
Dataflow-Based Reconfigurable Architecture for
Streaming Applications

Anja Niedermeier, Jan Kuper, Gerard Smit
University of Twente, Department of Computer Science

Enschede, The Netherlands

Abstract—Coarse-grain reconfigurable arrays often rely on
an imperative programming approach including a read/write
mechanism for memory access. In this paper, we present an
architecture composed of a configurable array of computing cores
and memory blocks in which both the execution mechanism and
configuration principle of the computing cores and the behaviour
of the memory blocks are based on streaming and dataflow
principles. We illustrate our ideas with the implementation of
a long finite impulse response (FIR) filter where memory tiles
are used to store intermediate results.

I. MOTIVATION AND RELATED WORK

Streaming application are common in modern multimedia
and wireless applications, like for example Video and Audio
processing. In streaming applications, efficiency can drastically
be increased if the underlying execution mechanism is based
on dataflow principles, i.e. the system starts the execution
as soon as the required input data is available, in contrast
to conventional load/store mechanism commonly found in
imperative approaches.

In embedded computing, coarse-grain reconfigurable architec-
tures are an emerging paradigm for efficient implementations
of streaming systems. Those architectures usually combine
a general purpose processor (GPP) as host controller with
an array of small, reconfigurable processing elements that
are interconnected to form a larger, reconfigurable multicore
architecture. Cores in those arrays are usually small and contain
only the ALU and some local storage. Often bigger external
memory is added to be able to store for example intermediate
results or to provide look-up tables.

There have already been published a number of papers on
coarse-grain reconfigurable architectures, an extended overview
on reconfigurable architectures can be found in [1] and [2].
MorphoSys [3] is a hybrid of a host CPU and a reconfigurable
array. The connection to external memory is provided via the
system bus with DMA. The programming principle is based on
imperative programming. ADRES [4] is a combination of a very
long instruction word (VLIW) processor with a tight connection
to a reconfigurable grid. The two parts are connected via a
multi-port register file. Data access is performed via load/store
operations. The programming is C-based. XPP [5] contains an
array of 8x8 processing elements including 2 RAM-blocks per
row. The XPP array can be programmed either with the low-
level NML (native mapping language) or with an XPP-specific
subset of C. Memory access is performed with read and write
operations. DREAM [6] consists of a control unit, data path
and a memory access unit. To transfer data between DREAM

and the host CPU, exchange buffers are available. DREAM
is programmed using macro-instructions that are described in
single-assignment C syntax. RICA [7] is a heterogeneous array
of reconfigurable ICs. Dedicated control ICs are available so
that RICA does not require a host control CPU. In the array,
distributed memory elements are available that are accessed
via special memory access ICs. The programming principle is
C-based.

All the presented architectures have in common that they
rely on an imperative programming approach and, thus, on
a read/write method to access their memories. Whenever a
certain core requires data from an external memory, it requests
the data. That request can be handled via a central control
unit, a memory access unit or even a dedicated IC for memory
access.

Here we present a data-driven approach, where other
approaches are mostly control-driven. In our architecture, the
complete execution scheme is stream-based. That means, input
data is expected to be available as a stream, the elements in the
architecture consume and produce streams, and a stream (or
multiple streams) of data is the final result. In order to achieve
such an architecture, each actor was designed based on stream-
based execution. In contrast to the publications mentioned
above, we consider the memories as streaming actors. Our
basic assumption is that a core usually does not only need a
single element of data from a certain memory but a stream
of data elements. A common use case for this assumption is
that a certain streaming application is partitioned into several
parts that are executed in sequence. The intermediate results
have then to be stored in a memory and streamed back into
the system at a later stage. By implementing the memories as
streaming actors, the data transfer has only to be initialised once.
After the initialisation, the data then automatically streams to its
destination. As a consequence, dedicated load/store operations
can be omitted.

In the remainder of this paper we will illustrate the proposed
architecture, focusing on the streaming memory actor. Finally
we will present an extended use case where different features
of the architecture are exploited.

II. ARCHITECTURE

Figure 1 shows our architecture. The blocks denoted with
Cxy represent simple reconfigurable cores with identifier xy,
memory tiles are represented by the blocks labeled My where
y is the identifier.

