
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Data Memory Design Considering Effective
Bitwidth for Low-Energy Embedded Systems

Cao, Yun
Department of Computer Science and Communication Engeering, Kyushu University

Tomiyama, Hiroyuki
Institute of Systems & Information Technologies/KYUSHU

Okuma, Takanori
Department of Computer Science and Communication Engeering, Kyushu University

Yasuura, Hiroto
Department of Computer Science and Communication Engeering, Kyushu University

https://hdl.handle.net/2324/5851

出版情報：Proc. of IEEE/ACM Proc. of International Symposium on System Synthesis (ISSS'02),
pp.201-206, 2002-10. Association for Computing Machinery
バージョン：
権利関係：

Data Memory Design Considering Effective Bitwidth
for Low-Energy Embedded Systems

Yun Cao Hiroyuki Tomiyama* Takanori Okuma Hiroto Yasuura
Department of Computer Science and Communication Engeering, Kyushu University

Kasuga Koen 6-1, Fukuoka 816-8580, Japan

{cao,okuma,yasuura}@c.csce.kyushu-u.ac.jp
*Institute of Systems & Information Technologies/KYUSHU

Fukuoka SRP Center Building 7F, 2-1-22, Momochihama, Fukuoka 814-0001, Japan

{tomiyama}@isit.or.jp

ABSTRACT
This paper presents a novel low-energy memory design tech-
nique, considering effective bitwidth of variables for application-
specific systems, called VAbM technique. It targets the ex-
ploitation of both data locality and effective bitwidth of vari-
ables to reduce energy consumed by redundant bits. Under
constraints of the number of memory banks, the VAbM tech-
nique use variable analysis results to perform allocating and
assigning on-chip RAM into multiple memory banks, which
have different size with different number of word lines and
different number of bit lines tailored to each application re-
quirements. Experimental results with several real embed-
ded applications demonstrate significant energy reduction
up to 64.8% over monolithic memory, and 18.4% over mem-
ory designed by banking technique.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles; J.2 [Computer-
aided Engineering]: Computer-aided Design

General Terms
Design, Algorithms

1. INTRODUCTION
Memory-processor integration on System-on-a-Chip offers

new opportunities for reducing the energy of embedded sys-
tems. One of the key issues in the design of energy-efficient
processor-based architectures for embedded systems is the
power consumed by memories. Several researchers have
pointed out that the power consumption in memories can
take a dominant fraction on the power budget of a whole
embedded system, especially, for data-dominated applica-
tions. Embedded processor-based systems allow customiza-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02,October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

tion of memory configuration based on application-specific
requirements [1].

Some researches have analyzed the power dissipation of
different memory architectures for a given application. [2]
presented power reduction technique for instruction memo-
ries in application specific systems. [3] presented a method-
ology for developing models of on-chip SRAM memory orga-
nization. [4] proposed a power-minimization approach to si-
multaneous register and memory allocation in behavior syn-
thesis. The allocation problem is formulated as a minimum-
cost network flow that can be solved in polynomial time.

On-chip caches are well known architectural optimization
technique for memory design [5]. Our work moves from the
observation that cache memories are not the most power-
efficient architecture. Data storage/retrieval into/from a
cache is much more power-consuming than accessing a mem-
ory containing the same amount of data. In embedded sys-
tems, on-chip SRAM is a valid alternative to caches. In
this architecture, the most frequently accessed addresses are
statically mapped onto SRAM to guarantee power and per-
formance efficiency. The main difference between the SRAM
and data cache is that the SRAM guarantees a single-cycle
access-time, whereas access to the cache is subject to cache
misses.

Our approach is close to [6], which focused on on-chip
SRAM bank partitioning for low energy consumption. They
started from the dynamic execution profile of an embedded
application running on a given processor core, and synthe-
size a multi-banked SRAM architecture optimally fitted to
the execution profile.

Our work differs from the ones above in that we focuse on
memory allocation and assignment for low-energy on-chip
RAM with respect to the memory utilization considering not
only memory access frequency but also effective bitwidth of
variables. We present an exploration technique for determin-
ing efficient on-chip memory configuration, characterized by
the size of memory with different number of bit lines and
word lines, based on variable analysis for a given applica-
tion, targeting to reduce energy consumption of memory.
This paper focuses only on the data memory optimization
because for many embedded applications, the volume of data
being processed far exceeds the number of instructions.

