
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of 
this work in other works.



 
Software and the Social Production of Disorder 

 
Jonathan Marshall 

Faculty of Arts and Social Sciences 
University of Technology, Sydney 

jon.marshall@uts.edu.au 
 
 

 
Didar Zowghi 

Faculty of Engineering and IT 
University of Technology, Sydney 

didar.zowghi@uts.edu.au 
 

 
Abstract 

 
Software development is inherently an ordering 

process. When implemented in a workplace it orders the 
ways that people go about their work, the work they do, 
and the ways they interact and communicate with each 
other. This new mode of ordering may conflict with 
existing orders, existing distributions of power and 
knowledge, and arrangements of, and between, groups. 
Ordering is almost always the subject of dispute, so 
software development can easily become enmeshed in the 
politicking between competing groups with deleterious 
effects. Removing all these conflicts may not be possible, 
as they can be an essential part of the ways relevant 
groups interact. Better communication, for example, may 
actually increase conflict, and not produce harmony. 
Rather than thinking of order and disorder as mutually 
exclusive polarities, it is more effective and realistic to 
think of them as constituting an ‘order/disorder complex’ 
and to expect disorder to appear alongside the ordering. 
This paper explores the problems of ordering and 
disordering through a study of changes in the Australian 
Customs’ “Integrated Cargo System”. We suggest that 
acceptance of some untidied mess, or openness to dispute 
and unclarity may be useful in implementing functional 
software. 
 
 
1. Introduction 
 

Software development is a social and political act, 
whether those engaged in it want it to be or not, because 
it: 

a) organizes and distributes work,  
b) organizes the communications between groups of 

people,  
c) can change the balance of power between groups, 

upsetting status relations or opening them to new 
struggles, and 

d) tends to impose one model of how things are done, 
when different groups have different models, and may 
want different outcomes to preserve different types of 
social and reward arrangements.   

 
Software engineers may not find it possible to fully 

address these conflicting demands, no matter how good 
the software development process is, as conflict can be an 
inevitable part of the way work is conducted. Closer 
communication between people or groups may not result 
in harmony but can magnify the dispute, generating 
polarized positions which separate people further the 
more the communication continues and the better it gets.  

 
Allocating blame for failure is also part of the ongoing 

politics between groups especially if frictions were 
exacerbated during the software implementation. 
Allocation of blame may reflect distributions of power 
and popularity, or involve ritual scapegoating; the point of 
which is to purge the mess and locate it elsewhere. This 
can normalize power relations, assuage people’s 
consciences, and restore harmony to a group troubled by 
dissention or failure [1]. As a result, reports investigating 
software failures can continue the process of producing 
disorder.  

 
We illustrate these issues with a summary of our 

documentary investigation of the Australian Customs’ 
“Integrated Cargo System” (ICS) installation.  The ICS 
was declared to be possibly “the world’s first fully 
integrated imports and exports system”, combining “into 
one coherent and technologically modern system, the 
numerous cargo systems that have been developed over 
the past 30 years”. It was to be paperless and use a single 
window [2].  We show how the politics surrounding the 
implementation and installation of the ICS contributed to 
the production of disorder and speculate if anything could 
have been done to make that disorder less disruptive. The 
main contribution of this paper is to increase our 
understanding of the interplay between social order and 
disorder in software development.  
 
2. Order and disorder in software 
 

We assume, following Marshall’s study of Internet 
communication [3], that disorder is important in its own 



right, and that the means of making social order can also 
be disruptive of that order.   

 
This is relevant as software systems fail regularly. In 

2003 Saran wrote that: “In a survey of 450 IT directors 
across the UK, Germany and France, 73% said they had 
suffered major faults in their IT systems…. lack of quality 
in software had a direct impact on their business. Thirty 
six per cent reported that IT failures had led to 
‘considerable reduction in turnover’, and 43% said poor 
software quality led to a substantial drop in staff 
productivity. Forty five per cent said poor software 
quality had damaged the company’s image among clients 
and prospective clients” [4]. In 2008 El-Emam and Koru 
reported from two years of web surveys that “26 percent 
to 34 percent of IT projects fail” [5].  

 
That such failures should be consistently reported after 

60 years of software development suggests there is a 
major gap in our understanding of software and 
organizations, or that software failure and disorder is not 
an aberration, but an essential part of development and 
should be treated as such. 