978-1-4673-2896-8/12/$31.00 c©2012 IEEE

C00

C01

C02

C03

C04

C05

C06

C07

M0 C10

C11

C12

C13

C14

C15

C16

C17

M1

C20

C21

C22

C23

C24

C25

C26

C27

M2

C30

C31

C32

C33

C34

C35

C36

C37

M3

C40

C41

C42

C43

C44

C45

C46

C47

M4

C50

C51

C52

C53

C54

C55

C56

C57

M5

C60

C61

C62

C63

C64

C65

C66

C67

M6

C70

C71

C72

C73

C74

C75

C76

C77M7

Figure 1: Architecture

C

(a) Connection of one core

function unit

in1 in2opc

.

REG

PMEM

(b) Details of one core

Figure 2: Core

A. Cores

In Figure 2 two different views on a single core are shown.
Figure 2a shows the connectivity and Figure 2b illustrates the
internal composition. A core consists of:

1) Inputs: Figure 2a shows a close-up of one core of the
grid shown in Figure 1 with a focus on the connectivity. The
connectivity can hereby be split into three kinds: the local
connection to neighbouring cores (the continuous lines), the
global connection to the system via the NoC (the dashed line),
and the external inputs (the dotted lines).

In Figure 2b, the same scheme is used. At the input of the
core the incoming signals are connected to two multiplexers
from which the correct input is selected according to the current

setting in the program memory. Each multiplexer also includes
one FIFO buffer to store incoming data (not shown in the
graph).

2) Function unit: The function unit is responsible for the
actual computations. It supports binary operations, such as
numerical operations (e.g. addition, multiplication..), shifting
operations and operations on the bit-level (e.g. and, or ..). Both
integer and fixed-point operations are supported.

3) Local Memory: A local storage is available in form of
a register file, denoted REG in the figure. It has three write
ports and two read ports, the size of the register file can be
parametrised during design-time.

4) Program Memory and Control: The program memory,
labelled PMEM, is responsible for the actual control of the
operation, the selection of the correct input, and the storage of
data. It is configured with a finite-state-machine based principle
which will be explained in the following section.

5) Configuration: The architecture is configured on two
levels. One level represents the local view on a single core, i.e.
the behaviour of one core. The other level represent the global
view on the complete architecture, i.e. the flow of data in the
array.

The configuration of the local view is based on dataflow
principles and finite state machine (FSM) methods. The
behaviour is a sequence of FSM stages, where for each stage
the number of repetitions is indicated in the upper left corner
of the FSM states in Figure 3. Each stage is then defined in
terms of a dataflow graph with tokens on the arcs representing
that either a token is required (at the inputs) or a token is
produced (on the output). Furthermore, for each token it is
defined where it comes from (at the inputs, EX represents an
external input, Rx represents a value stored at register R0) or
where it has to be stored (at the output).

For illustration, we use the example of a pipelined multiply-
accumulate (MAC) operation on data streams. The MAC
operation on the streams x and y is defined as follows:

mac =

N∑
i=0

xiyi = x0y0 + x1y1 + x2y2 + . . .+ xNyN (1)

For illustration purposes the mac operation is implemented in
a pipelined fashion using separate stages for the multiplication
and addition. The implementation of the complete mac
operation requires three stages, of which the first one is an
initial stage. In Figure 3, the configuration is shown, in Figure
4, the corresponding execution on the core is shown.

The first stage is labelled S0, which corresponds to Figure
4a. Here, the two external inputs (x0 and y0 from Equation 1)
are multiplied and stored in the register file at R0. Following,
the stage S1, which corresponds to Figure 4b, is executed,
which represents a multiplication of x1 and y1 . The result of
this multiplication is stored in R1. The final stage S2, shown
in Figure 4c, performs an addition on the results of the S1 and
S2 and stores the result in the register file. From here on, the
core alternates between the stages S1 and S2.