The rest of this paper is organized as follows. Section 2 de-
scribes variable analysis. Section 3 presents our technique
for low-energy memory design based on variable analysis,

bit

T
h

e
n

u
m

b
er

 o
f

va
ri

ab
le

s

Figure 1: Variable Distribution for Effective
Bitwidth in MPEG-2 Decoder

calledd VAbM technique. Experiments and results are re-
ported in Section 4. Finally, Section 5 concludes and gives
our future work.

2. VARIABLE ANALYSIS
In application-specific system design, to some extent, be-

havior of the application is statically known, although it
has some dependence on input data. Therefore, analyzing
the application program and using the characteristics to fur-
ther optimization for application-specific systems is neces-
sary. By analyzing effective bitwidth of variables we can
reduce unused bits to reduce memory storage requirement
and more over by analyzing the lifetime of variables, we
can make efficient use of memory storage by variables with
disjoint lifetime sharing same memory space. In addition,
by analyzing access frequency of variables, we can use data
locality efficiently to reduce memory access energy.

2.1 Data Width Analysis
In many cases, there are a lot of bits of a variable, which

are never used during execution of a program. Therefore,
the effective bitwidth of each variable in an application pro-
gram needs to be analyzed in order to use memory efficiently,
which results in reduction of energy consumption.

In this paper, we define effective bitwidth as the small-
est size which can hold both maximum and minimum val-
ues of a variable. We use two methods to analyze effective
bitwidth of variables [7] [8]. One is static analysis; the other
is simulation-based dynamic analysis.

We analyzed the C source program of MPEG-2 video de-
coder using our developed variable size analyzer and got
the variable analysis results of effective bitwidth depicted
in Figure 1. This figure shows that there are a lot of vari-
ables having many unused bits in MPEG-2 decoder, which
originally declared as “int” type.

2.2 Lifetime Analysis
The lifetime of a variable is defined as the period between

its definition and last use [9]. It is an important metric
affecting register allocation, where variables with disjoint
lifetimes can be stored in the same register. Just like this,
we analyze lifetime of variables [10], so that we can cluster
them to share same memory space. Therefore, by analyzing
lifetime of variables, we can make efficient use of memory.

2.3 Access Frequency Analysis
It is well known that only a few parts of programs are fre-

quently executed in many application programs. Therefore,
to profile the access frequencies of the variables in theses pro-
grams and assign them into a small memory is an effective

bit

50M

45M

40M

30M

25M

20M

15M

10M

5M

0

35M

A
cc

es
s

C
ou

nt
 o

f V
ar

ia
bl

es

Figure 2: Variable Access Count of MPEG-2
Decoder

way for low energy design. The main purpose of this step is
to find a memory organization with good storage locality for
frequently accessed memory locations. We got the Figure 2,
which shows the profiled results for the access frequencies of
variables with effective bitwidth in MPEG-2 decoder using
our profiler. From the figure, we can see that there are “hot
spots” for variable access in MPEG-2 decoder.

3. LOW-ENERGY MEMORY DESIGN
Memory design can be divided into two steps. First, sev-

eral memories are selected from the available memory mod-
ules with different number of bit lines and word lines. This is
called memory allocation; second, the variables are assigned
into these allocated memories. The step is called memory as-
signment. When variables are assigned into memories, the
size of variables determines the required memory size and
the maximal data width determines the required bit width
of memories. With the decision of memory allocation and
assignment, the memory organization is fully determined.

Energy consumption strongly depends on the size of phys-
ical memory (both of the number of bit lines and word lines).
Memories with smaller size consumed lower energy. There-
fore, we try to allocate variables with higher access frequency
and smaller effective bitwidth into a smaller memory with
fewer numbers of bit lines and word lines, which leads signif-
icant energy reduction. However, allocating too many mem-
ory banks leads increase of energy consumption because of
addressing complexity and severe wiring overheads. For a
given embedded application program, our target is to de-
termine the memory allocation and assignment by mapping
each variable into on-chip SRAM so as to minimize total
energy consumption of memory.

The target system is assumed as follows: Data memories
are organized by several on-chip SRAMs having different size
with different number of bit lines and different word lines, a
hierarchical memory.

