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Walk With Me: Socially Acceptable Speed and
Distance Control for Mobile Wayfinding Robots

Karl D. Hansen1, Anders Clement2, Hans Christian Østgård Larsen2, Jonas Andersen2,
Oliver Beyer Lauritsen2 and Katrine Møller-Rahbek2

Abstract—Robots can help people find their way around in
complex buildings and environments. Robots are embodied,
which makes it more intuitive for users to follow them around
compared to, e.g., colored lines on the floor. However, they need
to be socially intelligent for people to accept them. Like people,
robots should keep a comfortable distance to its users when
working.

We investigate the optimization of a guiding robot’s speed
and distance when guiding to improve the user experience. Our
findings indicate a correlation between the user’s speed and the
distance they keep from the robot, which can be utilized to control
the robot’s speed.

A person tracking system is implemented on a Spot quadruped
mobile robot platform from Boston Dynamics, using the on-board
depth and 2D cameras plus an Intel NUC and a Jetson Nano for
processing. The system uses the Mobilenet-SSDv2 CNN for user
detection and Kalman filtering for tracking.

Data from human-robot interaction tests on footpaths at
Aalborg University is analyzed to create a linear model of
the speed-distance relationship. Based on this, a control law
is proposed and tested, demonstrating the ability to build a
controller that allows the person following the robot to set the
desired velocity of the robot.

I. INTRODUCTION

People get lost in large and complex building such as air-
ports and hospitals. Indeed, airports have increasing amounts
of passenger boardings and hospitals are growing in size
[1][2]. Getting lost in these places, in turn, leads to delayed
flights, missed doctor’s appointments, frustration for the vis-
itors and additional costs for everyone involved [3]. To help
people navigate, different wayfinding methods are used. These
include: Signs, ’You Are Here’-maps, and painted guiding
lines on the floor [4].

Robots can be used as an alternative or complement to the
existing wayfinding technologies. Personal guiding in, e.g.,
hospitals is often infeasible because of lack of personnel;
robots can alleviate this pain. Having guide robots located
at the entrances of buildings ready to escort people to their
destinations could potentially help solve some of these prob-
lems. Employing mobile assistant robots in these dynamic and
busy environments calls for research and further development
in many areas of robot navigation, one of these is the social
capabilities of robots. When people are guided to an unknown
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Fig. 1: The Boston Dynamics robot Spot guiding a person on
a sidewalk.

place, it is important that they feel the robot acts in a way that
is predictable and comfortable. To achieve this, the robot has
to act socially acceptable [5, 6, 7]. The study of inter-personal
relations, proxemics [8], can guide the design of new robot
systems. Specific studies at airports, museums, hospitals, etc.
show how people interact with wayfinding robots [9, 10, 11],
and how this is a complex and challenging topic.

In this work we describe the design of a control system
to maintain a comfortable speed of the wayfinding robot, in
order to improve the experience of being guided by a robot.
The main novelty of this contribution is the identification of a
mapping between comfortable distance and walking speed and
the associated control structure. Figure 1 shows a participant
being guided by the robot.

The remainder of this paper is organized as follows: Related
works will be presented in section II where the state of the
art research relating to guiding robots will be looked into.
Our design is described in section III, which includes: The
hardware used, the people tracking system, the test setup
for data gathering, and control design for the guiding robot.
Section IV shows the experimental results of the implemented
controller design when guiding participants. In section V the
results are discussed and future work is presented.



II. RELATED WORK

An early instance of robots guiding is the museum-guide
robot RHINO [12]. The RHINO robot is used in order to guide
museum guests through the Deutsches Museum Bonn. Their
main focus was to ensure safe movement through crowded
areas. Later, the same team developed another museum guide
robot; Minerva [13]. This robot had more sophisticated navi-
gation and an emotion system was implemented, which made
the human-robot interaction better.

A newer project addressing guiding robots is the SPENCER
project [14]. The purpose of the SPENCER project is to
assist people in large and busy airports. Through detection
and tracking of individuals and groups of people using 2D
laser scanners and RGB-D cameras, the SPENCER robot can
perform socially acceptable navigation which abides to the
social rules of the surrounding people, while tracking people
who are being guided to their destination. The tracking is used
to determine if the user is still following the robot. These three
works focus on guiding a person, using socially acceptable
navigation through crowded locations. Although they track the
person following the robot they do not consider the social
dynamics of the guiding itself.

Walters et al. [15] found that comfortable distances between
human and robot are comparable to human-human social
distances. In 60 % of cases, the most comfortable distance,
between participants and a stationary robot, was found to be
from 45 cm to 360 cm, depending on the person’s preference.
The remaining participants preferred to be closer. The same
results were observed when the robot approached a stationary
participant, and they had to stop it. Gockley et al. [16] created
a robot that follows a human at the distance (120 ± 10) cm,
to keep the robot just outside of the human’s personal space.
The participants of that study found that this was a little too
far away. Boladeras et al. [11] look into how people follow
robots. They found that when a single person is guided, then
all persons walked behind the robot rather than to the side of
it.

