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Abstract—A serial concatenation of an outer non-binary turbo
code with different inner binary codes is introduced and an-
alyzed. The turbo code is based on memory-1 time-variant
recursive convolutional codes over high order fields. The resulting
codes possess low rates and capacity-approaching performance,
thus representing an appealing solution for spread spectrum
communications. The performance of the scheme is investigated
on the additive white Gaussian noise channel with coherent and
noncoherent detection via density evolution analysis. The pro-
posed codes compare favorably w.r.t. other low rate constructions
in terms of complexity/performance trade-off. Low error floors
and performances close to the sphere packing bound are achieved
down to small block sizes (k = 192 information bits).

I. INTRODUCTION

Low-rate codes have been widely considered in the context

of spread spectrum communications [1], [2]. Some of the

most successful and powerful coding schemes are based on

Hadamard-Walsh sequences either for orthogonal modulation

[2], [3] or as component codes for concatenated schemes [2],

[4]–[6]. For instance, a low-rate coding scheme consisting of

the concatenation of an outer rate-1/3 convolutional code with

an inner Hadamard code, leading to a coding rate of 1/32, was

selected for the uplink of the IS-95(A) standard [2], [3].

Iteratively-decodable codes able to approach the Shannon

limit at low coding rates have been introduced in the past

[6]–[8]. However, most of them suffer either from high error

floors [6], [7] or from visible losses compared with the sphere

packing bound (SPB) [9] when the code dimension k is within

few hundreds of bits [8]. Very low-rate low-density parity-

check (LDPC) codes over moderate order fields Fq (e.g., with

q = 2m, 6 ≤ m ≤ 8) possessing decoding thresholds close

to channel capacity have been recently proposed in [10]. The

codes of [10], also referred to as multiplicative repeat (MR)-

LDPC codes, rely on the repetition of the codeword symbols

and their multiplication by non-zero coefficients of Fq. They

can be described as the serial concatenation of an outer LDPC

code over Fq and binary inner codes with dimension m.

In this paper, a novel low-rate scheme is presented based

on the concatenation of inner algebraic codes having good

distance properties with the recently-introduced non-binary

turbo codes of [11] as outer codes where the inner code

dimension matches the turbo code field order q. The proposed

concatenation can in principle be also applied to ultra-sparse

non-binary LDPC codes. The concatenated code performance

is first analyzed by means of density evolution (DE) for

both coherent and noncoherent detection, showing how their
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decoding thresholds lie within 0.5 dB from the Shannon

limit in the coherent case, for a wide range of coding rates

(1/3 ≤ R ≤ 1/96). Remarkably, a similar result is achieved

in the noncoherent detection framework as well.

We then focus on the specific case where the inner code is

either an order-q Hadamard code or a first order length-q Reed-

Muller (RM) code, due to their simple fast Hadamard trans-

form (FHT)-based decoding algorithms. The proposed scheme

can be thus seen either as (i) a serial concatenation of an outer

Fq-based turbo code with an inner Hadamard/RM code with

antipodal signalling, or (ii) as a coded modulation Fq-based

turbo/LDPC code with q-ary (bi-) orthogonal modulation.

The soft demodulation and the non-binary trellis/check node

soft-input soft-output (SISO) blocks can be both efficiently

implemented thanks to the order-q FHT. This allows full

hardware reuse at the decoder. The proposed construction

performs within 0.8 dB from the SPB in the short block regime

over an additive white Gaussian noise (AWGN) channel with

coherent detection. Remarkably, low error floors are achieved.

We further compare the obtained performance with that of

the IS-95(A) standard with iterative demodulation/decoding

[12], observing gains of 2 dB or more. We also simulate

the concatenated scheme performance on the AWGN with

noncoherent detection, for which the phase of the channel is

assumed to be blockwise constant [13]. Again a large gain

w.r.t. IS-95(A) standard can be observed.