The memory model is shown in Figure 3. Various memory
allocation and assignment can be seen as specializations of
the structure. In the hierarchical model, low hierarchy levels
are made of small memories with few numbers of bit lines
and word lines, close to processor, and tightly coupled with
it. Memories at high hierarchy levels are made of increas-
ingly size with increasing number of bit lines and word lines,
far from processor. Roughly speaking, the distance between
a processor and a memory hierarchy level represents the ef-
fort needed to fetch (or store) a given amount of data from
(to) the memory. Effort can be expressed in units of energy.
On the other hand, memory levels increases addressing com-
plexity and has a sizable area overhead. Both these factors
reduce the energy savings.

Data

Addr

Data
Addr

(a) (b)

Figure 3: (a) Monolithic Memory (b) Allocated and
Assigned Memory Using Our Technique

As a concrete example of a memory architecture that can
be modeled with the template of Figure 3, the hierarchy has
three levels. The first level N1 has 16 bytes lines with 8 bit
width, the second level N2 has 64 bytes with 16 bit width,
and the third level N3 has 128 bytes with 32 bit width.
Similarly, memory size increases with level. Average energy
consumption per cycle for read accessing, for N1 memory is
approximately 337pJ; for N2 memory access is 852pJ; and
for N3 access is 1132pJ respectively.

The proposed optimization technique is based on the fol-
lowing observations:

∗ The smaller memory size becomes, the less energy will
be consumed. We consider not only the number of
words but also the bit width of memories.

∗ Access to memory are highly non-uniform.

∗ There are a lot of variables, in which many bits are
never used during program executions.

∗ Variables with disjoint lifetimes can share same mem-
ory space.

3.1 Basic Approach
The main purpose of memory allocation and assignment

is to minimize overall energy cost within performance and
memory size constraints. Hierarchical organizations reduce
memory energy consumption by exploiting not only the nonuni-
formities in access frequencies but also effective bitwidth of
variables. We generate a hierarchical memory, whose fre-
quently accessed locations are placed in low hierarchy levels
with small size (few numbers of bit lines and word lines).

The procedure of our memory allocation and assignment
approach consists of the following phases:

∗ Phase 1: For a given application program, analyze
variables, report effective bitwidth, access frequency
and lifetime of variables.

∗ Phase 2: Using analysis results including effective bitwidth,
access frequency and lifetime of variables, perform mem-
ory allocation and assignment considering not only the
number of words but also the bit width of memory, in
order to reduce energy consumption of memories.

The details will be explained in section 3.4.

3.2 Energy Cost Metrics
Because a static random access memory(SRAM) does not

require additional fabrication steps and dedicated technol-
ogy, it can be easily integrated onto the same chip with
the processor and other logic circuits. Therefore, embed-
ded SRAMs are much more common in SoC design than
non-volatile memories and DRAMs. Although our technique
can also be used for DRAMs, this work focuses on on-chip
SRAMs.

For memories, we assume that the power dissipated for
charging the global bit line is in proportional to the number
of partitioned segments, and the power dissipated in a single
segment is in proportional to the size of the segment. Under

these assumptions, the memory power consumption can be
approximated by Formula(1), where Nseg, Nword, η, λ, and
γ denote the number of segments, the number of words, and
coefficients for each term, respectively.

Emem = η · Nseg + λ · Nword

Nseg
+ γ (1)

In Formula(1), the first and second terms represent the
energy dissipated for charging the global bit line and the
energy dissipated in a single memory segment respectively.
The last term represents a constant factor in memory power
consumption. From Formula(1), it is easy to derive that the
number of memory segments which minimizes the memory
power consumption is

�
(λ/η) · Nword. We generated some

SRAM models by Alliance CAD System V er.4.0 with 0.5um
double metal CMOS technology, and using the SPICE sim-
ulation of these memories with the different configurations,
we obtained the estimation models of SRAM as follows:

er = 24.9 ·
�

b · Nword + 56[pJ/cycle] (2)

ew = 197 ·
�

b · Nword + 369[pJ/cycle] (3)

Where the access energy of memories for read/write oper-
ations is expressed as er and ew) respectively. b is the bit
width of memory and Nword is the number of words.

The models demonstrate that the energy consumption in
SRAMs strongly depends on the bit width and the number
of words. The energy consumption of SRAM reduces with
the decrease of the number of bit lines and word lines.

The energy cost function employed for estimating memory
energy is shown as follows. The total energy consumption
of memories is the summation of the memory banks.

