
Timing Analysis of Embedded Software
for Speculative Processors

Tulika Mitra
tulika@comp.nus.edu.sg

Abhik Roychoudhury
abhik@comp.nus.edu.sg

Xianfeng Li
lixianfe@comp.nus.edu.sg

School of Computing
National University of Singapore
Republic of Singapore 117543

ABSTRACT
Static timing analysis of embedded software is important for
systems with hard real-time constraints. To accurately es-
timate time bounds, it is essential to model the underlying
micro-architecture. In this paper, we study static timing
analysis of embedded programs for modern processors with
speculative execution. Speculation of conditional branch
outcomes significantly improves processor performance, and
hence program execution time. Although speculation is used
in most modern processors, its effect on software timing has
not been systematically studied before. The main contri-
bution of our work is a parameterized framework to model
different control flow speculation schemes. The accuracy of
our framework is illustrated through tight timing estimates
obtained for benchmark programs.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and Embedded
Systems

General Terms
Measurement, Performance.

Keywords
Branch Prediction, Worst Case Execution Time.

1. INTRODUCTION
An embedded system contains processor(s) running spe-

cific application programs which communicate with an ex-
ternal environment in a timely fashion. These application
programs thus have real-time requirements, i.e., there are
hard deadlines on the execution time of such software. More-
over, many embedded systems are safety critical. Therefore,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02,October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

it is important to perform static analysis of embedded soft-
ware to guarantee the satisfiability of all timing constraints.

Static timing analysis can provide an upper/lower bound
on the execution time of a program. These bounds are
useful for schedulability analysis, hardware/software parti-
tioning, choice of processor (design space exploration) etc.
Due to its inherent importance in embedded system design,
timing analysis of embedded software has been extensively
studied [2, 5, 6, 9, 11, 14, 16]. Accurate timing analysis
critically depends on modeling the effects of the underly-
ing micro-architecture. Ignoring the micro-architecture can
produce extremely pessimistic time bounds. This is particu-
larly so because modern processors employ advanced micro-
architectural features such as pipeline, caches, and specula-
tive execution to speed up program execution. In the recent
past, researchers have studied the effects of pipeline and
cache on program execution time [5, 9, 11, 15].

The presence of branch instructions forms control depen-
dency between different parts of the program. This depen-
dency causes pipeline stalls which can be avoided by specu-
lating the control flow subsequent to a branch. Current gen-
eration processors perform control flow speculation through
branch prediction, which predicts the outcome of branch
instructions [7]. If the prediction is correct, then execution
proceeds without any interruption. For incorrect prediction,
the speculatively executed instructions are undone, incur-
ring a branch misprediction penalty. This penalty varies
between 3-19 clock cycles. If branch prediction is not mod-
eled, all the branches in the program must be conservatively
assumed to be mispredicted for finding the maximum exe-
cution time. This pessimism results in as much as 60−70%
over-estimation for some of the benchmarks in this paper,
even assuming a 3 clock cycle branch misprediction penalty.

In this paper, we model the effects of speculation via
branch prediction on the Worst Case Execution Time of a
program, also known as its WCET. Our micro-architectural
modeling is completely generic and parameterizable w.r.t.
the currently used branch prediction schemes. It automat-
ically derives linear constraints on the total misprediction
count from the control flow graph of the program. These
constraints can be solved by integer linear programming
(ILP) solver to compute bounds on program execution time.

2. MODELING BRANCH PREDICTION
Branch prediction can be static or dynamic. Static schemes

associate a fixed prediction to each branch instruction via

126

compile time analysis. Almost all modern processors, how-
ever, predict the branch outcome dynamically based on past
execution history [7]. Dynamic schemes are more accurate
than static schemes, and in this work we study only dynamic
branch prediction.

Dynamic schemes predict a branch depending on the ex-
ecution history. The first dynamic technique proposed is
called local branch prediction [7, 12], where each branch is
predicted only based on its own last few outcomes. This
scheme uses a 2n-entry branch prediction table to store the
past branch outcomes, which is indexed by the n lower or-
der bits of the branch address. In the simplest case, each
prediction table entry is 1-bit and stores the last outcome
of the branch mapped to that entry. When a branch is en-
countered, the corresponding table entry is looked up and
used as the prediction. When a branch is resolved, the cor-
responding table entry is updated with the outcome.

