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Abstract— Pavement condition is crucial for civil infrastruc-
ture maintenance. This task usually requires efficient road
damage localization, which can be accomplished by the vi-
sual odometry system embedded in unmanned aerial vehicles
(UAVs). However, the state-of-the-art visual odometry and map-
ping methods suffer from large drift under the degeneration
of the scene structure. To alleviate this issue, we integrate
normal constraints into the visual odometry process, which
greatly helps to avoid large drift. By parameterizing the
normal vector on the tangential plane, the normal factors
are coupled with traditional reprojection factors in the pose
optimization procedure. The experimental results demonstrate
the effectiveness of the proposed system. The overall absolute
trajectory error is improved by approximately 20%, which
indicates that the estimated trajectory is much more accurate
than that obtained using other state-of-the-art methods.

I. INTRODUCTION

Inspecting and repairing pavement damage is an essential
task for public infrastructure maintenance [1]. Manual visual
inspection is still the main form of pavement damage inspec-
tion [2], which is, however, very labor-intensive and time-
consuming [3]. To overcome these drawbacks, more attention
is being paid toward developing an automated pavement
inspection system [4]. However, these solutions are still not
robust and precise enough [5]. Therefore, how to develop an
accurate and efficient pavement damage inspection system is
still an open problem.

Recent advances in airborne technology make efficient
pavement inspection a more solvable problem [6]. Among
these techniques, visual odometry (VO) and mapping are
two essential modules for an automated pavement inspection
system deployed on an unmanned aerial vehicle (UAV).
VO provides UAV systems with a fundamental capability
for real-time pose estimation, especially onboard percep-
tion sensors [7], while the mapping module allows map
establishment and relocalization, and thus global position
labeling for pavement damage [8]. Recently, researchers have
successfully established autonomous pavement inspection
systems for UAVs. For example, Zhang et al. [9] designed a
robust photogrammetric mapping system for UAVs, which
can recognize different types of pavement damages, e.g.,
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Fig. 1: Pavement mapping result under scene degeneration.
An input gray-scale image (a) and the corresponding dispar-
ity map (b) for a selected keyframe are shown. (c) Pavement
mapping result produced by the proposed visual odometry
and mapping system.

cracks and potholes, from RGB images. Furthermore, Fan et
al. [6] proposed an efficient binocular system that is capable
of effectively distinguishing road damage from a transformed
disparity map [10].

Current visual odometry and mapping frameworks have
demonstrated their accuracy and robustness on various open-
source datasets [8], [11], [12]. However, for these state-
of-the-art approaches, structure degeneration of visual mea-
surements usually leads to performance degradation in the
context of pavement mapping [13]. An example gray-scale
image and its corresponding disparity map are shown in
Fig. 1, which shows a near-planar structure and well repre-
sents the degeneration issue under this scenario. To alleviate
this problem, we integrate normal constraints into camera
pose estimation. By explicitly minimizing local normal mea-
surements with the global normal prior, we implement a drift-
less stereo VO for pavement reconstruction. A sample output
of the proposed system is shown in Figure 1.(c).
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Fig. 2: Framework of the proposed visual odometry system.

The remainder of this paper is structured as follows: Sec-
tion. I reviews the state-of-the-art visual odometry methods
for UAV pose estimation. Section. III details the proposed
pavement mapping system. Section. IV presents the experi-
mental results and discusses the performance of our5 system
both qualitatively and quantitatively. Finally, Section. V
summarizes the paper and provides recommendations for
future work.

II. STATE OF THE ART

The state-of-the-art VO or simultaneous localization and
mapping (SLAM) systems can be categorized as indirect
[13], [14], direct [11] or hybrid [15] methods. Recent
progress in these methods provides fundamental building
blocks for onboard UAV pose estimation both theoretically
and technically. While monocular SLAM algorithms can not
recover reliable scale information [16]. Recent approaches
generally resort to different sensor configurations, including
stereo vision or visual-inertial sensors.

Some consider introducing stereo constraints for scale
recovery. For instance, Cvišic et al. [12] proposed a stereo
SLAM framework that is highly efficient in computational
demand. To save computational resources, Sun et al. [17]
introduce stereo constraints into a filter-based visual-inertial
odometry framework, which was named as S-MSCKF. Raul
et al. proposed ORB-SLAM2 [8], a versatile visual SLAM
framework equipped with sparse mapping, loop-closure and
relocalization ability.