Figure 3: Configuration principle

function unit

∗

REG

PMEM

(a) S0

function unit

∗

REG

PMEM

(b) S1

function unit

+

REG

PMEM

(c) S2

Figure 4: Implementation of a MAC operation on one core

B. Interconnect

In the grid, three levels of interconnects are available: local
nearest neighbour connections to support locality of reference
that are implemented as point-to-point links between the nodes,
a global Network on Chip (NoC) to enable full connectivity of
the system without the need for a fully connected network, and
a broadcast network to provide an input sample simultaneously
to (a subset of) all cores in the grid.

C. Memory

Each incoming packet to the memory actor is one of the
following types:

1) data: A packet identified with D followed by the actual
data, sent by a producer

2) index: A packet with the type identifier I followed by
the identifiers of the source and final destination of the
data, sent by a producer

3) request: A packet with the type identifier Rq followed
by the identifiers of the source and final destination of
the data, sent by a consumer.

A complete cycle of data transfer is illustrated in Figure 5.
In this transfer, the core C2 sends data to the memory M0
which is at a later stage requested by core C1. The cycle is as
follows: in the beginning, C2 sends an index packet containing
its identifier and the destination’s identifier, in this case I,(2,1),
to M0. This is shown in Figure 5a. Then, C2 sends a stream
of data to M0, shown in Figure 5b. At a certain point in time,
C1 sends a request packet to M0 again with an identifier-tuple

M0

M1

C0 C1

C2 C3

(a) I,(2,1)

M0

M1

C0 C1

C2 C3

(b) D,(x)

M0

M1

C0 C1

C2 C3

(c) Rq,(2,1)

M0

M1

C0 C1

C2 C3

(d) D,(x)

Figure 5: Complete data transfer

consisting of the source of its data and its own identifier, in
this case Rq,(2,1). This is shown in Figure 5c. M0 will now
stream data to C1. This is shown in Figure 5d.

III. USE CASE

The presented use case is a finite impulse response (FIR)
filter [8], which is often used in the domain of digital signal
processing, for example as high or low pass filter in digital
audio processing.

The definition for a FIR filter is as follows:

y[n[=

M∑
k=0

bkx[n− k]

= b0x[n] + b1x[n− 1] + . . .+ bMx[n−M] (2)

where y[n] is the current output sample, x[n] the current
input sample, b a list of filter coefficients and M +1 the length
of the filter. A graphical representation is shown in Figure 6.
The white rectangles represent unit delay elements, the circles
represent the operations.

For long FIR filters it is often desired to partition the filter
in parts which are executed in sequence. A general principle
how this can be done is illustrated by the dotted rectangles in
Figure 6. In this illustration, the FIR filter is partitioned into N
parts of length four. The principle is quite simple: the results
from one part are used as input for the next. In Figure 6, the
results from the first part, denoted P1 are streamed into the
adder-row from the next part, denoted P2. The same principle
is applied to all the following parts. The final result is available
at the output of PN . If the parts are executed in sequence,
the intermediate results from the parts should be stored in a
memory. Consequently, the delay elements between the stages
are replaced by a streaming memory actor.

A. Implementation on the proposed Architecture

On the 64 cores of our architecture, a 32-Tap FIR filter
can directly be executed (each tap requires two cores, one for
multiplication and one for addition). The mapping of a 32 tap
filter can be seen in Figure 7. The highlighted connections

x[n]

∗

+

bM

0

∗

+

bM−1 ∗

+

bM−2 ∗

+

bM−3

∗

+

bM−4 ∗

+

bM−5 ∗

+

bM−6 ∗

+

bM−7

∗

+

b3 ∗

+

b2 ∗

+

b1 ∗

+

b0

...
...

P1

P2

PN

y[n]

Figure 6: FIR filter - partitioned

correspond to the flow of data. Note hereby that the vast
majority of the communication is implemented using the nearest
neighbour network, as the FIR filter includes a high locality
of reference. The delay elements are implemented by the
FIFO buffers in the cores. The continuous lines are for one
stage of a pipelined FIR filter, the dashed lines represent the
communication between the different pipeline stages via a
memory tile.