Most modern processors however use global branch pre-
diction schemes [18] (also called correlation based schemes),
which are more accurate. Examples of processors using
global branch prediction include Intel Pentium Pro, AMD,
Alpha as well as embedded processors PowerPC 440GP [13]
and SB-1 MIPS 64 [8]. In these schemes, the prediction of
the outcome of a branch I not only depends on I’s recent
outcomes, but also on the outcomes of the other recently ex-
ecuted branches. Global schemes can exploit the fact that
behavior of neighboring branches in a program are often cor-
related. Global schemes uses a single shift register, called
Branch History Register (BHR) to record the outcomes of n
most recent branches. As in local schemes, there is a global
branch prediction table in which the predictions are stored.
The various global schemes differ from each other (and from
local schemes) in the way the prediction table is looked up
when a branch is encountered.

We now present our timing estimation technique to model
effects of speculation. In particular, we consider GAg, a
global branch prediction scheme [12, 18], which uses the
BHR as an index to look up the prediction table. However,
our modeling is generic and not restricted to GAg. In Section
4, we will demonstrate how it easily captures other global
prediction schemes as well as local schemes.

Control flow graph.The starting point of our analysis is
the control flow graph (CFG) of the program. The vertices
of this graph are basic blocks, and an edge i→ j denotes flow
of control from basic block i to basic block j. We assume
that the control flow graph has a unique start node and
a unique end node, such that all program paths originate
at the start node, and terminate at the end node. Each
edge i → j of the control flow graph has a label, denoted
label(i → j). For any block i, if the last instruction of i
is a branch then it has two outgoing edges labeled 0 and 1.
Otherwise, block i has one outgoing edge with label U .

For programs with procedures and functions (recursive
or otherwise), we create a separate copy of the CFG of a
procedure P for every distinct call site of P in the program.
Each call of P transfers control to its corresponding copy.

Flow constraints and loop bounds.Let vi denote the
number of times block i is executed, and let ei,j denote the
number of times control flows through the edge i → j. As

the start and end blocks are executed exactly once,

vstart = vend = 1 =
∑
i

start→i

estart,i =
∑
i

i→end

ei,end

As inflow equals outflow for other basic blocks,

vi =
∑
j

j→i

ej,i =
∑
j

i→j

ei,j

We provide bounds on the maximum number of iterations
for loops and maximum depth of recursive invocations for
recursive procedures. These bounds can be user provided,
or can be computed offline for certain programs [6].

Defining Execution Time bounds.Let costi be the exe-
cution time of basic block i assuming perfect branch predic-
tion. Given the program, costi is a fixed constant for each
i. Then, the total execution time of the program is

Time =
∑
i

(costi ∗ vi + penalty ∗mi)

where penalty is a constant denoting the penalty for a single
branch misprediction; mi is the number of times the branch
in block i is mispredicted. If block i does not contain a
branch, then mi = 0. By maximizing/minimizing this ob-
jective function we can get upper/lower bounds on execution
time. We now derive constraints on vi and mi.

Introducing History Patterns.To determine the predic-
tion of a block i, we first compute the index into the predic-
tion table. In the case of GAg, this index is the outcome of
last k branches before block i is executed. These k outcomes
are recorded in the Branch History Register (BHR). Thus,
if k = 2 and the last two branches were taken (1) followed
by not taken (0), the index would be 10. We define eπi,j ,
vπi and mπ

i : execution count of i → j, execution count and
misprediction count of block i when i is executed with BHR
= π, respectively. By definition:

ei,j =
∑
π e

π
i,j ; mi =

∑
πm

π
i ; vi =

∑
π v

π
i ; mπ

i ≤ vπi

For each block i and history π, we compute via static analy-
sis of the control flow graph a predicate poss where poss(i, π)
is true if and only if i can be reached with history π. If
¬poss(i, π), then we set eπi,j = vπi = mπ

i = 0.