Another common strategy is to fuse visual state estimation
with an inertial measurement unit (IMU). This research track
tackles the problem based on both filtering and optimization
methods. Weiss et al. [18] introduced a loosely-coupled
filter to recover absolute scale with the aid of an IMU.
6-DoF poses initially estimated by PTAM [14] are fused
with the IMU measurements. For tightly-coupled filtering,
Bloesch et al. [19] extracted multi-level patch features along
with 3D landmarks in the camera tracking procedure. Then
camera poses are estimated by a standard extended Kalman
Filter. Leutenegger et al. [20] established a sliding window-
based optimization framework with keyframe selection. To
optimize camera poses, they formulated a cost function
combining both visual reprojection error and inertial error
terms. Forster et al. [21] proposed a pre-integration strategy

to bootstrap visual-inertial odometry, while Qin et al. [7]
introduce a loosely-coupled fusion procedure to initialize pa-
rameters including scale and bias. With IMU measurements
pre-integrated, a tightly-coupled back-end jointly optimize
camera poses along with other parameters.

III. METHODOLOGY

A. Notation

Throughout the paper, we denote the image collected at
the k-th time as Ik and the corresponding frame as Fk. The
world coordinate system Fw is identical to the first camera
coordinated system F0.

For Ik, the rigid transform Tk ∈ SE(3) maps a 3D
landmark p ∈ R3 to the camera frame using [22]:

pck = Rkpi + tk, (1)

where Tk = [Rk|tk] ,Tk ∈ SE(3). Rk and tk are the
rotational and translational components of Tk, respectively.
Accordingly, pc denotes a 3D point in Fk.

We use π : R3 → R2 to denote the projection function:
u = π(pc), where u is a pixel in the image coordinate
system (ICS). π is defined as [23]:

π

 X
Y
Z

 =

 fx
X
Z + cx

fy
Y
Z + cy

fx
X−b
Z + cx

 , (2)

where (fx, fy) represents the focal lengths (in pixels) in
the horizontal and vertical directions, (cx, cy) denotes the
principal (in pixels), and b is the baseline of the stereo rig .

The update of a camera pose is parameterized as an
incremental twist ξ ∈ se(3). We use a left-multiplicative
formulation ⊕ : se(3) × SE(3) → SE(3) to denote the
update of Tk, which is denoted as

ξ ⊕Tk := exp(ξ∧) ·Tk. (3)

B. Overview

An overview of the proposed system is shown in Fig. 2. In
the preprocessing stage, for each input frame Ik, we compute
a dense disparity map and normal map. Then the relevant
information of Ik is delivered to the VO module. Firstly,
the front-end tracker extracts features from accelerated seg-
ment test (FAST) [24] feature points and computes their
corresponding Oriented FAST and Rotated BRIEF (ORB)
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Fig. 3: An illustration for camera pose estimation.

descriptors [25]. With feature association across consequen-
tial frames, the current camera pose is estimated through a
Perspective-n-Point (PnP) scheme [26]. After initial tracking,
the current frame with corresponding matches is delivered
to the mapping module, if it is selected as a keyframe. The
back-end optimizer jointly estimates camera poses and 3D
positions of landmarks.

C. Pose Estimation with Normal Constraints

This section explains how we introduce the normal con-
strains into camera pose optimization. Fig. 3 illustrates the
Bundle Adjustment (BA) procedure. We combine two types
of factors for camera pose estimation, visual residuals erepro

i,k

and normal residuals enormal
k .

We use the reprojection error as the visual constraint.
The residual term defined on the i-th landmark and the k-th
keyframe is defined as:

erepro
i,k = π (Rkpi + tk)− ui,k, (4)

where ui,k is the pixel coordinates of the feature associated
with pi in the k-th keyframe. Generally, the visual constraint
measures the distance between the projected position and the
observed position.

Although the traditional BA pipeline is able to estimate
camera poses, large drift (especially rotation) is observed in
the experiments in the context of pavement mapping. We
attribute the failure to strong scene degeneration, as shown
in Fig. 1. To tackle this issue, we integrate the normal
constraints into the pose optimization procedure. We estimate
the normal of the local structure based on the assumption that
the 3D geometry is composed of a set of planar surfaces.
Then, by minimizing the residual between global and local
surface normals, these factors contribute to the estimation of
the rotational component of the camera poses.