TEm =
�

N

(TEm(j) + TEmδ(j)) (4)

TEm(j) =
�

|Q(j)|
E(i, j) (5)

E(i, j) = er(j) · TNar(xi) + ew(j) · TNaw(xi) (6)

TEmδ(j) = Emon · δ(j) (7)

where
TEm : Total energy consumption of memory
N : Total number of memory banks
TEm(j) : Energy consumption of memory bank j
TEmδ(j) : Energy overhead for added bank j
Emon : Energy consumption of a monolithic memory
E(i, j) : Energy consumption of x i for read and write

access to memory bank j
X : A finite set of variables in a given application program,

X = {x1, x2, ..., xi, ..., xn}
xi : A variable, xi ∈ X
n: The number of variables in a given program
er(j)(ew(j)) : Energy consumption per read (write) access

for bank j
TNar(xi)(TNaw(xi)) : The number of read (write) accesses

for variable x i

Q(j) : The set of variables assigned into bank j Q(j) ⊆ X
δ(j) : Overhead coefficient for added bank j, caused by

addressing complexity.

3.3 Problem Formulation
This section gives some assumptions and notations, and

then formulates the problem of low-energy memory alloca-
tion and assignment.

Assumption 1
∗ The maximum number N of patitioned memory banks

is given, and we assume that there is not a cache in
the system.

Assumption 2
∗ If the effective bitwidth of the variable xi is bigger

than the bit width of the memory bank j, variable xi

will not be assigned into memory bank j. Namely, a
variable will not be divided into two words.

Assumption 3
∗ Several variables will not be merged as one word. For

example, if the effective bitwidth of variable x1 and
x2 are 16bits respectively, and they will be assigned
into memory bank 1, which has bit width of 32bits.
However, x1 and x2 are assigned as one word (32bits)
separately.

Notation
∗ EWd = {EWd(x1),EWd(x2), ...,EWd(xi), ...,EWd(xn)}

: A set of effective bitwidth for variables X

∗ TNa = {TNa(x1), TNa(x2), ..., TNa(xi), ..., TNa(xn)} :
A set of total memory access for variables X

∗ LT = {LT (x1), LT (x2), ..., LT (xi), ...,LT (xn)} : A Set of
Lifetime for variables X

∗ X , xi, δ(j), TEm, N , TEm(j), TEmδ(j), Q(j) : Defined
in previous subsection.

Problem Definition
Given X , EWd, TNa, LT and N
To find N and Q(j)
So that TEm =

�
N(TEm(j) + TEmδ(j)) is minimized

Subject to
Q(j) ⊆ X
X = Q(1)

�
Q(2)...

�
Q(N)

Q(1)
�

Q(2)...
�

Q(N) = φ

Allocated and assigned memory
With N memory banks, each bank has b(j)×m(j) size (the
number of bit lines and word lines are b(j), m(j) respec-
tively) where

b(j) = maxxi∈Q(j) EWd(xi), m(j) = |Q(j)|

ILP Formulation
We present an ILP(Integer Linear Programming) formula-
tion for the memory allocation and assignment problem.
The ILP model is used to find the number of modules and
the size(bit width and the number of words)of each module
such that the energy consumption is minimum under the
constraints of the maximum number of partitioned memory
banks. We refer to the set of variables that are assigned
into each modules as a variable grouping. The first step in
the procedure is to identify the permissible variable group-
ings. The variables in a variable grouping are assigned to
the same module.

The next step is to derive the ILP model. We give nota-
tions used in the formulation.

∗ a(i, j): Integer variables, a(i, j) = 1, If variable x i is as-
signed into memory bank j; otherwise, a(i, j) = 0

∗ U : A constant of positive integer, U > n

∗ b(j): Integer variables, b(j) = 1, If memory bank j is
selected; otherwise, b(j) = 0. Namely, b(j) = 1, when�

i a(i, j) ≥ 1, b(j) = 0, when
�

i a(i, j) = 0

∗ �i a(i, j)− U · b(j) ≤ 0

∗ �i a(i, j)− b(j) ≥ 0

Input:
source program : AP

(variables : xi ∈ X = {x1, . . . , xn}, 1 ≤ i ≤ n)
input data : Din

the maximum number of banks : N

overhead coefficient : δ(j) (1 ≤ j ≤ N)
Variable:

the subset of variables Q(j) ⊆ X
Output:

the optimized number of banks N

the optimized subset of variables Q(j)

the optimized energy consumption TEm opt

the optimized memory with size b(j)×m(j)(bits)
Step 1 : Variable Analysis

analyzer(AP, Din);
LT = {LT (x1), . . . , LT (xn)},
TNa = {TNa(x1), . . . , TNa(xn)},

return(EWd = {EWd(x1), . . . , EWd(xn)});
Step 2 : Memory Allocation and Assignment