 
Western societies have a metaphysical bias which 

labels order as ‘good’ and disorder as ‘bad’ and to be 
corrected or eliminated. Despite disorder always being 
present, it tends to be dismissed as error, as a transitory 
phase between ordered states, as a negligible random 
effect, or as pathology. In ordinary life the remedy 
proposed for many problems is greater organization, 
while we ignore the potential costs of neatness [6]. For 
example, is the endless managerial restructuring or 
tidying of organisations actually useful?  

 
Ways of creating what appears to be order to some 

people can create what appears to be disorder to other 
groups of people. The practical consequence of this is that 
we cannot always give a definition of disorder. What 
appears ordered or disordered depends upon who does the 
reporting. However, as disorder has so many more ways 
of occurring than order does, different people may agree 
on what constitutes disorder, but find it much harder to 
agree whether something is ordered correctly or 
effectively [7]. 

 
Furthermore, what some people consider to be disorder 

may be useful to the organisation. What some call 
creativity can be experienced by others as vandalism [8]. 
So if an organization is going to change, adapt or generate 
new ideas (including implement a new software system), 
then there will likely be disagreement or conflict.  

 
Disorder does not only arise from failure, it may 

equally result from success. Success in improving 

computer technology has led to a massive increase in the 
noxious garbage resulting from superseded machines [9]. 
Success with oil and coal technologies helps foster 
climate change. Technologically generated disorder does 
not just appear with computing. 

 
Rather than assuming that order and disorder are 

mutually exclusive poles, or that we can achieve perfect 
order, it is more useful to think in terms of a politically 
based order/disorder complex. This approach accepts that 
a degree of mess, conflict, redundancy, misalignment and 
misfit can keep the system resilient and functioning, and 
that we cannot require everyone involved agree on the 
nature of order, and that we ourselves may be mistaken in 
our view of order. 

 
3. Software and social life 
 

The major determinates of social life include the 
structures of communication, the structures of interaction, 
the distribution of labour and the environment within 
which action occurs (e.g. [3], [10], [11], [12]), therefore, 
as software intrinsically structures communication, work 
and action, and provides the functional environment for 
these activities, it affects social organization, and new 
software produces conflict. 

 
Even software that only supports a single person’s 

tasks can affect the organisation. Word processing 
software, for example, eliminated the typing pool, and 
made it compulsory for most ‘white collar’ workers to 
type and organize documents. In so doing, channels of 
gossip and socializing were removed, thus altering 
patterns of information exchange throughout 
organisations everywhere. While we may approve of the 
results, this new order disrupted old orders and displaced 
people from patterns of work and life they were used to. It 
is doubtful that those who introduced word processors 
intended this result. It is always possible that software 
installations may threaten security of work and the status 
that comes with having recognized skills, and thus 
provoke resistance.  

 
Changing software can also change the arrangement of 

hierarchy in an organization, although we need not 
assume that this will necessarily make organizations more 
democratic or open as argued by Friedman and others 
[13]. A change in hierarchy could prevent lower levels of 
the hierarchy from hiding their considered response to 
local conditions, against the directives of central 
managers, with possibly disastrous results for the 
organization. If the power in an organisation is 
pathological, software can extend that pathology to places 
it was previously unable to reach.  

 



Software can also distribute power through a system. 
This also may not make the organization more democratic 
or responsive, but simply make it unclear to everyone 
where power and responsibility lies, so that less gets done 
and problems are not dealt with.  
 
4. Software and worldview 
 

Software almost inevitably involves the application, or 
enforcement, of a worldview (or model of the world), of 
work, of ideal organisation, of the way that items and 
events are constituted, interconnected or separated. As 
different groups often have different models, models are 
rarely neutral, and are often drivers of social conflict.  
Software models may be based on how only one sector of 
the organization (usually management, or perhaps the 
requirements analyst) thinks the organization works. 
Paraphrasing the famous remark of George Box and 
Norman Draper, we can say that not only all models may 
be wrong, but they may be more useful to some people 
than to others [14]. 