Control flow among history patterns.First, we define
constraints on vπi . This provides an upper bound on mπ

i .
Recall that our index into the prediction table is simply a
history recording the past few branch outcomes. To model
the change in history due to control flow, we use the left
shift operator; thus left(π, 0) shifts pattern π to the left by
one position and puts 0 as the rightmost bit. We define:

Definition 1. Let i → j be an edge in the control flow
graph and let π be the history pattern at basic block i. The
change in history pattern on executing i → j is given by
Γ(π, i→ j) where:

Γ(π, i→ j) = π if label(i→ j) = U

left(π, 0) if label(i→ j) = 0

left(π, 1) if label(i→ j) = 1

127

Now consider all inflows into block i in the control flow
graph. Basic block i can execute with history π only if:
block j executes with some history π′, control flows along
the edge j → i, and Γ(π′, j → i) = π.

Note that for any incoming edge j → i, there can be at
most two history patterns π′ such that Γ(π′, j → i) = π.
For example if label(j → i) = 1, then Γ(011, j → i) =
Γ(111, j → i) = 111. For any block i (expect start block),
from the inflows of i’s execution with history π we get:

vπi =
∑
j

j→i

∑
π′

π = Γ(π′,j→i)

eπ
′
j,i

Similarly, for any basic block i (except end block) from
the outflows of i’s execution with history π we get:

vπi =
∑
j

i→j

eπi,j

Repetition of a history pattern.Suppose there is a mis-
prediction of the branch in block i with history π. This
means that certain blocks (maybe i itself) were executed
with history π, the outcome of these branches appear in the
πth row of the prediction table, and the outcome of these
branches must have created a prediction different from the
current outcome of block i. To model mispredictions, we
need to capture repeated occurrence of a history π during
program execution. For this purpose, we define pπi j .

Definition 2. Let i be the start block of the control flow
graph or a basic block with branch instruction. Let j be the
end block of the control flow graph, or a basic block with a
branch instruction. Let π be a history pattern. Then pπi j
is the number of times a path is taken from i to j s.t.

• π never occurs at a node with branch instruction be-
tween i and j.

• If i 6= start block, then π occurs at block i

• If j 6= end block, then π occurs at block j

Intuitively, pπi j denotes the number of times control flows
from block i to block j s.t. (a) π th row of the prediction
table is used for prediction at blocks i and j, and (b) the π
th row of the prediction table is never used for prediction
between blocks i and j. In these scenarios, the outcome
of block i can affect the prediction of block j (and cause
a misprediction). Furthermore, pπstart i (pπi end) denotes
the number of times the π th row of the prediction table is
looked up for the first (last) time at block i.

When the πth row of the prediction table is used at block i
for branch prediction, either it is the first use of the π th row
(denoted by pπstart i) or the π th row was used for branch
prediction last time in some block j 6= start. Similarly, for
every use of the π th row of the prediction table at block i,
either it is the last use of the πth row (denoted by pπi end) or
it is used for branch prediction next time in block j 6= end.
Since vπi denotes the number of times block i uses the πth
row of prediction table, therefore:

vπi =
∑
j

pπj i =
∑
j

pπi j

Also, there can be at most one first use, and at most one
last use of the π th row of the prediction table:∑

i

pπstart i ≤ 1 and
∑
i

pπi end ≤ 1

Furthermore, if ¬poss(i, π) or ¬poss(j, π) or j is not reach-
able from i then we set: pπi j = 0.

Introducing branch outcomes.Misprediction occurs on
differing branch outcomes for the same history pattern. We
define two new variables pπ,1i j and pπ,0i j corresponding to the
two outcomes of branch at i. Let Allpaths(pπi j) denote the
set of program paths contributing to the count pπi j . Any
such path must either begin with i’s outgoing edge labeled
1 (say i→ k) or i’s outgoing edge labeled 0 (say i→ l). We
now define:

• pπ,1i j denotes the execution count of those paths in
Allpaths(pπi j) which begin with the edge i→ k

• pπ,0i j denotes the execution count of those paths in
Allpaths(pπi j) which begin with the edge i→ l

By definition pπi j = pπ,1i j + pπ,0i j∑
j p

π,1
i j = eπi,k and

∑
j p

π,0
i j = eπi,l

Modeling mispredictions.For simplicity of exposition, let
us assume that each row of the prediction table contains a
one bit prediction: 0 denotes a prediction that the branch
will not be taken, and 1 denotes a prediction that the branch
will be taken. However, our technique for estimating the
mispredictions is generic. It can be extended if the predic-
tion table maintains ≥ 2 bits per entry.

Recall that mπ
i denotes the number of mispredictions of

the branch in block i when block i is executed with history
pattern π. There can be two scenarios for misprediction.