Based on these works, we believe that it is important
to understand the distance between the person and robot,
the walking speed, and possibly where the person positions
themselves relative to the robot. Then, it is believed that this
knowledge can be used to control the robot in a more socially
acceptable manner.

III. DESIGN

This section details 1) the hardware; 2) the people tracking
system which uses Mobilenet-SSDv2 and a Kalman filter for
position estimation; 3) how a behavior model is created and
used for estimating the preferred walking speed and distance;
and finally, 4) the design of a controller that regulates the speed
of a robot according to the behavior of the person following
it.

A. Hardware

The robot used in this study, is the Spot robotic platform
created by Boston Dynamics. This platform was chosen be-

cause of its versatility and speed. However, our solution should
be usable on most mobile platforms used for guidance. Spot is
a quadruped robot, designed to walk on difficult terrain. It has
a size of 1.1 m×0.5 m×0.6 m and a battery capacity of 564
Wh giving approximately 90 minutes of continuous walking.
During the testing it was found that although Spot is reported
to have a maximum speed of 1.6 m/s, it is actually 1.4 m/s.

Spot has five camera modules, mounted in a configuration
with one camera on the back and each side of Spot, and two
in the front. This gives 360 degrees vision of the surroundings
of the robot. The cameras module each has an infrared
active stereo camera which provides depth images. Although
unspecified by Boston Dynamics, this module resembles the
Intel Realsense D430 depth module (87◦x58◦, 1280x720 px).
The modules also feature a black and white camera with
approximately the same FOV as the depth module.

The robot is controlled using Clearpath Robotics’ Spot
driver 1 for ROS. The driver runs on a small form factor
computer, an Intel NUC with an Intel Core i7-5557U Processor
and 16 GB RAM, which is mounted on top of Spot and
connected by Ethernet. The computer also collects and stores
data and logs for offline processing.

An NVIDIA Jetson Nano is also mounted on Spot for
running the visual object detector. This is a small computer
with a 128-core NVIDIA Maxwell GPU, a Quad-Core ARM
Cortex-A57, 4 GB RAM and 16 GB storage, designed for
running neural networks. It is connected to the Intel NUC
using Ethernet over USB.

B. Tracking

Since Spot is a mobile platform, a detection algorithm is
preferred to be efficient and low power, and must be good at
detecting people in the proximity of Spot. According to the
review of convolutional neural network object detectors from
2017 by Huang et al. [17] the MobileNet architecture was the
fastest architecture available with respect to time and accuracy.
Since then, Mobilenet-SSDv2 has been released, which is a
combination and improvement of MobileNet and SSD [18].
In a comparison by Rios et al. [19] though, it was found
that Mobilenet-SSDv2 has lower recall than YoloV3. However,
Mobilenet-SSDv2 is better at detecting large objects in the
image compared to other detectors [20]. Therefore, Mobilenet-
SSDv2 is used in this project.

The Jetson Nano and receives images from the cameras
of Spot and uses the Mobilenet-SSDv2 to detect people. The
output is a bounding box surrounding the detected person and
a confidence of the detected class. In this case we use the
detection when the confidence is greater than 0.5.

Given the detection, the next step is to find the center of
mass (CoM) of the detected persons. From the bounding box
given by Mobilenet-SSDv2, the upper half and the center 50 %
of the bounding box width is cut out. This is done to ensure
that most of the background is removed from the detection as
the upper middle of the bounding box locates the upper legs

1https://github.com/clearpathrobotics/spot ros
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Fig. 2: Mobilenet-SSDv2 detecting a human in an image from
the rear-facing camera on Spot. The large green bounding box
is the detection box given by Mobilenet-SSDv2 and the small
blue bounding box is the cutout used for the histogram and
deprojection.

or torso of the user, as seen on Figure 2. This cutout from
the visual image is applied to the corresponding depth image
from the stereo camera pair. Then a histogram of depth values
is created using bins of size 200 mm. This is done to remove
effects of fore- and background objects still present in the
view. All depth pixels in the largest bin are then deprojected
to a point cloud from which the CoM is calculated as the
average position of the points. This CoM is then considered
the position of the person. Finally, the CoM is transformed
into Spot’s base coordinate frame.

Our implementation of the tracker reaches 14 fps when
running with 2 people in view of the robot and 10 fps when
there are 4 people in view. However, running all five cameras,
it was only possible to get 2 fps from each camera on Spot.
Limiting the use to the rear-facing camera gives an frame rate
of 10 fps.

