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Abstract—Low-density ~ parity-check (LDPC) convolutional  that the phenomenon of threshold saturation extends td-mult
codes (or spatially-coupled codes) have been shown to appah  terminal problems (e.g., a noisy Slepian-Wolf problem) and
capacity on the binary erasure channel (BEC) and binary-inpit a1 provide universality over unknown channel parameters.

memoryless symmetric channels. The mechanism behind this . :
spectacular performance is the threshold saturation phenmenon, Threshold saturation has also been observed for the binary-

which is characterized by the belief-propagation threshal of ~adder channel[15], for intersymbol-interference chasié],
the spatially-coupled ensemble increasing to an intrinsicmoise [9], [10], for message-passing decoding of code-divisiai-m
threshold defined by the uncoupled system. tiple access (CDMA)[16]/[17], and for iterative hard-d&on

In this paper, we present a simple proof of threshold saturaibn decoding of SC generalized LDPC codgs|[18]. For compres-

that applies to a broad class of coupled scalar recursions.fie . . sc t matri . tioased fi
conditions of the theorem are verified for the density-evoltion Sive sensing, measurement matrices were investig Ir

(DE) equations of irregular LDPC codes on the BEC, a class W|th Ver|f|Cat|On'based I‘eCOHS'[I’UCtIOH n |_19], and theO\@d

of generalized LDPC codes, and the joint iterative decodingf to achieve the information-theoretic limit in_[20].

LDPC codes on intersymbol-interference channels with erase In many of these papers it is conjectured, either implicitly

noise. Our approach is based on potential functions and was o ayplicitly, that threshold saturation occurs for thedtal

motivated mainly by the ideas of Takeuchi et al. The resultig . .
problem. A general proof of threshold saturation (espBcial

proof is surprisingly simple when compared to previous metlods. . o
Index Terms—convolutional LDPC codes, spatial coupling, ©n€ where only a few details must be verified for each

threshold saturation, density evolution, potential functons system) would allow one to settle all of these conjectures
simultaneously. In this paper, we provide such a proof for
I. INTRODUCTION systems with scalar density-evolution (DE) equations.

Convolutional low-density parity-check (LDPC) codes, or. OUL met_hcl)d ligs bz;sed on pofntiil furjctic;ns and was mo-
spatially-coupled (SC) LDPC codes, were introduced[in [ivate mainly by t.e approac ta en o [21]. It wrns out
and shown to have excellent belief-propagation (BP) thre at their approach is missing a few important elements and

olds in [2], [3], []. Moreover, they have recently bee oes not, as far as we know, lead to a general proof of

observed touniversally approach the capacity of variousthres,hOId sqturation. Stilll, it introduces the idea qf aeptil _
channels[[4], 5], 18], [[7], 18], 191, [L0], [[LL]. function defined by an integral of the DE recursion and this
Aarrantal raanhanicm k. | &I an important element in our approach. More recently, a

The fundamental mechanism behind this is explained w . . .
in [12], where it is proven analytically for the BEC that the&ontinuum approach to DE is used, in120], to prove threshold

BP threshold of a particular SC ensemble converges to ﬂs]%tu_ration for Compressef(? sensing and was reported inflgrma
maximum-a-posteriori (MAP) threshold of the underlying en© give a general proof [22].

semble. This phenomenon is now calkkdeshold saturation I1. A SIMPLE PROOF OFTHRESHOLD SATURATION

A similar result was also observed independentlylin [13] and

. . In this section, we provide a simple proof of threshold
stated as a conjecture. The same result for general bing b pie P

memoryless symmetric (BMS) channels was first em iricalﬁgxur"jltion via spatial-coupling for a broad class of soalenr-
Y 4 ( ) ) P lons. The main tool is a potential theory for scalar recunsi
observed|[4],[[5] and recently proven analytically [[11].

. e . ; that extends naturally to coupled systems of recursions.
The underlying principle behind threshold saturation ap- y P y

pears to be very general and it has now been applied, wih Single-System Potential

much success, to a variety of more general scenarios ingjt we define potential functions for a class of scalar
information theory and coding. In_[14], the benefits of splati o0\ rsions and discuss threshold parameters associated wi
coupling are described fof -satisfiability, graph coloring, 1o potential.

and the Curie-Weiss model in statistical physics. SC COdesDefinition 1: An scalar admissible systerfif, ) parame-
are shown to achieve the entire rate-equivocation region f@;,aq bye € [0,1], is defined by the recursion

the BEC wiretap channel in[6]. The authors observelin [7] ’

(e+1) _ (Y.
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Figure 1. The potential function of the (3,6)—regular LDP@semble is Figure 2. A portion of a generic SC system. Tfieode at position is
shown for a range of. Heree} ~ 0.4294 €* ~ 0.4881, and the stationary coupled with theg-nodes at positions, . ..,i + w — 1 and, by remprocﬂy
points are marked. Notice that, fer< ¥, U(z;¢) has no stationary points. g-node at position is coupled with thef- nodes at positions—w + 1, .