M0

M1

M2

M3

M4

M5

M6

M7

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

bM

bM−15

bM−16

bM−31

bM−1

bM−14

bM−17

bM−30

bM−2

bM−13

bM−18

bM−29

bM−3

bM−12

bM−19

bM−28

bM−4

bM−11

bM−20

bM−27

bM−5

bM−10

bM−21

bM−26

bM−6

bM−9

bM−22

bM−25

bM−7

bM−8

bM−23

bM−24

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 7: FIR filter

The coefficient bM corresponds to b31, coefficient bM−1 to
b30 etc. The top left core (C00 using the naming scheme of
Figure 1) is the left-most multiplication node in Figure 6, i.e.
it implements the multiplication of the input with coefficient
b31. Core C10 implements the multiplication with b30 and so

on. The filter taps M-8 to M-15 are handled by the rows 2 and
3 (with row 0 being the top row). The next set of filter taps,
M-16 to M-23 are handled by the rows 4 and 5. Note hereby
that the connection between core C02 (the filter tap with M-15
and core C05 (the filter tap M-16 is implemented via the NoC.
The remaining filter coefficients are handled by the last two
rows.

For the execution of a pipelined FIR filter, the principle
shown in Figure 6 is used. Furthermore, the memory transfer
protocol explained in Section II-C and shown in Figure 5 is
used to store intermediate values between the FIR partitions
on memory M1. As an example, we illustrate the execution of
a 128-tap FIR filter partitioned into four parts P1 to P4. For
each part, the mapping for one 32-tap FIR filter as used in
Figure 7 is used. The coefficients are adapted to each stage.
First, P1 is executed using the coefficients b127 to b96. The
resulting data is sent to the memory M1 via the NoC, as it
is shown in Figure 7. Then, P2 with coefficients b95 to b64 is
executed. For this, the results from P1 are streamed into the
grid (to core C8, see Figure 7). Furthermore, the results from
P2 are streamed into M1 via the NoC, just as in the previous
stage. P3 is similar to P2, just that the coefficients b63 to b32
are used. In P4, the final result is produced.

IV. CONCLUSION

A coarse-grain reconfigurable architecture targeted towards
streaming applications was presented, in which all blocks,
including memory blocks, are streaming actors. The actors are
configured by a finite state machine (FSM) logic, the flow of
data in the architecture is organised in a dataflow manner.

We showed that our configuration principle gives a straight-
forward implementation on the presented coarse-grain recon-
figurable architecture of DSP applications, as illustrated by a
partitioned FIR filter.

REFERENCES

[1] C. Brunelli, F. Garzia, J. Nurmi, F. Campi, and D. Picard, “Reconfigurable
hardware: The holy grail of matching performance with programming
productivity,” in Field Programmable Logic and Applications, 2008. FPL
2008. International Conference on. IEEE, 2008, pp. 409–414.

[2] B. Svensson et al., “Evolution in architectures and programming method-
ologies of coarse-grained reconfigurable computing,” Microprocessors and
microsystems, vol. 33, no. 3, pp. 161–178, 2009.

[3] H. Singh, M. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. Chaves Filho,
“Morphosys: an integrated reconfigurable system for data-parallel and
computation-intensive applications,” Computers, IEEE Transactions on,
vol. 49, no. 5, pp. 465–481, 2000.

[4] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Adres:
An architecture with tightly coupled vliw processor and coarse-grained
reconfigurable matrix,” in Field-Programmable Logic and Applications.
Springer, 2003, pp. 61–70.

[5] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Wein-
hardt, “Pact xpp—a self-reconfigurable data processing architecture,” the
Journal of Supercomputing, vol. 26, no. 2, pp. 167–184, 2003.

[6] F. Campi, A. Deledda, M. Pizzotti, L. Ciccarelli, P. Rolandi, C. Mucci,
A. Lodi, A. Vitkovski, and L. Vanzolini, “A dynamically adaptive dsp for
heterogeneous reconfigurable platforms,” in Design, Automation & Test in
Europe Conference & Exhibition, 2007. DATE’07. IEEE, 2007, pp. 1–6.

[7] S. Khawam, I. Nousias, M. Milward, Y. Yi, M. Muir, and T. Arslan, “The
reconfigurable instruction cell array,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 16, no. 1, pp. 75–85, 2008.

[8] J. McClellan, R. Schafer, and M. Yoder, Signal processing first. Pear-
son/Prentice Hall, 2003.