• Case 1: Branch of block i is taken
The number of such outcomes is ≤

∑
j p

π,1
i j , since this

denotes the total outflow from block i when it is ex-
ecuted with history π and the branch at i is taken.
Since branch at i was mispredicted, the prediction in
row π of the prediction table must have been 0 (not
taken). This is possible only if: another block j was
executed with history π, branch of block j was not
taken, and history π never appeared between blocks j
and i. The total number of such inflows into block i is
at most

∑
j p

π,0
j i.

• Case 2: Branch of block i is not taken
Number of such outcomes is ≤

∑
j p

π,0
i j . Total number

of inflows into block i s.t. the branch i can be mispre-
diction with history pattern π is at most

∑
j p

π,1
j i.

From the above, we derive the following bound on mπ
i

mπ
i ≤ min(

∑
j

pπ,1i j ,
∑
j

pπ,0j i)

+ min(
∑
j

pπ,0i j ,
∑
j

pπ,1j i)

This constraint can be straightforwardly rewritten into
linear inequalities by introducing new variables. Also, we

128

derived the bound on mπ
i assuming that each row of the

prediction table contains one bit. If each row of the predic-
tion table contains k > 1 bits (in practice at most 2 bits),
we then consider the outcomes at block i, and last k uses of
the π th row of the prediction table before arriving at i.

Putting it all together.We have derived linear inequalities
on vi (execution count of block i) and mi (misprediction
count of block i). We now maximize the objective func-
tion subject to these constraints using an (integer) linear
programming solver to give an estimate of the Worst Case
Execution Time (WCET) of the program.

3. AN EXAMPLE
We illustrate our estimation technique with a simple ex-

ample. Consider the CFG in Figure 1. All edges of the graph
are labeled. Recall that the label U denotes unconditional
control flow and the label 1 (0) denotes control flow by tak-
ing (not taking) a conditional branch. We assume that a 2
bit history pattern is maintained, i.e., the prediction table
has four rows for the history patterns 00, 01, 10, 11.

Flow constraints and loop bounds.The start and end
nodes execute only once. Hence

vstart = vend = 1 = estart,1 = e2,end + e1,end

From the inflows and outflows of blocks 1 and 2, we get:

v1 = estart,1 + e2,1 = e1,2 + e1,end

v2 = e1,2 = e2,end + e2,1

Furthermore, the edge 2→ 1 is a loop, and its bound must
be given. Let us consider a bound of 100. Then, e2,1 < 100.

Defining WCET.Let us assume a branch misprediction
penalty of 3 clock cycles. The WCET of the program is
obtained by maximizing

Time = 2vstart + 2v1 + 4v2 + 2vend + 3m1 + 3m2

assuming coststart = cost1 = 2, cost2 = 4, costend = 2.
Recall that costi is the execution time of block i (assuming
perfect prediction); mi is the number of mispredictions of
block i. There are no mispredictions for executions of start
and end blocks as they do not have branches.

Introducing History Patterns.We find out the possible
history patterns π for each basic block i via static analysis
of the CFG. This information is denoted by the predicate
poss(i, π). The initial history at the beginning of program
execution is assumed to be 00, i.e., poss(start, π) is true iff
π = 00. In our example, we obtain that poss(1, π) is true iff
π ∈ {00, 01} and poss(2, π) is true iff π ∈ {00, 10}.

We introduce the variables vπi and mπ
i : the execution

count and misprediction count of block i with history π.

m00
1 ≤ v00

1 and m01
1 ≤ v01

1 m00
2 ≤ v00

2 and m10
2 ≤ v10

2

m1 = m00
1 +m01

1 v1 = v00
1 + v01

1

m2 = m00
2 +m10

2 v2 = v00
2 + v10

2

The variables vπstart, v
π
end and eπi,j are defined similarly.

start

blk 1

blk 2

end

01

1
0

U

Figure 1: Example Control Flow Graph

Control flow among history patterns.We now derive the
constraints on vπi based on flow of the pattern π. Let us
consider the inflows and outflows of block 1 with history 01.
From the inflow we get: v01

1 = e10
2,1 + e00

2,1

Note that the inflow from block start to block 1 is au-
tomatically disregarded in this constraint since it cannot
produce a history 01 when we arrive at block 1. Also, for
the inflows from block 2 the history at block 2 can be either
00 or 10. Both of these patterns produce history 01 at block
1 when control flows via the edge 2 → 1. From the out-
flows of block 1 with history 01 we have: v01

1 = e01
1,2 + e01

1,end

Constraints for other blocks and patterns are similar.