II. CODE STRUCTURE AND DECODING

We consider an (nO, kO) outer code CO over Fq, with

q = 2m, where nO and kO denote the block length and the

code dimension in terms of field symbols. The coding rate is

given by RO = kO/nO. Due to their excellent performance

in the short block length regime, we restrict our analysis to

outer codes being non-binary turbo codes based on memory-1
recursive convolutional codes [11], for which iterative decod-

ing can be efficiently implemented thanks to FHTs [14] with

complexity O(q log q). The encoder structure is depicted in

Figure 1. The information word u of kO symbols in Fq is

input to a rate-1, memory-1 time-variant recursive systematic

convolutional (RSC) tail-biting encoder. The first set of parity

symbols p(1) is obtained as

p
(1)
i = g

(1)
i ui + f

(1)
i p

(1)
i−1 ∀i ∈ [0, kO − 1], (1)

with p
(1)
−1 = p

(1)
kO−1 properly initialized. Here, p

(1)
i ∈ Fq and

g
(1)
i , f

(1)
i ∈ Fq\{0}. The second set of parity symbols p(2)

is obtained in a similar way after permuting the symbols of

u according to the interleaving rule i 7→ π(i) (for details see

[11]). The codeword is given by w = [u|p(1)|p(2)]. The code

length is nO = 3kO symbols and the coding rate is RO = 1/3.
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Fig. 1. Encoder for the non-binary turbo codes of [11].

The non-binary turbo code is serially-concatenated [15] with

an inner (nI, kI) binary linear block code CI, where both block

length and code dimension are expressed in bits. For the

proposed concatenated scheme it is assumed that kI = m.

The coding rate of the inner code is RI = kI/nI. Since

each symbol at the output of the outer encoder is mapped

onto a codeword of CI, the overall block length in bits is

n = nO × nI. The overall rate for the concatenated code C

is R = RO × RI = k/n, where k = kO × m is the input

block size of the outer turbo code in bits. Note that C is

linear upon proper choice of the mapping CI(β) : Fq 7→ CI

between Fq symbols and codewords in CI. More specifically,

linearity is achieved by multiplying the m-bits binary vector

representation of the encoded symbols by the generator matrix

of the inner code. The minimum distance for the concatenated

code C is d ≥ dO × dI , where dO and dI are the minimum

distances of outer and inner codes.

Let’s denote by w =
[

w0 w1 . . . wnO−1

]

the nO-symbols

codeword of the outer turbo code and by c the codeword at the

output of the concatenated encoder. Then, c can be partitioned

into nO segments of nI bits each, c =
[

c0 c1 . . . cnO−1

]

,

where the generic t-th segment ct is associated to the t-th
symbol at the output of the turbo encoder. Clearly, ct ∈ CI. The

bits of c are finally mapped onto a binary antipodal modula-

tion, producing the modulated vector x = 1−2c. As for c, also

x is partitioned into nO segments, x =
[

x0 x1 . . . xnO−1

]

.

A. Coherent Detection

We first consider transmission over the AWGN channel

under the assumption of coherent detection. The received

signal y is given by

y = x+ n

with ni ∼ N (0, σ2). Also for y and n we adopt the same

partitioning of c and x, with yt denoting the channel output

for xt and nt the corresponding noise samples. Decoding

is performed in two stages. For each received segment yt,

the conditional probability mass function (PMF) Pt(β) is

evaluated for each β ∈ Fq, where

Pt(β) := Pr{wt = β|yt} (2)

represents the probability that the symbol associated with

yt is β, given the observation of yt. Due to the mapping

CI(β) : Fq 7→ CI, (2) can be rewritten as Pt(β) = Pr{xt =

x
(β)
t |yt}, where x

(β)
t = 1 − 2c

(β)
t and c

(β)
t = CI(β). Under

the assumption of β uniformly distributed over Fq, the PMF

Pt(β) fulfills

Pt(β) ∝ exp

(

1

σ2
〈x

(β)
t ,yt〉

)

, (3)

where 〈x
(β)
t ,yt〉 denotes the inner product (correlation) be-

tween x
(β)
t and yt. The PMFs Pt(β), t = 0, . . . , nO − 1,

are then input to the iterative decoder operating on the factor

graph for the outer turbo code. Note that usually, when binary

outer codes are employed, a marginalization is performed after

computing the channel conditional probabilities to derive bit-

wise probabilities [12]. This leads to a loss of information

that may be partially recovered by iterating decoding between

the inner and the outer code [12]. Alternatively, symbol-based

decoding of the outer code may be performed by merging

sections of its trellis representation [16], thus avoiding the need

of marginalizing the probabilities Pt(β). This allows skipping

the iteration between the outer and the inner decoder, at the

expense of a higher outer code decoding complexity. We will

see that the proposed concatenated scheme, despite working

symbol-wise, allows keeping a relatively-simple outer decoder,

with a complexity lower than that of [16].