When the system has detected a person, a Kalman filter with
a constant velocity motion model is used in order to keep track
of the person following the robot. Assuming constant linear
velocity is a simple, but accurate, method compared to more
advanced models [21].

Detections are tracked in [x, y, z] coordinates with the state
vector defined as:

x(k) = [x̄ ȳ z̄ ˙̄x ˙̄y ˙̄z]T (1)

where x̄, ȳ, z̄ are the positions of the filter, and ˙̄x, ˙̄y, ˙̄z are the
velocities respectively. A distance threshold of 1.5 m between
the predicted position of the Kalman filter and new detections
is used to remove spurious detections of people far away.

Fig. 3: Route used for testing. A footpath, approximately
300 m with an underpass. Located around 57.0136N, 9.9855E

The predicted state is given as:

x(k + 1|k) = F · x(k) + v(k) (2)

x(k + 1|k) =
[
I I · Ts

0 I

]
· x(k) + v(k) (3)

Where Ts is the sampling time and v(k) the process noise
with covariance V (k) ∈ R6×6 which is set to 1 along the
diagonal, and 0.1 elsewhere.

The predicted measurement is given as:

y(k) = H(k + 1)x(k) + w(k) (4)

y(k) =
[
I 0

]
· x(k) + w(k) (5)

Where the measurement noise w(k) has covariance W (k) ∈
R3×3 defined as 10 along the diagonal, and 1 elsewhere.
W (k) and V (k) were chosen empirically. Note that the large

scale of W (k) is necessary in order to handle changes in speed
of the tracked person.

C. Test setup

Three different tests were conducted to collect data on
human behaviour when following Spot, so that a human
behavior model could be created.

The tests were conducted on a 300-meter straight outdoor
path on the campus of Aalborg University, see Figure 3. The
entire test covered 600 m as the path was traveled both ways.
The straight path was chosen to reduce variability in the tests.

Step response test: This test was done three times per
participant using three different speeds: 1.4 m/s, 1.0 m/s and
0.5 m/s. There is a 10 s pause in between each step, which
lasts 60 s.

Step up test: A second test was performed where the robot
starts with a step from 0 m/s to 0.8 m/s, and increases after
60 s from 0.8 m/s to 1.6 m/s.

Random staircase test: In this test the speed of Spot
randomly increase or decrease with a step size of ±0.25 m/s.
The time interval between the steps was randomized in the
range 5 s to 15 s. The participants were asked to evaluate
the speed during each interval. The evaluation was based on
a scale of 1 to 10 where 1 is too slow compared to the
participant’s preferred speed, 10 is too fast, thereby, making 5
the preferred following speed.



Fig. 4: Measured speed, distance and angle relative to Spot
during the ’step response’ test for the six participants. Speed
is calculated from Spot’s odometry. Distance is the Euclidean
distance from the person to the center of Spot. Angle is
measured relative to Spot’s body, and is 0 when the person
is directly behind Spot.

D. Results on preferred speed, distance, and angle

Six (n=6) people, unrelated to the project, participated in
the initial tests. Their speed, distance and angle in relation to
Spot, based on the output of the Kalman filter output, is shown
in Figure 4.

The bottom plot of Figure 4 shows the angle of the
participants in relation to Spot. With the exception of stops
and turns, it was found that all six participants walked behind
Spot, which is in line with what was found by Dı́az-Boladeras
et al. [11].

Figure 5 shows the six participants’ distances to spot in
relation to their speed in the three tests. Although noisy, there
is an upward trend in preferred distances when asked to follow
Spot at higher speeds. Their ideal distance to Spot (di) in
relation to their absolute speed (Vp) is modelled with the affine
function:

di(Vp) = 0.73 · Vp + 1.32 (6)

The results indicates that there is a shift of this line based
on personal preference, however, more data is needed to
generalize.

E. Preferred speed

The responses from each participant in the ”random stair-
case” test can be seen in Table I. From the test participants’
ratings of the different speeds, it was found that the preferred
speed is around 1.4 m/s. This supports the results from [22],
estimating the average preferred walking speed of healthy
people to be 1.4 m/s. As Spot is not able to walk faster than
1.4 m/s, responses where the speed of Spot was uncomfort-
ably fast for the participants were not achieved.
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Fig. 5: Figure with all participants’ speeds and distances to
Spot for ’step response’ and ’step up’ tests. The data points
are cropped to be above 0.25 m/s on the first axis and below
3.5 m on the second axis.

Table I: Scores from 1 to 10 from the six test participants
during the ’random staircase’ test, indicating the satisfaction
of the speed. 1 being too slow, 5 being appropriate, and 10
being too fast.