Xc ← CompactV ar(X,LT);
for each xi ∈ Xc

a(i, j) = 0;
end for
TEopt = Emon;
Q(j) = φ;
for (N)

while (leads to reduction of TE opt)
for (i = 0...n− 1)

Cost = OBJ(i, j)
if (Cost < TEopt)

TEopt = Cost;
Q(j)← xi;

end for
b(j) = maxxi∈Q(j)EWd(xi);
m(j) = |Q(j)|;

end for
return(N, Q(j), TEmopt, b(j), m(j));

Figure 4: Pseudo Code of the Algorithm

Objective function:
Minimize: Cost = OBJ(i, j) =

�
i

�
j E(i, j) · a(i, j)

Constraints:
(1)1 ≤ i ≤ n, 1 ≤ j ≤ N ;
(2)the number of memory banks:

�
j b(j) ≤ N ;

(3)memory size:
�

i a(i, j) ≤ |Q(j)|, for all j;
For a given N , find a set of a(i,j) which minimize objective

function.

3.4 VAbM Technique
This section presents a technique for application-specific

memory organization in detail. VAbM receives a application
program AP as input, and generates the customized memory
architecture having N banks along with the assignment of
the variable subset Q(j) into each memory bank with size
of b(j) × m(j) bits as output, which have optimized energy
consumption. Each variable will be served by only one local
memory module, determined statically.

The goal of VAbM technique is that under the constraints
of the maximum number of memory banks, to find the op-
timal number of banks N and the assignment of those vari-
ables Q(j) in each bank to optimize memory energy con-
sumption. If we select the characteristics of the memory
modules such as bit width b(j) and word count m(j) con-
sidering all possible patterns to optimize memory, it will be
an NP-hard problem. A simple exhaustive search to solve
the memory assignment problem would have to first generate
clusters of all combinations of compatible variables(variables
that can share the same SRAM space) using lifetime anal-
ysis results and then generate all possible combinations of
these clusters and pick the combination with total size fitting

into the RAM that minimizes the total energy consumption.
This procedure requires O(22n

)time complexity, which is un-

acceptably expensive, since the function y = 22
n

grows very
rapidly, even for small values of n.

However, the memory assignment problem domain for
practical applications are restricted to a smaller range of
bit-widths(the bit-width of a memory module typically lies
between 4 and 128) and the maximum number of memory
banks constraint is smaller (usually N ≤ 4). We use greedy
algorithm to find the optimal solution. We propose VAbM
technique, considering variable analysis results of lifetime,
access frequency and effective bitwidth, which is evaluated
by our experiments shown in Section 4.

For VAbM technique, we use the SRAM models shown in
Section 3.2, Formula (2) and (3). We assume that we have
a memory library, which have modules with the arbitrary
number of bit lines and word lines. Figure 4 is the pseudo-
code of VAbM technique composed of two steps. In the first
step, variables are analyzed, effective bitwidth EWd, access
frequency TNa and lifetime LT of variables are reported.
This information will be used to customize the memory ar-
chitecture.

In the second step, memory allocation and assignment
based on variable analysis results are performed, and energy
consumption of the allocated and assigned memory is opti-
mized. In our solution to the memory allocation and assign-
ment problem, we first group variables that can share SRAM
space into clusters using lifetime analysis results of variables
to minimize memory storage. We formulate this problem as
clique-partitioning problem [11]. Then we customize mem-
ory for a given application considering access frequency and
effective bitwidth of variables. Variables with high frequency
of access and small effective bitwidth are good candidates to
store in a small memory with few numbers of bit lines and
word lines to reduce energy consumption of memory. How-
ever, in many applications the variables with small effective
bitwidth may have low access frequency. Because in real
application, the access frequencies are far bigger than ef-
fective bitwidth of variables (TNa >> EWd), we partition
memory considering access frequency of variables first.

