimension, we need a pre-
serialization skewing transformation. Our heuristic
gives us the following values: λpre

j = � 6−2

4 � = 2 and

λpost
j = 0.

• For axis
−→
i , there are no subsequent serializations.

Since we need at least 5 pipeline stages along this di-
mension, we need both a pre and post-skewing trans-
formation along axis

−→
i to provide additional registers.

We then have λpre
i = � 5−1

4 � = 1 and λpost
i = 1.

Our resulting architecture is shown in figure 3.f, we see
that in all dimensions, the number of registers available
for pipeline matches our requirements. The data-path can
hence now be pipelined using a retiming tool to move these
registers so that the global critical path is reduced down to
the estimated target clock period.

4. EXPERIMENTAL RESULTS
Given our framework to exploit fine grain parallelism in

processor array compilation, we must study experimentally
how these transformations effectively impact (i) clock speed,
and (ii) area. To do so, we took several loop nest examples
and applied our transformations on them, and then used ex-
isting retiming capabilities of commercial CAD tools (Syn-
opsys FPGA compiler II). All PE architectures were de-
scribed in standard synthesizable VHDL, either using avail-
able existing IP modules or the CAD tool arithmetic infer-
ence capabilities (as for integer operations). The following
loop examples were used as benchmarks.

• Adaptive filter (DLMS) for 8 and 16 bit integer and 32
bit floating point.

• Biological sequence comparison (best alignment score)
for amino acid (AA) and DNA sequences

• Matrix multiplication (MatMul) for 8 and 16 bit integer
and 32 bit floating point.

A key hypothesis in our work is that the area overhead
caused by the additional pipeline registers will not impact
the total area too strongly. We propose to experimentally
validate this hypothesis, by observing the relation between
(i) pipeline level, (ii) maximum operating frequency, (iii)
pe area cost and (iv) overall raw performance improvement.
Our target architecture is a VirtexE-8 from Xilinx. Results,
in terms of area use (Virtex Slices) and achievable clock
period (in MHz) are those predicted by Xilinx place and
route tools and are shown in figure 4.

DLMS-float
Stages Slices ns MHz ρρρρ

1 1444 85,00 11,76 8,15
2 1413 48,50 20,62 14,59
3 1520 34,00 29,41 19,35
4 1556 27,50 36,36 23,37
5 1587 24,50 40,82 25,72
7 1588 20,00 50,00 31,49
11 1654 18,00 55,56 33,59

DLMS-16bits
Stages Slices ns MHz ρρρρ

1 353 21,00 47,62 134,90
2 419 13,00 76,92 183,59
3 414 11,50 86,96 210,04
4 421 10,50 95,24 226,22
5 441 9,70 103,09 233,77
7 449 10,00 100,00 222,72
9 452 10,50 95,24 210,70

DLMS-8bits
Stages Slices ns MHz ρρρρ

1 123 17,40 57,47 467,25
2 147 9,00 111,11 755,86
3 147 8,50 117,65 800,32
4 147 8,50 117,65 800,32
5 147 8,20 121,95 829,60

MatMul-float
Stages Slices ns MHz ρρρρ

1 704 85,00 11,76 16,71
2 707 55,00 18,18 25,72
3 713 36,00 27,78 38,96
5 725 24,00 41,67 57,47
7 728 21,00 47,62 65,41
9 748 17,50 57,14 76,39
11 749 16,00 62,50 83,44
13 738 15,50 64,52 87,42
17 766 12,50 80,00 104,44
21 781 13,00 76,92 98,49
25 781 12,50 80,00 102,43

MatMul-16bits
Stages Slices ns MHz ρρρρ

1 154 17,00 58,82 381,97
2 164 12,50 80,00 487,80
3 194 10,00 100,00 515,46
4 194 9,50 105,26 542,59
5 195 9,00 111,11 569,80
9 206 8,50 117,65 571,10

MatMul-8bits
Stages Slices ns MHz ρρρρ

1 55 14,00 71,43 1298,70
2 55 7,50 133,33 2424,24
3 70 6,50 153,85 2197,80
4 63 7,00 142,86 2267,57
5 74 6,00 166,67 2252,25

(a) (b)

ADN
Stages Slices ns MHz ρρρρ

1 57 15,00 66,67 1169,59
2 57 13,71 72,94 1279,64
3 84 8,50 117,65 1400,56
4 90 9,50 105,26 1169,59
5 120 7,00 142,86 1190,48

AA
Stages Slices ns MHz ρρρρ

1 193 32,00 31,25 161,92
2 197 20,00 50,00 254,13
3 206 18,00 55,56 269,69
4 231 14,50 68,97 298,23
5 232 12,50 80,00 344,46

(c)

1 2 3 4 5 6 7 8 9 10

0

50

100

150

Pipeline Stages

P
E

 a
re

a
ov

er
he

ad
 (

in
 %

)

DLMS (float)
DLMS (16bits)
DLMS (8bits)
Matrix Mult (float)
Matrix Mult (16bits)
Matrix Mult (8bits)
Sequence Comp (AA)
Sequence Comp (DNA)

(d)

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

Pipeline Stages

P
E

 s
pe

ed
 im

pr
ov

em
en

t (
in

 %
)

DLMS (float)
DLMS (16bits)
DLMS (8bits)
Matrix Mult (float)
Matrix Mult (16bits)
Matrix Mult (8bits)
Sequence Comp (AA)
Sequence Comp (DNA)

(e)

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Pipeline Stages

P
E

 r
aw

 p
er

fo
rm

an
ce

 im
pr

ov
em

en
t (

in
 %

)

DLMS (float)
DLMS (16bits)
DLMS (8bits)
Matrix Mult (float)
Matrix Mult (16bits)
Matrix Mult (8bits)
Sequence Comp (AA)
Sequence Comp (DNA)

(f)

Figure 4: Experimental results (area, speed and raw
performance) for all targeted loop nests

4.1 Area/Clock speed trade-off
Our goal here is to quantify the effective performance im-

provement induced by our transformation. Specifically, we
have shown that deep pipelining requires a lot of registers,
which will use more of the available real estate. This leads to
a trade-off between area and clock speed: the more registers
we use, the better is the clock speed, but the fewer are the
pes that we can fit on the reconfigurable resource. The area
overhead due to the pipeline registers is difficult to evalu-
ate analytically, and quantifying the effective performance
improvement is not trivial.