Repetition of a history pattern.To model the repetition
of history pattern along a program path, the variables pπi j
are introduced (refer Definition 2). We now present the
constraints for the pattern 01. Corresponding to the first
and last occurrence of the history pattern 01 we get:

p01
start 1 ≤ 1 and p01

1 end ≤ 1

Corresponding to the repetition of the pattern 01 we get:

Exec. with01 Inflow from last 01 Outflow to next 01

v01
1 = p01

1 1 + p01
start 1 = p01

1 1 + p01
1 end

Constraints for the other patterns are derived similarly.

Modeling mispredictions.Using variables vπi , pπi,j and ei,j
we get constraints for m00

1 , m00
2 , m01

1 and m10
2 (not shown

due to space limitations). This bounds the total number of
mispredictions m1 + m2. The objective function is maxi-
mized subject to these constraints to obtain the WCET.

4. MODELING OTHER SCHEMES
We now discuss the extensions of the technique for model-

ing other branch prediction schemes. The prediction schemes
differ from each other primarily in how they index into the
prediction table. To predict a branch I, the index computed
can be a function of: (a) the past execution trace (history)
and (b) address of the branch instruction I. In the GAg
scheme, the index computed depends solely on the history
and not on the branch instruction address. Other global
prediction schemes (gshare, gselect) use both history and

129

Program Description
check -ve number search of 100-element array
matsum Summation of two 100× 100 matrices
matmul Multiplication of two 10× 10 matrices
fft 1024-point Fast Fourier Transform
fdct Fast Discrete Cosine Transform
isort Insertion sort of 100-element array
bsearch Binary search of 100 element array
eqntott Drawn from SPEC’92 integer benchmarks
dhry Dhrystone benchmark

Table 1: Description of benchmark programs.

branch address, while local schemes use only the branch ad-
dress. Our modeling is independent of the definition of the
prediction table index, so far called as the history pattern
π. To model the effect of other branch prediction schemes,
we only alter the meaning of π, and show how π is updated
with the control flow (the Γ function of Definition 1). No
change is made to the linear constraints described before.

In the popular gshare [12] scheme, the BHR is XOR-ed
with last n bits of the branch address to look up the pre-
diction table. Usually, gshare results in a more uniform dis-
tribution of table indices compared to GAg. We define the
index π as π = historym⊕ addressn(I) where m,n are con-
stants, n ≥ m, ⊕ is XOR, addressn(I) denotes the lower
order n bits of branch instruction I in block i, and historym
denotes the most recent m branch outcomes (which are
XOR-ed with higher-order m bits of addressn(I)). And,

Γgshare(π, i→ j) = Γ(historym, i→ j)⊕ addressn(J)

In gselect (GAp) [18], the BHR is concatenated with the
last few bits of the branch address to look up the table. The
modeling is similar and is omitted for space considerations.

In local schemes, the index π for branch instruction I is
the least significant n bits of I’s address, denoted addressn(I)
(n is a constant). Here π is independent of the past execu-
tion history of other branches. The update of π due to con-
trol flow is given by Γlocal(π, i → j) = addressn(J), where
addressn(J) denotes the least significant n bits of the branch
instruction J in basic block j.

5. EXPERIMENTAL RESULTS
We selected nine different benchmarks for our experiments

(refer Table 1): check, matsum, matmult, fft and fdct are
loop intensive programs; isort, bsearch, dhry and eqntott

execute hard-to-predict conditional branches arising from if-
then-else statements within nested loops.

Methodology.We assumed zero cache misses and a perfect
processor pipeline with no stalls except for penalty due to
misprediction of conditional branches. We assumed that the
branch misprediction penalty is 3 clock cycles (as in the Intel
Pentium processor). We used the SimpleScalar architectural
simulation platform [1] in the experiments. SimpleScalar
instruction set architecture (ISA) is a superset of MIPS ISA
- a popular embedded processor. By changing SimpleScalar
parameters, we could change the branch prediction scheme
for the experiments.