We use the greedy algorithm shown in Figure 4. The com-
plexity of this heuristic algorithm is O(n). The input to the
algorithm for memory optimization is a set of variables X,
where each variable xi ∈ X is characterized by its access
frequency, its effctive bitwidth and its location a(i, j). All
a(i, j) are set to zero at first step. This means that all the
variables are assigned into one memory (a monolithic mem-
ory). Next, the algorithm provisionally relocate a variable
xi from the monolithic memory to a partitioned memory
bank j (a memory module selected from library). After cal-
culating Cost, the provisionally located variable xi is moved
back to former location. This process is operated for each
variable. After that, the algorithm selects a variable which
minimizes the Cost, and the selected variable is moved to
the memory bank j. Variables located in the monolithic
memory is successively moved in this way while the Cost is
reduced. If the cost becomes not to be improved, the algo-
rithm stops, at last the optimized memory allocation and
assignment is achieved.

4. EXPERIMENTS AND RESULTS
This section presents experiments and results to evaluate

the proposed VAbM technique. We use real embedded ap-

Data
Addr

Proc
Ctl

N1 Mem

N2 Mem

N3 Mem

Figure 5: Physical model of the allocated and
assigned memory using VAbM

plications as our benchmarks. Our target is to customize
memory suitable to a given application. We assume that
the physical model of the processor-based system with allo-
cated and assigned memory is that the processor is placed
facing the memory system. The memory address and data
buses are between two levels of memory banks facing each
other. Memory selection and decode logic is placed between
memory and processor shown in Figure 5. This is a simple
physical model used as a basis for assuming the values for
energy penalty coefficient δ = {δ(1), δ(2), ..., δ(N)}, and the
maximum number of allocation banks N .

In our experiments, N = 3 is assumed. This is a conser-
vative bound on allocation and assignment. δ is assumed
to δ = [0, 0.15, 0.10]. Overhead penalty δ(2) = 0.15 means
that the overhead energy is 15% of the energy consumed
by the monolithic memory, which is the largest because of
a sizable penalty caused by the selection control logic, the
routes of the buses and control wires from the unpartitioned
memory to the partitioned solution. δ(3) = 0.10 is still big,
because when one bank is added from two banks to three
banks, a bus stub to the right of the rest pair of banks is
needed. The simplified physical model is obviously just one
of the many possible choices. Our technique is completely
independently from it. Furthermore, the values of δ we set
is fairly conservative. In fact, the penalties can be tightened
to use appropriate layout techniques, and more aggressive
partitioning (N > 3) could be considered in a real design.

Table 1 shows the results of the experiments employed our
low-energy memory design technique based on variable anal-
ysis(VAbM). To illustrate the effectiveness of our technique,
we compare the experimental results to not only mono-
lithic memory, but also memory designed by banking tech-
nique, which is usually used by most of memory design-
ers. We use five real embedded applications as benchmarks,
which are calculator, Lempel-Ziv algorithm, ADPCM en-
coder, MPEG-2 AAC audio decoder, and MPEG-2 video de-
coder shown in the first column. The second column Emon
shows the total energy consumption of monolithic memory.
The next three columns show the results of memory bank-
ing technique. Configuration shows the details on how the
various memory banks are organized, in which bit width of
each memory bank is 32bits, TEb is the total energy con-
sumption of memory banks. Saving shows the reduction
compared to monolithic memory. The allocation and as-
signment results obtained by VAbM technique are listed in
the last three columns, where the column Configuration
provides the details on how the various memory banks are
organized, while TEm gives the total energy consumption
of the optimized memory. Finally, the column Saving re-
ports the percentage of energy reduction for the optimal or-
ganization over the monolithic one. Our approach achieved
energy reduction up to 64.8%, the average energy savings

Table 1: Optimized memory organization by VAbM technique
Memory banking technique Optimized memory by VAbM

Application Emon Configuration TEb Saving Configuration TEm Saving

Calculator 85rows 85rows × 8b
1.27 154rows 0.87 154rows × 32b 0.76
mJ 533rows mJ 31.5% 533rows × 32b mJ 40.2%

Lempel-Ziv 830rows 830rows × 13b
1.37 3rows 0.89 3rows × 15b 0.69
J 1663rows J 35.0% 1663rows × 15b J 49.6%