 
Some of these modelling problems arise because 

software uses categories, conceptual or data models, to 
represent the world, its entities and their relationships. In 
general, software categories are considered static and 
limited in number during run time, while human cognitive 
categories are both changeable and flexible in what they 
include, depending on context for their resolution. Old 
categories are constantly modified and new categories 
invented for new situations. It is difficult to know in 
advance how categories will need to change in response 
to changes in the environment (perhaps produced by the 
software), or to new discoveries. Software can therefore 
enshrine procedures that no longer work and render the 
users less able to respond to unpredicted or unclassifiable 
events [3]. 

 
In general, technology is intended to simplify reality 

and therefore is likely to clash with the complexities of 
what it organizes. Technology can:  

a) Break, or circumvent, previously existing links 
between factors. What constitutes a significant ‘factor’ 
may not be apparent until the technology is installed and 
the break is made.  

b) Add unexpected links between factors.  
c) Create new factors. 
d) Add complexity, as when extra data is collected 

because it can be. 
e) Make it harder to carry out previous actions. 
Through the way it orders, technology can produce 

what appears to be disorder. There is no certainty we can 
predict these difficulties before observing the interaction 
between the technology and the world it organizes. 
Neither can we completely specify what strategies 

software users will discover and exploit for their own 
advantage.  
 
5. Methodology 
 

These assumptions about the order/disorder complex, 
the importance of software in structuring work and 
communication, the relevance (and frequent inadequacy) 
of models of the world, the additions and subtractions of 
complexities and links, and the connection of all of these 
factors to social politics, were deployed in a study of the 
Australian Customs Integrated Cargo System (ICS). Our 
data was gathered from newspapers, magazines, press 
releases, parliamentary debates, official reports and online 
sources found through Google searches. We accumulated 
over 800 A4 single-spaced pages of documentation.  

 
Accuracy of our description is limited by the accuracy 

and bias of the sources. Sources reflect the aims of 
particular groups or their attempts to articulate their 
worldview. However, these inaccuracies and the politics 
of the reporting express the political divergences between 
the groups involved, and thus count as data themselves. 
There is no particular reason for assuming an interview 
subject would be more accurate. The divergence between 
what people say, or believe, they do and what they 
actually do is well known in social theory.  

 
Analysis was conducted qualitatively, as the data 

collected did not lend itself to the rigor of statistical 
analysis. A more detailed history of the ICS installation 
and the related issues, using this data, may be found in 
[15]. 
 
6. Troubles in the ICS 
 

In October 2005 the Australian Customs Service’s 
Integrated Cargo System came online, several years later 
than expected with a cost increase from the initial 
estimate of Aus$30 million to Aus$212.7 million [16]. 
Many users said the system was bug-ridden, slower and 
more complex than the systems it replaced. Some people 
resorted to pen and paper to process their cargo, and cargo 
piled up on the docks during the ‘Christmas rush’ period 
[15]. In June 2007 newspaper reports claimed customs 
was still dealing with some of the 568 claims for 
compensation [17]. In 2008 adjustments to the software 
were still being reported.  

 
In this section we present some inferences drawn from 

the analysis of available data for the ICS installation. 
 

6.1 Group backgrounds 
 



We identified different groups involved in the software 
installation, and their possible conflicts. This included:  

a) Software companies with conflicting agendas, 
differing workloads, differing organizational structures, 
mutual secrets, and an interest in locking in contracts and 
making it hard for them to be replaced.  

b) Computer companies, wishing to make the 
installation safe for their machines, and to lock in 
contracts.  

Software engineers are not devoid of political positions 
and ambitions, and these may impact on the project. They 
may, for example, think that they know better than the 
people ‘on the ground’ how the software should structure 
work, or be keen to use existing software. Programmers 
may have restrictions placed on their ability to 
communicate with programmers from other companies, or 
on describing how their software works. 

c) Sales people, aiming to sell systems rather than 
represent their capabilities accurately.  

d) Customs Brokers who can be divided between those 
affiliated with large retail or other companies, and those 
contracted with smaller importers who acted as 
middlemen between them and the Customs department.  

e) Competing businesses who aimed to take business 
advantage of the situation.  

f) Customs management who are responsible to the 
Government and hence to a political party, and who 
according to the ideology of the business groups will be 
ignorant of business procedure and thus automatically at 
fault.  

g) Politicians, who will oppose or defend anything the 
government or its instruments do, and look after the 
interests of important constituents. Difficulties that arise 
are likely to become public political issues.  