In the scope of systolic array implementations, we con-
sider that the array performance is mostly dictated by two
parameters: (i) nPEs the number of pes in the array (i.e.,
the degree of parallelism) (ii) fc, the pe speed. We introduce
a raw performance metric ρ = fcnPEs for our architecture.
Since nPE is roughly inversely proportional to the pe area

(we have nPE ≈ � Afpga

Ape � where APE is the pe area cost and

Afpga the target fpga density), we can also estimate the raw

performance by using ρ
′

≈ fcA
−1
PE, where APE is the area

cost of the transformed pe. Our results are shown in figure
4. It appears that the raw performance is improved (up to
an order of magnitude for complex data-path) but there is
also noticeable gain for simpler ones (between 50 to 100%).

We also observed that even by providing a large number
of registers, the maximum achievable clock frequency is very
dependent on the complexity and regularity of the data-
path. We could not get more than 50MHz for a floating point
DLMS, while we almost reached 120MHz for a 16 bit integer
Matrix multiplication cell. These figures are of course to be
compared to the bound for the internal frequency of the
target fpga (130 MHz, as per the device data-sheet).

4.2 Performance limitations
From our experiments, it seems that two factors limit the

benefit of using very fine grain parallelism (in other words
pipelining down to the logic cell level).

First, it seems that the commercial retiming tool we have
been using during our experimentations does not try to re-
duce the critical path below 5 logic levels. This poses bound-
s over the minimum achievable combinational path within
a pipeline stage, and prevents us from fully exploring the
trade-off between area, routability and clock speed for very
fine grain pipelined designs. Note that this is a limitation
inherent to the CAD tool itself, which could be bypassed,
either by using other tools, or by implementing a custom
retimer.

Second, routing delays severely impact the minimum achiev-
able clock period. Depending on the regularity (and com-
plexity of the data-path) they represent between 30% (for a
8-bits integer matrix multiplication) and 80% (DLMS with
floating point data) of the critical path delay. Since re-
timing only operates on the combinational delay elements
of the path, it cannot take into consideration the impact
routing delays. This poses the question of the efficiency of
existing retiming algorithm with respect to modern fpga

architectures, in which routing delays are likely to become
the performance bottleneck.

5. CONCLUSION AND FUTURE WORK
In this paper, we provided a framework to allow auto-

matic and efficient integration of pipelined data-path for

processor array synthesis tools. This framework is based
on well-established space-time transformations which ensure
the correctness of the pipelined circuit. Although this trans-
formation is not restricted to FPGA implementations, we
observed that these types of architectures are very well suit-
ed to such transformations which can increase the raw-power
of the synthesized architecture by factors up to 6.

Although the results are very encouraging we believe that
there is need to further explore the trade-off involved with
very fine grain pipelined designs. Specifically since routing
delay is likely to have a major influence on such designs,
we believe that there is some need for a layout-aware re-
timing tool which would be able to compensate the routing
influence by exploiting placement information. This is the
subject of our ongoing investigations.

6. REFERENCES
[1] The MMAlpha Environment. COSI Website, IRISA

http://www.irisa.fr/COSI/ALPHA.

[2] J.B. Saxe and C.E. Leiserson. Optimizing synchronous
systems. In J. VLSI and Computer systems, 1983.

[3] A. Darte. Regular Partitioning for Synthesizing
fixed-size Systolic Arrays. In INTEGRATION, the
VLSI journal, 1991.

[4] A. Darte et al. A Contructive Solution to the Juggling
Problem. In International Conference on Application
Specific Processor Arrays (ASAP), 2000.

[5] R. Schreiber et al. High-level Synthesis of
Non-programmable Hardware Accelerators. In IEEE
conference on Application Specific Array Processor,
2000.

[6] E.F. Depreterre P. Dewilde and J. Bu. A Design
Methodology for Partitioning Systolic Arrays. In
IEEE conference on Application Specific Array
Processor, 1990.

[7] C. Patterson. High performance DES encryption in
Virtex FPGAs using JBits. In Kenneth L. Pocek and
Jeffrey Arnold, editors, IEEE Symposium on FPGAs
for Custom Computing Machines. IEEE Computer
Society Press, 2000.

[8] P. Quinton. Automatic Synthesis of Systolic arrays
from Recurrent Uniform Equations. In International
Conference on Computer Architecture, pages 208–214,
1984.

[9] S. Derrien S. Rajopadhye and S. Sur-Kolay. Optimal
partitionning for FPGA based regular array
implementations. In IEEE PARELEC’00, August
2000.

[10] S. Derrien S. Rajopadhye and S. Sur-Kolay.
Combining Instruction and Loop Level Parrallelism
for FPGAs. IRISA Research report N1376, 2001.

[11] L. Thiele J. Teich and L. Zhang. Scheduling of
Partitioned Regular Algorithms on Processor Arrays
with Contrained Resources. In International
Conference on Application Specific Processor Arrays
(ASAP), 1996.

[12] Renate Merker and Uwe Eckhardt. Co-Partitionning -
A Method for Hardware/Software design for scalable
Systolic Arrays. In Reconfigurable Architectures,
ITPress, 1997.