The normal constraints are introduced to provide addi-
tional observations under the degenerated scenario. We lever-
age the normal-based regulation based on two observations:
1). the pavements in the man-made world typically have
a near-planar characteristic; 2). the structure observed in a
single frame is a planar surface, which can also be calculated
with a closed-form formulation. We estimate the normal nk
in each frame. Inspired by [7], we define this residual term
on the tangential plane orthogonal to nk under Fk as:

enormal
k = Bk(Rk

nw
‖nw‖

− nk), (5)
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Fig. 4: The parameterization of normal vector and corre-
sponding residual.

where Bk = [bk0,bk1]
T
,Bk ∈ R2×3 consists of two base

vectors bk0,bk1 of the tangential plane. Fig. 4 illustrates
the definition of the residual terms related to the normal
constraints. From the geometrical perspective, it projects the
difference of the global normal and local normal in Fk onto
the tangential plane, yielding a residual term in R2. In prac-
tice, this avoids overparameterization of normal vectors that
can mislead the optimization process. Additionally, unlike in
[7], the optimal normal nk observed in Fk is constant in this
formulation. Therefore, there is no need to recompute Bk in
each iteration, which accelerates the process of optimization.

To generate the two base vectors bk0,bk1, we arbitrarily
assign a unit vector v that is not parallel to nk. Then bk0,bk1

can be solved by:

bk0 =
nk × v

‖nk × v‖
, bk1 =

nk × bk0

‖nk × bk0‖
. (6)

The proposed residual definition is more efficient, as there is
no need to recompute the bases of the tangential plane when
the camera pose is updated.

To estimate the camera pose Tk = [Rk, tk] of the k-th
frame, we sum over all the valid factors. Then the camera
pose is given by

Tk = arg min
Tk

∑
i∈Pk

wi,k‖erepro
i,k ‖γ + λ · ‖enormal

k ‖γ , (7)

where Pk is the set of landmarks matched successfully in
the current frame. ‖ · ‖γ stands for the robust Huber norm
and wi,k represents the optimization weight associated with
pixel variance. We use a constant factor λ to balance the
contribution of different factors to the pose optimization.

D. Back-end Optimization

The optimization back-end uses a similar objective func-
tion as Eq. 7. The parameters to be optimized are denoted
as X = {pi,Tk|i ∈ P, k ∈ T }, where P and T stores
the indices of the keyframes and the landmarks in the
optimization window, respectively. We have P =

⋃
k∈T Pk

Therefore, a full BA is formulated as:

X = arg min
X

∑
k∈T

[
λ · ‖enormal

k ‖γ +
∑
i∈Pk

wi,k‖erepro
i,k ‖γ

]
.

(8)

Note that, as in [8], the poses of keyframes that do not
directly connect to the current keyframe in the covisibility



Fig. 5: Experimental set-up for acquiring stereo road images.

graph are fixed during the optimization. Like in [8], we
detect and reject outliers by X 2-test. Assuming one-pixel
variance for every feature, we have threpro = 7.815. For the
factor ei,j > threpro, the corresponding feature pi and related
observations will be rejected by the mapping module.

To initialize the global normal estimation, we add the
global normal into the optimizable parameter set X , yielding
an augmented set Xinit = X

⋃
{nw}. We set a window size

∆ and keep nw in the optimizable parameter set until ∆
keyframes have passed to the back-end. Then nw is fixed in
every subsequent optimization.

IV. EXPERIMENTAL RESULTS

In this section, we present both qualitative and quantita-
tive experimental results of the proposed normal-constrained
stereo VO. We first describe the experimental set-up and then
compare our system with ORB-SLAM2 [8] to demonstrate
the effectiveness.

A. Experimental Set-Up

In the experiments, an Intel RealSense stereo camera
D435i1 was mounted on a DJI Matrice 100 drone2 to acquire
stereo road images. The maximum take-off weight of the
drone is 3.6 kg. The stereo camera can capture stereo
images with resolution of 1696× 480 at a speed of 30 fps.
An NVIDIA Jetson TX2 embedded system3 was utilized
to save the captured stereo images. An illustration of the
experimental set-up is shown in Fig. 5. Using the above
experimental set-up, four datasets including 26372 stereo
image pairs were created. The stereo camera was calibrated
manually using the stereo calibration toolbox from MATLAB
R2019a. The resolution of the rectified reference and target
images is 824 × 449. Also, we mounted a DJI N3 GPS4

sensor on the UAV to acquire the flight trajectory ground
truth. The GPS precision is ±1 m. The datasets will be
publicly available at https://www.ram-lab.com/.

B. Qualitative Evaluations

Fig. 6 compares the proposed system against ORB-
SLAM2 [8]. As shown in Fig. 6, the odoemtry drift is
reduced significantly in the proposed system. This can be at-
tributed to introducing the normal constraints, so the rotation

1https://click.intel.com/intel-realsense-depth-camera-d435i-imu.html
2https://www.dji.com/uk/matrice100
3https://developer.nvidia.com/embedded/buy/jetson-tx2
4https://www.dji.com/hk-en
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Fig. 6: Comparison between the trajectory estimated by
ORB-SLAM2 and ours in the z-axis.

estimations converge to a better minimum, which benefits the
translation estimations in the z-axis.