Various federations represented the differing groups, 
such as the ‘Customs Brokers and Forwarders Council of 
Australia’, the ‘Australian Chamber of Commerce and 
Industry’, the ‘Australian Air Transport Association’, the 
‘Australian Federation of International Forwarders’ and 
the ‘Australian Exporters and Importers’ Association’, all 
with varying interests, elected officials, budgets, internal 
power blocks, and some overlap.  

 
The installation intensified the possibility of conflict 

between, and within, all these groups. They would, almost 
inevitably, have differences about what constitutes good 
order, whatever the success of the project. Bringing these 
groups into better contact did not help diminish the 
conflicts. Any failures were likely to involve public 
dispute, which increased separation, although making 
large amounts of information available. 

 
6.2.Changing structures of communication 
 

Changing the structures of communication, leads to the 
possibility of changing the relationships between groups. 
A possible goal of the software design was to eliminate 
‘middleman’ small brokers [18]. Large companies did 
their own brokerage, while the new system allowed 
smaller companies to communicate directly with Customs 
via the Internet. Small brokers disputed this potential 
removal of income, and could not feel that Customs had 
communicated with them. 

 
ICS changed the ways that brokers could communicate 

with each other, or communicated accidentally. At one 
stage it was reported that brokers could occasionally see 
each other’s invoices [19]. Although rectified quickly this 
created much mutual suspicion and provided a handy tool 
to berate Customs with, given that ‘security’ had become 
one of the focuses of the installation.  

 
Customs also tried to co-ordinate communication 

between the parties through itself. This in theory should 
have given Customs greater awareness of problems and a 
quicker response time. However, it added delays, made it 
harder for parties to communicate easily and meant that if 
there was anything groups wanted to hide from Customs 
(if temporarily while they found out how serious the 
problem was), then it would be less likely to be 
communicated to anyone. This could make small 
problems cascade into large problems and increase areas 
of mutual ignorance. Attempting to introduce control and 
order into communication almost certainly had the 
contrary result. 

 
New patterns of communication may have distributed 

power in new ways, making it hard to allocate 
responsibility for particular parts of the operation. The 
Audit Office report [16] suggests that people in Customs 
were unsure of their responsibilities, or unable to enforce 
them, particularly as the relationship between parts of that 
organisation changed. High-level Customs management 
frequently appointed people to newly created positions 
after the problems became visible. 

 
6.3 Corporate software conflicts 
 

Differing software or computer companies wanted to 
keep the software, or the machines used, in-house. When 
the original IT service management company EDS was 
replaced on part of the system, the replacement company 
ported everything onto its computers and its favoured 
operating system, with some difficulty and disorder. At 
the same time, EDS withdrew staff previously embedded 
in the Customs Department, leaving Customs with fewer 
staff who understood the technical and planning side of 
the operation. Local knowledge was lost and Customs 



was penalised for attempting integrated ties with a 
company. Again, ordering produced vulnerability [16].  

 
Splitting work between different software vendors and 

programmers seemed efficient, as they were chosen by 
price or specialty, but the businesses had little interest in 
coordinating activities efficiently to make the others look 
good, so a loss in co-ordination was inevitable. Further 
loss in coordination arose as brokers and importers had to 
contract their own software vendors or programmers to 
write the interface between their existing machines and 
software, and the ICS [15]. 

 
Another political difficulty arose as the older 

independently developed ‘Tradegate’ system was to be 
phased out, yet was indispensable for cargo clearance 
until the ICS was fully functional. As the managers of 
Tradegate implied, there was little incentive for them to 
invest in keeping Tradegate working smoothly. Conflict 
also arose over whether importers should go back to using 
Tradegate when the ICS failed. Officially Customs 
refused to risk exceeding the contract termination period. 
There were, however, persistent rumours that this 
decision was influenced by the large importers wanting to 
add stress to the lives of smaller importers [15]. If true, 
this is an example of disorder being maintained for 
political effect. 

 
6.4 Deadlines 
 

As the software industry seems to expect that deadlines 
will be broken and software will not work perfectly at 
first, then people will delay their own implementation 
until the software they are integrating with is ready. Some 
brokers did not get their interfaces ready on time, because 
of this expectation, and because they felt they could not 
write or test their software until the software they had to 
integrate with was running [20]. The mutual 
interdependence of software implementation, together 
with expectations about delay, means that when different 
vendors are involved there will nearly always be disputes 
over the timelines.  