B. Noncoherent Detection

We consider next a blockwise noncoherent channel with

AWGN [13]. We assume the phase to be constant over blocks

of nI channel bits, i.e., over each inner code word. The received

signal associated with the t-th turbo code symbol is

yt = xte
jθt + nt.

The noise samples are modeled as complex, circularly-

symmetric Gaussian random variables, CN (0, 2σ2) and θt is

uniformly-distributed, θt ∼ U [0, 2π[. We further assume the

phases of different blocks to be independent. For each yt,

the conditional PMF Pt(β) is evaluated for each β ∈ Fq.

Due to the mapping CI(β) : Fq 7→ CI and averaging over the

distribution of θt, (2) can be rewritten as

Pt(β) =
1

2π

∫ 2π

0

Pr{x
(β)
t |yt, θt}dθt. (4)

Under the assumption of β uniformly distributed over Fq , the

PMF Pt(β) can be easily evaluated as [12]

Pt(β) ∝ I0

(

1

σ2
|〈x

(β)
t ,yt〉|

)

, (5)

where I0 is the modified Bessel function of first kind and order

zero.

III. CODE DESIGN AND DENSITY EVOLUTION ANALYSIS

For a given target coding rate, the choice of the inner

code shall be based on the concatenated code minimum

distance and on the iterative decoding threshold of the overall

scheme. To achieve large minimum distances, inner codes
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Fig. 2. Iterative decoding thresholds for various concatenations. The ’◦’
marker denotes the coherent detection case, whereas the ’�’ marker refers to
the noncoherent detection case. The decoding thresholds for the MR-LDPC
ensemble over F256 are provided as reference.

with good distance properties will be considered. Next we

provide a DE analysis based on the Monte Carlo method for

selected combinations of outer and inner codes. The decoding

thresholds are evaluated in terms of Eb/N0, where Eb denotes

the energy per information bit and N0 is the one-sided noise

power spectral density. The inner codes that have been selected

for the DE analysis are Hamming, Hadamard and RM codes.

In some cases, shortening has been applied to fit the inner

code dimension to the outer code field size. We additionally

considered a large minimum distance code with dimension

tailored to the turbo code field F256, i.e. the (33, 8) code of

[17] with minimum distance 14.

Figure 2 reports the decoding thresholds for different con-

catenations, under coherent and noncoherent detection. For

the coherent detection case, the unconstrained-input channel

capacity is also depicted. Considering an outer turbo code on

F256, code rates from 1/3 to 1/96 are obtained by selection

of different inner codes (no inner code is used for R = 1/3).

As it can be seen the gap to capacity is within ∼ 0.5 dB. For

comparison, the decoding thresholds of the MR-LDPC codes

of [10] are also provided for different coding rates. The results

nearly match with those of the concatenated scheme. However,

as it will be discussed in the next section, when restricting

to Hadamard and RM inner codes, the decoding complexity

of the proposed solution is lower than that of [10]. We also

provide a result on an F64 turbo code in concatenation with

the (64, 6) Hadamard code. We can observe that by lowering

the field order q the gap to capacity increases.

A similar analysis has been performed for the noncoherent

detection case. As Figure 2 reports, the iterative decoding

thresholds are shifted by ∼ 2.4 dB for all codes in comparison

with the coherent detection case. Only the F64 turbo code in

concatenation with the (64, 6) Hadamard code is affected by a

larger loss, that is around 2.7 dB. Nevertheless, the results are

quite promising considering the no phase information is avail-

able at the receiver. Note that the decoding threshold under

noncoherent detection for the turbo code ensemble over F256

is at Eb/N0 ≃ 2.28 dB. We computed the normalized average

mutual information (AMI) IN for a blockwise noncoherent

channel with phase constant over blocks of nI = 8 symbols,

with the constraint of antipodal mapping,

IN :=
I(xt;yt)

nI

=
1

nI

E

[

log2
p(yt|xt)

p(yt)

]

, (6)

where

p(yt|xt) =

1

(2πσ2)nI

exp

(

−
‖xt‖2

2σ2
−

‖yt‖2

2σ2

)

I0

(

1

σ2
|〈xt,yt〉|

)

.