Test participantSpeed [m/s] 1 2 3 4 5 6 Mean
0.25 1 1 1 1 1 1 1
0.50 1 1 2 1 2 2 1.5
0.75 3 1 3 3 3 3 2.7
1.00 4 2 3.5 3 4 3 3.25
1.25 5 4 5 4 5 4 4.5
1.40 5.5 4.5 5 5.5 5 4.5 5

F. Controller

Based on the above findings, it is believed that in order to
be more socially acceptable, the robot should strike a balance
between the preferred and actual speed while keeping an
appropriate distance. We propose the following control law
on the forward speed of Spot:

Vs(k + 1|k) = Vs(k) + α(k) + β(k) + γ(k) (7)

Where Vs(k) is the speed of Spot at time k, with:

α(k) = (Vi − Vs(k)) ·Kp1 (8)
β(k) = (di(Vp(k))− d(k)) ·Kp2 (9)
γ(k) = (Vp(k)− Vs(k)) ·Kp3 (10)

Where Vi is the ideal speed chosen to be 1.4 m/s based on
the scores in Table I, di(Vp(k)) is equation 6, Vp(k) is the
speed of the person, and d(k) is the distance between Spot
and the person.

The α term pulls the speed of the robot, Vs, towards
1.4 m/s, Vi. It is implemented to have quicker acceleration
during starts and not solely rely on the distance term (β).
The β term regulates the distance, d, to maintain the ideal
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Fig. 6: Example of a participant following Spot, first at Spot’s
top speed (1.4 m/s), then after 30 s, using the proportional
controller. In this case, the participant pushes Spot to its
maximum velocity, which the controller then maintains.
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Fig. 7: Example of a participant following Spot using the
proportional controller. It can be seen that the participant
controls Spot to achieve a speed of approximately 1.2 m/s
from 90 s to 120 s. Unfortunately tracking failed for a period,
leading Spot to stop, before starting moving again at 130 s.

distance, di, which in turn is dependant on the actual speed
of the person following. The γ term maintains the same speed
as the person, Vp. Based on empirical testing, the following
gains were chosen: Kp1 = 0.5, Kp2 = 1.0, Kp3 = 0.5.

IV. RESULTS

The system was tested by guiding high school students
(n=8), visiting Aalborg University, between lecture rooms. The
tests were performed outside. First, Spot was set to top speed
for a period, then Spot was stopped, and set to use the control
law from equation 7. The participant was asked afterwards to

rate the two types of control, on a scale from 1 to 10, 10 being
best. Figure 6 shows an entire run for a single participant.

The participant in Figure 6 rated the run with the proposed
controller design higher than the one with constant speed. It
is believed that this is due to the smoother velocity curve
and the distance to Spot goes to 1.4 m and stays there more
consistently.

Figure 7 illustrates a run with the proposed controller where
a participant walks slower than 1.4 m/s. Spot managed to keep
the ideal distance to the participant, while following the speed
of the participant. Here, the participant rated the proposed
controller lower than the constant speed, however, this was
mostly due to the abrupt stop around 125 s.

Further tests (n=4), were conducted where the participants
were told to walk at three different paces; slow, medium
and fast. These tests found that when walking at a con-
stant 0.5 m/s pace, the speed of Spot oscillates with up to
±0.6 m/s at an approximate frequency of 0.2 Hz. This is
mainly due to the α term, as it is far from the working point of
1.4 m/s. Lowering the Kp1 gain, however, results in a more
sluggish and less responsive robot.

V. DISCUSSION AND CONCLUSION

Generally, the socially enabled robot design was better
perceived as the open-loop controlled robot, which supports
the use of proxemics in robot control.

As found by Dı́az-Boladeras et al. [11], when guiding
people individually, they stay mostly right behind the robot,
and the average preferred speed was ∼1.4 m/s, which also
is the average preferred walking speed found by Samson et
al. [22]. However, as was seen on Figure 4, one person drifted
to the side of the robot when the walking speed was perceived
as too slow.

During testing, Spot was forced to its maximum speed
which removes the option of increasing speed to obtain the
ideal distance. It would be interesting to replicate the initial
tests on a mobile platform which is able to move at speeds that
are uncomfortably fast for the participants, in order to model
how people behave in these situations.

A key finding is, as one may expect, that the distance to
the robot increases as the speed increases. I this work, the
correlation of the distance and speed was approximated using
a linear model, however, some participants had difficulties
getting the robot to start moving when from a standstill, as
they had to get close enough for the β term to become positive.
A second order function could possibly prove to be a better
fit than the linear model, using the data from participants
standing still, since this would give an increased ideal distance
at standstill, and a mostly linear region once the robot starts
going. This, however, has been left for future work.

The sample size for the human behavior modelling was
quite small. A larger sample size would aid in choosing
a (possibly non-linear) model, as well as ensure that the
observed behavior generalizes. We also observed that it seems
that individual people have different model parameters, see
Figure 5, which could possibly be learned on-the-fly.
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