 
Deadlines are gripped in paradox. Trying to meet them 

causes pressures which may lead to programming failure, 
poor software quality and insufficient testing, yet without 
them it is impossible to co-ordinate, manage or complete 
the software construction.  

 
6.5.Miscellaneous conflicts 
 

Conflicts arose over the cost of the services with big 
importers resisting changes which allowed smaller 
importers to pay less for customs brokerage. Large 
importers may have seen commercial advantage in 

pressing for the changes to go ahead to cause difficulties 
for less well resourced small companies, thus potentially 
removing competitors and reducing competition, at a 
major ‘make or break’ time of year [15].  

 
Brokers and software companies clashed over whether 

the problems were arising because of bug ridden software 
or incompetent users.  

 
Conflict was displaced into Parliament, as problems 

were taken as ‘showing’ the inefficiency of the Federal 
government [15]. State governments joined this attack. In 
response the Federal Minister, although having a great 
many meetings with interested parties, tended to assert 
that things were going relatively smoothly and, during the 
crisis period, put the responsibility for failure onto the 
users; an approach condemned by small users in 
particular.  

 
6.6 Intensification of precision 
 

The ICS installation also created disorder through its 
capacity to provide more data to Customs and to the 
government in general. The new Cargo System was seen 
as a way to improve Australian border security and, post 
September 11 2001, of protecting Australia against 
terrorism. This demand added to the complexity of the 
original specifications, and led to conflicts with brokers 
and importers over the degree of precision required. 
Categories for imports were multiplied and numbers 
representing each category where enlarged. During entry, 
categories had to be checked; new ambiguities crept in, 
old ambiguities in categories were not acceptable, and the 
system rejected mistaken numbers demanding complete 
re-entry. This put greater pressure on workers, took more 
time, and old solutions to category problems no longer 
worked [19]. New staff had to be hired and trained, 
adding confusion. The extra detail did not match many 
brokers’ accounting systems [21]. Improving precision for 
security overwhelmed other requirements.  

 
6.7 Compounding 
 

Trivial incidents can compound and become 
disruptive. Adding Internet connection meant that when 
the ICS began to fail, the server was overwhelmed with 
people trying to access, and retrying to access, the online 
help desk. Attempts to enter customs data was stymied by 
the added delay; people didn’t know if data had been 
received, and some data did drop out due to the overload, 
having to be re-entered. Time delays and drop outs, 
compounded on top of each other.  

 
Similarly, delays on the docks meant that new cargo 

arrived and blocked access to old cargo, further delaying 



attempts to remove the cargo even when it had been 
cleared. Queues of trucks at the cargo gates blocked 
access for trucks whose cargo was cleared, adding to 
disorder.  

 
Other parts of the computer system proved unable to 

cope with larger than expected demand on computer time, 
even when the software was purchased off-the-shelf and 
had a good reputation for the tasks that Customs had set.  

 
Failure interacts with failure and increases the effects. 

 
7. Official reports and recommendations 
 

The main analyses of the ICS software problems were 
firstly the Booz Allen Hamilton Report (BAHR) [21] and 
later the Audit Office Report which supported the earlier 
report’s conclusions [16]. They both blamed bad 
management, as is usual in post software disaster reports; 
leading to the problem of why it never gets any better. 
Although hindsight shows obvious problems, Customs 
did carry out what would have normally been considered 
good management procedures. People did set deadlines, 
and have timelines. They were made ‘accountable’, they 
did have ‘performance indicators’, there were endless 
meetings, and they attempted ‘proper budgets’. None of 
these appeared to help, and it is doubtful more 
management would have completely solved these 
problems.  

 
Management theory is an interpretive art, and it is 

always possible to find an opposite action which might 
have worked. Customs was blamed by BAHR for not 
altering business protocols, but had they altered protocols 
and the software failed then they would probably have 
been blamed for interfering with the protocols. BAHR 
castigated Customs for not using a clear pyramidical 
administration structure, but if they had, then Customs 
could have been blamed for not using a more responsive 
distributed system. Customs was blamed for contracting 
out programming, but that could have been recommended 
had they kept programming in-house. ‘Best practice’ in 
software development or project management under these 
circumstances is not well defined nor understood in the 
literature or industry. This leaves room for speculation 
and unsubstantiated claims.  
 