ADPCM 20rows 20rows × 10b
1.63 16rows 1.10 16rows × 14b 0.80
J 86rows J 32.5% 86rows × 19b J 50.9%

Mpeg2AAC 30rows 30rows × 20b
1.05 2374rows 0.39 2374rows × 32b 0.37
J 4804rows J 62.8% 4804rows × 32b J 64.8%

Mpeg2Video 26559rows 26559rows × 8b
145.1 26557rows 120.1 26557rows × 30b 105.2
kJ 28127rows kJ 17.2% 28127rows × 32b kJ 27.5%

Figure 6: Energy savings of benchmarks

is of 46.4%. The energy results also include the wiring and
logic energy overhead given by δ. Compared to the memory
designed by memory banking technique, our experimental
results show that we can get up to 18.4% energy reduction,
average 10.8% for the experimental applications shown in
Figure 6.

By considering not only access frequencies but also effec-
tive bitwidth of variables, we combine the memory banking
technique with variable analysis technique to perform mem-
ory allocation and assignment for a given application. The
data storage is managed more judiciously, resulting in sig-
nificant energy reduction without sacrificing performance.

5. CONCLUSIONS
This paper proposed a low-energy memory design tech-

nique based on variable analysis(VAbM) considering effec-
tive bitwidth of variables, which presents the optimum so-
lution under a given constraint of the maximum number of
banks. The hardware and wiring overhead due to additional
memory banks is properly taken into account as a penalty
factor. Experimental results on several real embedded appli-
cations demonstrated significant energy savings about 46.4%
on average, with respect to a monolithic memory and 10.8%
to memory used memory banking technique. We will work
on integration of customizing both processors and memories
based on variable analysis for low-energy application-specific
systems.

6. ACKNOWLEDGMENTS
This research was partly supported by the Grant-in Aid

for Scientific Resarch (B) (2) 12558029 and VCDS project

of STARC.

7. REFERENCES
[1] P. R. Panda, F. Catthoor, N. D. Dutt, K.

Danckaert, E. Brockmeyer and A. Vandercappelle
“Data and Memory Optimization Techniques for
Embedded Systems”. ACM Transactions on Design
Automation of Electronic Systems, Vol 6, No. 2, pp.
149-206, April 2001.

[2] T.Ishihara and H.Yasuura, “A Power Reduction
Technique with Object Code Merging for
Application Specific Embedded Processors”. Proc.
of Design Automation and Test in Europe,
pp.617–622, Mar. 2000.

[3] Sari L. Coumeri and Donald E. Thomas, “Memory
Modeling for System Synthesis”. Proc. of
International Symposium on Low Power Electronics
and Design, August 1998.

[4] Catherine H. Gebotys, “Low Energy Memory and
Register Allocation Using Network Flow”. Proc.of
34th. Design Automation Conference, June 1997.

[5] W. Shiue, C. Chakrabati, “Memory Exploration for
Low Power, Embedded Systems”. Proc.of 36th.
Design Automation Conference, June 1999.

[6] L. Benini, A. Macii, M. Poncino, “A Recursive
Algorithm for Low-Power Memory Partitioning”.
Proc. of International Symposium on Low Power
Electronics and Design, August 2000.

[7] H. Yamashita, H. Yasuura, F. N. Eko, and Yun
Cao, “Variable Size Analysis and Validation of
Computation Quality”. Proc. of Workshop on
High-Level Design Validation and Test, pp.95–100,
Nov. 2000.

[8] Yun Cao, Hiroto. Yasuura “A System-level Energy
Minimization Using Datapath Optimization”. Proc.
of International Symposium on Low Power
Electronics and Design, August 2001.

[9] A.V.Aho, R. Sethi, and J. D. Ullman,
“Compilers-Principles, Techniques and Tools”.
Addison-Wesley, 1986.

[10] A.Inoue, H.Tomiyama, T.Okuma, H.Kanbara, and
H.Yasuura, “Language and Compiler for Optimizing
Datapath Width of Embedded Systems”. IEICE
Trans. Fundamentals, Vol. E81-A, No.12, pp.
2595-2604, Dec. 1998.

[11] D. D. Gajski, N. D. Dutt, A. C-H Wu and S. Y-L
Lin, “High-level synthesis introduction to chip and
system design”. Kluwer Academic Publishers
Group, 1992.