Under the assumption of xt distributed uniformly over {±1}nI ,

IN equals R = 1/3 for Eb/N0 ≃ 2.06 dB. Remarkably, the

rate-1/3 scheme possesses a decoding threshold that is only

∼ 0.22 dB away from the limit given by (6). Similarly, the

limit provided by (6) for coding rate R = 1/24 and nI = 64
is at Eb/N0 ≃ 0.84 dB, while the decoding threshold for the

rate R = 1/24 scheme in Figure 2 is almost at Eb/N0 ≃ 1.42,

only 0.6 dB away.

IV. TURBO CODES OVER HIGH ORDER FIELDS WITH

ORTHOGONAL AND BI-ORTHOGONAL MODULATION

We focus on the concatenation with Hadamard and first

order RM codes for two compelling reasons. First, they

achieve low coding rates with performance close to capacity,

as emphasized by the DE analysis. Second, Hadamard and

first order RM codes can be decoded via FHT. This allows

an efficient implementation of the inner decoder, also with

the possibility of reusing of the hardware employed by the

turbo decoder. Hadamard codes and first order RM codes

with antipodal modulation are examples of orthogonal and bi-

orthogonal codes, respectively [3]. Therefore, they lead to the

same error probabilities of any other (bi-) orthogonal signal set

of the same order, such as pulse position modulation (PPM)

and bi-orthogonal PPM. In the following we will refer to

Hadamard and first order RM codes as orthogonal and bi-

orthogonal codes to emphasize that the achieved results hold

in general when (bi-) orthogonal modulations are used. A

derivation of the decoding complexity of the proposed scheme

is provided next, followed by a discussion on how the overall

coding rate of the scheme can be flexibly adjusted.

A. On the Decoding Complexity

The antipodal representation of an order-2m Hadamard

code can be obtained as follows. Starting from the order-2
Hadamard matrix,

H2 =

[

+1 +1
+1 −1

]

, (7)

the order-2m Sylvester-type Hadamard matrix is obtained by

iterating the Kronecker product [18, Ch. 14]

H2m = H2 ⊗H2m−1 . (8)



The order-2m Hadamard code modulated sequences corre-

spond to the rows of H2m . The first order, length-2m RM code

modulated sequences correspond to the rows of the matrix

HRM =

[

H2m

−H2m

]

. (9)

Thanks to this structure, the correlation of (3) and (5) can be

evaluated with a complexity that is O(q log q), with q = 2m

via an order-q FHT [18, Ch. 14]. This feature is even more

appealing, considering that the forward-backward algorithm

over the component trellises of the turbo codes of [11] can

be performed efficiently with complexity O(q log q). This is

again due to the order-q FHT which is used to dualize the

check node message passing rule [11]. Thus, when order-

q Hadamard codes or first order length-q RM codes are

employed as outer codes, the overall decoding complexity

is O(q log q). Furthermore, being the FHT employed in the

forward-backward algorithm over the component trellises, an

efficient reuse of the hardware may be obtained by sharing the

FHT blocks between the inner and the outer decoder.

The complexity of the scheme turns out to be favorable

when compared with that of schemes providing similar de-

coding thresholds and low error floors [10], [16], in the very

low coding rate regime. We consider next the MR-LDPC

codes [10], assuming the same overall coding rate log2 q/3q
and field order q w.r.t. the orthogonal case. This turns in

the use of a (q/ logq, 1) MR inner code over Fq, whose

binary image is a (q, log q) binary linear code. We have that

while the mother LDPC code can be decoded with O(q log q)
complexity, the inner MR code soft decoding requires in

general the correlation of q sequences of length-q bits each.

Thus, the soft decoding of inner code has a complexity O(q2).
Consider next a symbol-based turbo code from [16]. Here, the

outer code is based on trellises with q edges emanating from

each of the q states. Thus, even if the inner (bi-) orthogonal

code can be decoded with complexity O(q log q), the outer

code decoding has complexity O(q2).