8. What can be done? 
 

If we accept that:  
a) the social world is not just ordered or orderable but 

comes as an order/disorder complex,  
b) different groups and people often see order and 

disorder differently,  
c) knowledge is incomplete and biased, and 

d) software structures social interaction, 
then we can improve our understanding of the 

interplay between order and disorder during software 
development and installation and see Information 
Technology (IT) and software engineering in a new light. 

 
Firstly, software installation will been seen as part of 

organisational politics, as people try to advance their 
position, or resist the advances of others, and engineers 
will find themselves being exploited in the disputes. 
Software installation affects different people differently 
but, in any case, changing the organisation of 
communication and the tasks people are able, or 
compelled to do, will produce disruption and resistance, 
and may interfere with the organisation’s work.  

 
Secondly, by accepting that the order that software 

may attempt to impose will often generate the appearance 
of disorder, software engineers can leave space for this 
disorder to be dealt with, or incorporated into the system 
as it manifests. Disorder can ‘tell’ us that what we are 
attempting is not viable, so suppressing disorder can be 
dangerous. It may not be possible to completely plan a 
software project at the outset, and implementers may get 
the best results if they can engage in coordinated redesign 
as the software related problems emerge and unfold 
during development.  

 
Thirdly, the models of the world incorporated into 

software, can be recognized as political models with 
political consequences. Models by their very nature are 
always incomplete, no matter how well the requirements 
elicitation activities are conducted and how many 
stakeholders may be interviewed. However, the fewer 
people in different positions, whose views are taken into 
account, the more likely that the model will be partial. 
Even so, much of what people do will probably not be 
consciously expressible, and thus we recommend that 
implementation be preceded by ethnographic observations 
of what people actually do in their work place, as 
recommended elsewhere in the literature [22,23]. In 
particular, we recommend observation of how people 
interact with each other, and the collaborations, 
competitions and factions that arise in that interaction. 
Sometimes groups need to establish boundaries between 
each other. If the software violates these boundaries then 
it can produce resentments and undermine the work. 

 
By recognising incomplete knowledge, engineers can 

expect categories, conceptual or data models to change, as 
all relevant categories for all future actions cannot be 
anticipated in advance [24]. Ease of use of the category 
schema, and whether it serves all the purposes expected of 
it, should be investigated.  

 



Fourthly, while technology aims to simplify, it can add 
complexity, making connections between previously 
separated factors (human and material) or rendering 
simpler ways of doing things difficult. The main activities 
carried out by people should become easier to perform 
and not buried under hoards of options. Trivial problems 
can compound, so no problem is inherently trivial; the 
question is ‘will failure cascade?’  

 
At the beginning of the Customs installation, we would 

have recommended investigating and listing all the 
different groups of stakeholders involved, noting their 
potential rivalries, and how extraneous groups could get 
involved. What the installers did about potential rivalries 
would involve a moral and political stance, whether they 
wanted or not. However, without expecting that dispute 
can be bypassed, it could be useful to have a recognized 
and comparatively neutral mechanism whereby groups 
who feel they are being badly done by can be heard and 
pass on neglected information. These views may need to 
be gathered, rather than waited for, as workplace politics 
can mean that workers deliberately hide their actual work 
from managers; ignoring this problem is ignoring 
essential data. 

 
More work needed to be done in investigating the 

categories deployed by the programs to check these were 
relevant to users. Intense demands for order failed to 
recognise that categorizing objects might be difficult, and 
gave people little room to correct mistakes. The project 
needed to expect category disorder. Changing categories 
over a short time frame may put unreasonable demands 
on human memory, which generally learns categories 
gradually through use. 

 
Deadlines and budget proved a problem throughout the 

project, and compounded through expectations. 
Legislating deadlines, or legislating budgets (had the 
latter been done) only advertises failure. When the work 
is new, deadlines need modification as the job progresses.  
Deadlines could become political and competing groups 
will attempt to gain advantage from them. 

 
As complete clarity is not possible, it is important to 

expect mess, and to be prepared for expected disorder 
such as: deadlines being broken, categories proving 
insufficient, models of the workplace and work being 
incomplete or incompatible, and rivalries between various 
groups with people exploiting the software for their 
relative benefit. Recognition of these disorders will give 
the installation greater resilience. If everything is 
perfectly within specifications then the system will have 
no slack or adaptability. Disorder cannot be eliminated 
but can be tolerated or even become usefully recognised.  
 