C. Quantitative Evaluations

In the experiments, we compare the proposed VO algo-
rithm with ORB-SLAM2 [8], a state-of-the-art stereo visual
odometry system. We compute the absolute trajectory error
(ATE) eATE and relative distance error (RDE) eRDE between
the estimated and ground truth trajectories as the metrics for
the evaluations. eATE

i and eRDE
i , the ATE and RDE of the i-th

input frame, are similar to the metrics in [27]:

eATE
i = Π(T−1

i STgt
i ), (9)

eRDE
i = |Π

(
T−1
i Ti+∆

)
‖2 − ‖Π

(
(Tgt

i )
−1

Tgt
i+∆

)
‖2|, (10)

where Ti represents the i-th estimated trajectory, Tgt
i repre-

sents the i-th ground truth trajectory, S denotes the rigid-
body transformation from Tgt

i to Ti, Π is a function to
extract the translation components in the x- and y-axes, and
∆ = 20 is set to measure the RDE. To quantify the accuracy
of the estimated trajectory, we compute the mean, median,
root mean square error (RMSE) and standard deviation (SD)
of both the ATE and RDE.

The quantitative results are shown in Tab. I and Tab. II,
respectively. Although ORB-SLAM2 achieves an accurate
and consistent camera pose estimation result throughout the
experiments, we further improve the accuracy significantly.
According to the comparison, the proposed system generally
outperforms ORB SLAM2 and the total ATE is improved .
Note that in Dataset 2, large drift in the z-axis leads to a large
ATE and variance of ORB-SLAM2. In contrast, the ATE of
our method on the same sequence is consistent with the oth-
ers, which indicates that our method successfully alleviates
the VO drift in the z-axis. Furthermore, the mean and median
of the RDE, emphasizing the drift of estimations, of the
proposed system are lower than those of ORB-SLAM2. This
prove the effectiveness of the normal constraints in bounding
the drift.

To qualify the performance of the proposed VO system, we
align the estimated trajectory with its ground truth, as shown
in Fig. 7. Our method is better aligned with the ground truth
trajectories than ORB-SLAM2.

https://www.ram-lab.com/


TABLE I: ATE of the estimated UAV flight trajectory.

ORB-SLAM2 Ours
Dataset Mean (m) Median (m) RMSE (m) SD (m) Mean (m) Median (m) RMSE (m) SD (m)

Dataset 1 1.657 1.612 1.790 0.677 1.462 1.268 1.657 0.779
Dataset 2 4.693 4.575 5.289 2.436 2.396 2.311 2.632 1.090

Total 3.175 3.094 3.540 1.557 1.929 1.790 2.145 0.935

TABLE II: RDE of the estimated UAV flight trajectory.

ORB-SLAM2 Ours
Dataset Mean (m) Median (m) RMSE (m) SD (m) Mean (m) Median (m) RMSE (m) SD (m)

Dataset 1 0.160 0.109 0.230 0.166 0.116 0.072 0.186 0.146
Dataset 2 0.159 0.103 0.244 0.185 0.119 0.071 0.205 0.167

Total 0.149 0.106 0.238 0.177 0.118 0.072 0.196 0.157
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Fig. 7: Comparison between the estimated and ground truth UAV flight trajectory.

TABLE III: Runtime of the tracking and mapping modules.

Module Mean (ms) Median (ms)
Tracking 28.7 26.5
Mapping 46.8 44.5

D. Timing Results

We measure the runtime of both the tracking and mapping
modules, as shown in Tab. III. The proposed system achieves
a camera tracking speed of approximately 30 fps when
running on an Intel Core i7-8700k CPU. The timing re-
sults demonstrate the real-time performance of the proposed
normal-constrained stereo SLAM system.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a pavement mapping system
that explicitly introduces ground normal estimations as con-
straints in the pose optimization and bundle adjustment. We
discussed an effective parameterization of normal vectors
and corresponding residual term in the optimization. The
experimental results showed that our method is drift-less and
more accurate than the state-of-the-art ones, which demon-
strated the effectiveness of coupling normal constraints with
traditional bundle adjustment pipeline.

In the future, we will render the structure assumption
become more applicable for pavement mapping. Through
minimizing the error between normal observations of single
landmarks, the odometry drift might be reduced without
explicitly assuming a global constraints. Additionally, with
binocular vision only, current implementation is not robust
enough under rapid motion (as this may cause motion blur).
Therefore, we are planning to leverage inertial measure-
ments and visual-inertial coupling for a more robust visual

odometry system. Furthermore, we plan to use our recently
published work [28] to provide the UAV with the roll
angle information. We believe this can further improve the
odometry accuracy.
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