B. Achieving Higher Rates

An intrinsic drawback of the use of Hadamard and first

order RM codes as inner codes in the concatenated scheme is

the lack of flexibility in the choice of the coding rate, for

a fixed outer coding rate. In fact, when a Hadamard code

tailored to a field order q is used, the overall coding rate is

R = (1/3)× (log2 q/q), whereas, if a first order RM code is

adopted, R = (1/3)×(2 log2 q/q). Thus, the use of large field

orders, which leads to turbo codes with excellent performance

[11], turns in extremely-low coding rates. As an example, if

q = 28, the scheme based on an inner Hadamard code has a

coding rate R = 1/96, which is doubled if an inner first order

RM code is used. Next we propose a generic framework to

provide more flexibility in the overall code rate. Observe that

the mapping CI(β) : Fq 7→ CI does not need to be bijective. If

we allow different symbols to be represented by the same inner

code word, higher coding rates are achieved. The result can

be obtained by placing a linear (nP , kP) precode CP between

the outer and the inner code. The role of the precode is to

match the outer code field order with the inner code dimension.

Hence, kP = m and nP = kI. By selecting a precode with rate

RP = kP/nP > 1, the inner code can be a Hadamard/RM code

of dimension kI < m. Note that the overall rate of the scheme

is given by R = RO×RP×RI. The precode may simply match

the outer code field order with the inner code dimension by

puncturing selected bits of the binary image of each outer

code symbol. This is the case that will be considered in the

following.

V. PERFORMANCE

The performance of non-binary turbo codes with (bi-) or-

thogonal signal sets is analyzed by Monte Carlo simulations.

The code design targets the short length regime (k < 200
bits). Figure 3 compares the performance of turbo codes

over F64, as well as F256 and orthogonal modulation with

those of the IS-95(A) standard. For the later, two decoding

strategies are considered. In the first case, the inner code is

decoded via bit-wise maximum a posteriori (MAP) decoding,

providing soft values at the input of the outer Viterbi decoder.

In the second case, an iterative (IT) turbo decoding scheme is

employed, where the inner and the outer decoders exchange

soft information, allowing a gain of nearly 0.5 dB [12]. All

codes have input block size k = 192 bits. The code on F64

possesses an overall rate R = 1/32, thus it is comparable with

the IS-95(A) scheme. At a bit error rate (BER) of 10−4, the

proposed scheme gains roughly 2.5 dB on the IS-95(A) with IT

decoding. The rate R = 1/96 F256 scheme gains 2.8 dB. Note

that the gap between the Shannon limits for rates 1/96 and

1/32 is nearly 0.03 dB. Thus, the gain of the R = 1/96 is quite

remarkable. As a confirmation of this, on the same chart the

SPB [9] for the continuous-input AWGN channel is provided,

with an input block of k = 192 bits. The R = 1/96 code

performs within 0.8 dB from the corresponding SPB down to

a codeword error rate (CER) of 10−6. The R = 1/32 code

over F64 loses nearly 1.2 dB w.r.t. the SPB at CER ≃ 10−5.
Figure 4 compares the performance of the same codes in

the noncoherent setting. Here, the large gain w.r.t. the IS-95(A)

scheme is preserved for both the F64 and F256 turbo codes.

However, as already observed by the DE analysis, the higher

field order pays back in robustness, whereas the F64 shows a

larger degradation w.r.t. the coherent case.
The performance of several codes with an information block

size of k = 192 bits is depicted in Figure 5. In addition

to the above-introduced codes, a rate 1/48 code has been

obtained by replacing the (256, 8) Hadamard code with a

(128, 8) RM code, whereas a rate 1/24 code has been achieved

by concatenating the outer F256 turbo code with an inner

(64, 7) RM code. Here, the matching between the turbo code

field order and inner code dimension has been obtained by

puncturing the last bit of the binary representation of each

turbo code symbol. The CER for a rate 1/15 superorthogonal

turbo code with input block size of 200 bits from [7] under

coherent detection is also provided, together with the SPB for

each coding rate. Remarkably, the superorthogonal turbo code

exhibits an error floor at CER ≃ 10−4, whereas for all codes

designed on F256 no sign of error floor is visible down to

CER ≃ 10−6.
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VI. CONCLUSIONS

This paper investigates the design of non-binary turbo codes

in concatenation with inner linear block codes for very low

coding rates. A DE analysis has been provided for coherent

and the noncoherent detection, showing decoding thresholds

close to the Shannon limit. When the inner codes are chosen

to be Hadamard or first order RM codes a simple decoder

implementation is possible, which employs FHTs for decoding

both the inner and the outer code. Codeword error rates close

within 0.8 dB from the SPB have been obtained for the

proposed schemes, while no floors have been detected down

to error rates as low as CER ≃ 10−6.
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