Note that our technique is estimating the Worst Case Exe-
cution Time (called estimated WCET). To find the accuracy
of our estimation technique, we need the actual Worst Case

Execution Time (called actual WCET). Clearly, estimated
WCET ≥ actual WCET. In addition, we must ensure that
the difference (estimated WCET - actual WCET) should be
small. Among the benchmarks, matsum, matmult, fft, fdct,
and dhry which have only one possible input, the actual
WCET can be computed via SimpleScalar simulation. For
other programs, finding actual WCET is computationally
infeasible. So, we used human guidance to select certain
inputs which are suspected to increase execution time via
mispredictions. We then simulated the programs with these
selected inputs and reported the maximum observed exe-
cution time (called observed WCET). Therefore estimated
WCET ≥ actual WCET ≥ observed WCET.

We wrote a prototype analyzer that accepts assembly lan-
guage code annotated with loop bounds. Our analyzer is
parameterized w.r.t. predictor table size, choice of predic-
tion schemes and misprediction penalty. This makes our
branch prediction analyzer retargetable w.r.t. various pro-
cessor micro-architectures. The analyzer first disassembles
the code, identifies the basic blocks and constructs the con-
trol flow graph (CFG). From the CFG, our analyzer au-
tomatically generates the objective function and the linear
constraints. These constraints are then submitted to an ILP
solver. For our experiments, we used CPLEX [4], a commer-
cial ILP solver distributed by ILOG.

Accuracy.To evaluate the accuracy of our branch predic-
tion modeling, we present the experiments for three different
branch prediction schemes: gshare, GAg and local. Since
finding the worst case input of a benchmark (which pro-
duces the actual WCET) is a human guided and tedious
process, we only measured the actual WCET assuming a 4-
entry prediction table. The results appear in Table 2. Even
though not shown here due to space shortage, the estima-
tion accuracy was independent of the prediction table size.
Our estimation technique obtains a very tight bound on the
WCET and misprediction count in all benchmarks except
fft. The reason is that the number of iterations of the in-
nermost loop of fft depends on the loop iterator variable
value of the outer loops. This can be captured by provid-
ing inequations obtained from data-flow analysis of the loop
iterator variables.

Performance.We formulated the timing analysis problem
(for gshare scheme) with larger branch prediction table sizes
varying from 32–1024 entries. Recall that in gshare, the
branch instruction address is XOR-ed with the global branch
history bits. In practice, gshare scheme uses smaller num-
ber of history bits than address bits, and XORs the history
bits with the higher order address bits [12]. The choice of
the number of history bits in a processor depends on the
expected workload. In our experiments, we used a maxi-
mum of 4 history bits as it produces the best overall branch
prediction performance across all our benchmarks.

On a Pentium IV 1.3 GHz processor with 1 GByte of main
memory, our timing estimation technique requires less than
0.5 second for all the benchmarks.

6. RELATED WORK
Little work has been done to study the effects of branch

prediction on a program’s execution time. Effects of static
branch prediction have been investigated in [2, 10]. How-

130

Pgm. gshare GAg local
WCET Mispred WCET Mispred WCET Mispred

Obs. Est. Obs. Est. Obs. Est. Obs. Est. Obs. Est. Obs. Est.

check 611 611 3 3 611 611 3 3 1,196 1,196 198 198
matsum 101,417 101,417 204 204 101,417 101,417 204 204 101,405 101,405 200 200
matmul 14,732 14,732 223 223 14,732 14,732 223 223 14,663 14,663 200 200
fdct 2,493 2,493 7 7 2,493 2,493 7 7 2,484 2,484 4 4
fft 213,052 223,640 3,110 6,865 217,048 231,336 4,442 9,205 219,220 219,279 5,166 5,192
isort 74,225 74,742 9,687 9,954 46,526 46,548 587 596 46,447 46,447 399 399
bsearch 104 104 9 9 104 107 9 10 95 98 6 7
eqntott 2,311 2,314 203 204 2,308 2,319 202 205 2,311 2,314 203 204
dhry 122,026 124,297 2,207 2,812 122,617 123,479 2,404 2,606 122,005 122,276 2,200 2,205

Table 2: Observed and estimated WCET (in number of processor cycles) and misprediction count with gshare,
GAg, and local schemes.

ever, most current day processors (Intel Pentium, AMD,
Alpha, SUN SPARC) implement dynamic branch prediction
schemes, which are more difficult to model. To the best of
our knowledge, [3] is the only other work on timing estima-
tion under dynamic branch prediction. Their technique is
similar to cache modeling techniques [5] and cannot be used
to model global branch prediction schemes.