9. Acknowledgements 
 
   The authors acknowledge the Australian Research 
Council for supporting the project from which this paper 
emerges.  Jon Marshall would like to acknowledge the 
comments of Luke Kendall on an earlier version of the 
paper. 
 
10. References 
 
[1] Girard, R. The Scapegoat, Athalone Press, 1986. 
[2] Australian Customs Service, Annual Report, 2004-5. 
[3] Marshall, J.P. Living on Cybermind: Categories, 
communication and control, Peter Lang, NY, 2007. 
[4] Saran, C. “Software failures damage business”, Computer 
Weekly, 5/27/2003: 5. 
[5] El Emam, K. & Koru, A.G. “A Replicated Survey of IT 
Software Project Failures”, IEEE Software, 25(5), pp. 84-90. 
[6] Abrahamson, E. “Disorganization Theory and 
Disorganizational Behavior: Towards an Etiology of Messes”, 
Research in Organizational Behavior 24, 2002, pp. 139-80. 
[7] Bateson, G. Steps to an Ecology of Mind, Chandler, San 
Francisco, 1972. 
[8] Peckham, M. Explanation and Power, The Seabury Press 
1979. 
[9] Grossman, E. High Tech Trash: Digital Devices, Hidden 
Toxics and Human Health, Shearwater Books, 2006. 
[10] Durkheim, E. The Division of Labor, Macmillan, NY, 1933. 
[11] Radcliffe Brown, A.R. Structure and Function in Primitive 
Society, Cohen & West, London, 1952. 
[12] Harris, M. Our Kind: who we are, where we came from & 
where we are going, Harper & Row, NY, 1989. 
[13] Friedman, TL. The World Is Flat: A Brief History of the 
Twenty-first Century, Farrar, Straus and Giroux, NY, 2005. 
[14] Originally “Essentially, all models are wrong, but some are 
useful” in Box, G.E.P. & Draper, N.R. Empirical Model-
Building and Response Surfaces. Wiley 1987. 
[15] Marshall, J.P. “Information Technology, Disruption and 
Disorder: Australian Customs and IT”. 
http://uts.academia.edu/jonmarshall/attachment/515173/full/Info
rmation-Technology--Disruption-and-Disorder--Australian-
Customs-and-IT 
[16] Australian National Audit Office, “Customs’ Cargo 
Management Re-engineering Project,” Audit Report No.24 
2006–07. 
http://www.anao.gov.au/uploads/documents/2006-
07_Audit_Report_24.pdf 
[17] “Customs fiasco claims hit $12.3m” The Australian, 
Tuesday, June 19, 2007. 
[18] Bajkowski, J. “Customs issues blunt warning over cargo 
system”, ComputerWorld, 27 September  2005. 
[19] Bajkowski, J. “Enterprise import data exposed by Customs 
system”, ComputerWorld, 20 October, 2005. 
http://www.computerworld.com.au/article/142673/enterprise_im
port_data_exposed_by_customs_system   
[20] Paul Zalai of the Customs Brokers and Freight Forwarders 
Council of Australia in the Australian Financial Review, 25 
October 2005.  



[21] Booz, Allen, Hamilton. “Final Report: Review of the 
Integrated Cargo System”, 2006. 
http://www.customs.gov.au/webdata/resources/files/boozallenha
milton_icsreport.pdf 
[22] J. Hughes, J. O'Brien, T. Rodden, M. Rouncefield, I. 
Sommerville, “Presenting ethnography in the requirements 
process”, Second IEEE International Symposium on 
Requirements Engineering (RE'95), pp 27, 1995. 
[23] S. Viller, I. Sommerville, “Social Analysis in the 
Requirements Engineering Process: From Ethnography to 

Method”, Fourth IEEE International Symposium on 
Requirements Engineering (RE'99), pp 6, 1999. 
[24] Zowghi D., Gervasi V., “On the Interplay Between 
Consistency, Completeness, and Correctness in Requirements 
Evolution”, Journal of Information and Software Technology, 
Volume 46 (11), pp. 763-779, 2004. 
 
 

 