Using Integer Linear Programming (ILP) for WCET anal-
ysis is not new. In particular, [9] has reduced the WCET
analysis of instruction cache behavior into an ILP problem.
In [17], ILP has been used for program path analysis sub-
sequent to abstract interpretation based micro-architectural
modeling of instruction cache, pipelines etc.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a framework to measure the

effects of speculative execution on the Worst Case Execu-
tion Time of a program. Our modeling extends existing
work on modeling static branch prediction [2] and uniformly
captures various dynamic branch prediction schemes (which
are used in both general-purpose and embedded processors
[8, 13]). Using our technique, we have obtained tight tim-
ing estimates for benchmark programs under various branch
prediction schemes. In future we plan to integrate our mod-
eling with existing micro-architectural modeling of pipeline
and cache for analyzing program execution time.

8. ACKNOWLEDGMENTS
This work was partially supported by National University

of Singapore research grant R-252-000-088-112.

9. REFERENCES
[1] D. Burger, T. Austin, and S. Bennett. Evaluating

Future Microprocessors: The SimpleScalar Toolset.
Technical Report CS-TR96-1308, University of
Wisconsin - Madison, 1996.

[2] K. Chen, S. Malik, and D.I. August. Retargetable
static software timing analysis. In IEEE/ACM Intl.
Symp. on System Synthesis (ISSS), 2001.

[3] A. Colin and I. Puaut. Worst case execution time
analysis for a processor with branch prediction.
Journal of Real time Systems, May 2000.

[4] CPLEX. The ilog cplex optimizer v7.5, 2002.
Commercial software, http://www.ilog.com.

[5] C. Ferdinand, F. Martin, and R. Wilhelm. Applying
compiler techniques to cache behavior prediction. In
ACM Intl. Workshop on Languages, Compilers and
Tools for Real-Time Systems, 1997.

[6] C. Healy, M. Sjodin, V. Rustagi, and D. Whalley.
Bounding loop iterations for timing analysis. In IEEE
Real-time Applications Symposium (RTAS), 1998.

[7] J.L. Hennessy and D.A. Patterson. Computer
Architecture- A Quantitative Approach. Morgan
Kaufmann, 1996.

[8] SiByte Inc. SiByte SB-1 MIPS64 embedded CPU
Core. In Embedded Processor Forum, 2000.

[9] Y-T. S. Li, S. Malik, and A. Wolfe. Performance
estimation of embedded software with instruction
cache modeling. ACM Transactions on Design
Automation of Electronic Systems, 4(3), 1999.

[10] S-S. Lim, J.H. Han, J. Kim, and S.L. Min. A worst
case timing analysis technique for in-order superscalar
processors. Technical report, Seoul National
University, 1998. Earlier version published in IEEE
Real Time Systems Symposium(RTSS) 1998.

[11] T. Lundqvist and P. Stenstrom. Integrating path and
timing analysis using instruction-level simulation
techniques. In Intl. Workshop on Languages,
Compilers and Tools for Embedded Systems, 1998.

[12] S. McFarling. Combining branch predictors. Technical
report, DEC Western Research Laboratory, 1993.

[13] IBM Microelectronics. PowerPC 440GP Embedded
Processor. In Embedded Processor Forum, 2001.

[14] P. Puschner and Ch. Koza. Calculating the maximum
execution time of real-time programs. Journal of
Real-time Systems, 1(2), 1989.

[15] J. Schneider and C. Ferdinand. Pipeline behavior
prediction for superscalar processors by abstract
interpretation. In ACM Intl. Workshop on Languages,
Compilers and Tools for Embedded System, 1999.

[16] A.C. Shaw. Reasoning about time in higher level
language software. IEEE Transactions on Software
Engineering, 1(2), 1989.

[17] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and
precise WCET prediction by separated cache and path
analysis. Journal of Real Time Systems, May 2000.

[18] T.Y. Yeh and Y.N. Patt. Alternative implementations
of two-level adaptive branch prediction. In ACM Intl.
Symp. on Computer Architecture (ISCA), 1992.

131

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