L Here,n; and ) are random permutations.
satisfiesg’(z) > 0 for z € (0,1). We also assume that

f(0;¢) = f(x;0) = g(0) = 0 and thatf, g have continuous Definition 5: For £ > €7, we define theminimum unstable
second derivatives of), 1] w.r.t. all arguments. fixed point to be
Definition 2: The potential functionU(z;e) of a scalar u(e) =sup{z € [0,1]] f(g(x);e) <z, 2 € (0,%)}.
admissible systenif, g) is defined by . .
Definition 6: Let the potential thresholdf the system be
U(z;e) = fo (z- f(g(2);¢))¢'(2)dz e* =sup{e €[0,1] | u(e) >0, [m(ur; . U(z;e) 20} (3)
=zg(z) - G(x) - F(9();¢), (2) andAE(e) = Igﬁnze][U(a)’l] U(z;¢) be theenergy gapof the
Nz _ ey system fore € (¢, 1].
Wher?’_F,(_x’E) b Jo f(ze)dz andGéx) ‘ﬁO ?(ﬁ)d?' Remark 1:0ne consequence of this definition is that, if
De |n|t|?n 3 For.:c,g e [0,1], We aV?t e following terms. _ thenU(z;¢e)>0 for x € (0,1]. Likewise, if AE(e) =0
« For fixede, x is afixed point(f.p.) iff z = f(g(x);e). andu(e)>0, thens=¢*. For DE recursions associated with BP
- For fixede, x is astationary point(s.p.) if U"(z;¢) = 0. decoding, the potential threshold is analogous to the fioids
« For0<z< f(g(z);1), we defmes(g;) tO be the unique predicted by the Maxwell conjecture [24, Conj. 1].

e-root of the equation: - f(g(z);¢) =
B. Coupled System Potential
Lemma 1:The potential function of a scalar admissible

system has the following properties:
1) U(x;e) is strictly decreasing im, for ¢ € (0,1].
2) Anze[0,1]is a f.p. iff it is a s.p. of the potential.

Now, we extend our definition of potential functions to
coupled systems of scalar recursions. In particular, wsiden
a “spatial-coupling” of the single-system recursidn, (that
gives rise to the vector recursidd (4). For the vector rdoars
Proof: These properties hold because the potential fungf the coupled system, we define a potential function and show
tion is the integral of(z - f(g(z);¢)) g'(2) W.rt. z, which is  that, fore < *, the only fixed point of the coupled system is
strictly decreasing im, for ¢ € (0,1], and zero iffz is a fixed the zero vector.
point of the recursion. u Definition 7 (cf. [12]): The basicspatially-coupled system
Definition 4: The single-system threshoid defined to be is defined by placin®2L + 1 single systems at positions in
the setly = {-L,-L +1,...,L} and coupling them with
w systems as shown in Fifgl 2. Leﬁe) be the input to the
and is thee-threshold for convergence of the single- systeﬁl(%mcnon 'r‘ thef'th position after/ iterations and define
recursion to 0. It is well defined becausé(x g) is strictly i Ofori¢L={-L,~L+1,...,L+w-1} and all¢. For
decreasing ine. This implies that, fore < ¢*, (@) has no the coupled system we have the recursion
fixed points in(0,1]. For DE recursions associated with BP (m) 1'% ! (g)
decoding, the threshold; is called the BP threshold. Z fly Z ixjoi )3 ik )
Example 1:For the standard irregular ensemble of LDPC

codes (e.g., se€ [23]), the DE recursion, wheree; = ¢ for i € Lo ande; =0 for i ¢ Lo. ,
Definition 8: The recursion defined bj1(4) can be rewritten

2D = eN(1 - p(1 - 2D)), as avector recursionlLet f(x;¢) andg(x) be defined for vec-
. o _ tor arguments by f(x;¢)]; = f(wi;e) and [g(z)]: = g(z:),
is an scalar admissible system witf(z;e) = e\(z) and respectively. Then[14) is equivalent to
g(x) =1-p(1-2x). In this case, the single-system potential o1 '
is given by [6) and is shown in Fi] 1 for th@,6)-regular D = AT f(Azg(z");e),
LDPC code ensemble defined ¥, p) = (2, 2°). where A, is the (2L +1) x (2L + w) matrix given by

er=sup{e€e[0,1]|U'(z;¢) >0V z € (0,1]},

ka



w

—_— Integrating a scaled version of the vector update step adong
11100 -0 curve(C, from 0 to x, gives the potential function
01 1 10 -0 o , .
Myt e LB Uwie) = [ g'(2)(z- ATf(Ag(2):2)) - dz

=g(z) 'z - G(x) - F(Ag(x);¢),

0-001 11 where ¢/() = diag[g'(2))]), G(z) = [pg(z)-dz =
2L +w Y G(x;) and F(x;e) = [, f(z5¢) -dz = X, F(a4;€).
Remark 4:A key observation in this paper is that a potential
function for coupled systems can be written in the simple

form in Def.[11. Remarkably, this holds for general coupling

LDPC example) output values rather than the output Valu%%efficients because of thel, A™ reciprocity that appears
Since there areL+1 active f-function outputs, the vectar(V) naturally in SC ’

contains the2L + w active averaged values after convolution| [ = 2.| ot ¢ [0,1]" be a non-decreasing vector gen-

with the lengthw averaging sequence. This also shifts thgrated by averaging ¢ [0,1]" over a sliding window of

maximum ivalul,J_el O.f thg vector from position 0, in_[12], Osize w. Let the shift operatoiS : R" — R™ be defined by
positionio = | %1 | in this work.

. . S =0 and[Sxz] = x;_1 for ¢ > 2. Then, one can show
One might also expect thad, is square and that all rowsi zl; [Sz], = @it ’
0

e Sz -z| << and|Sx-z|, =z, = |[2]c-

and columns shoulq sum to 1, but the termination leads Proof: The bound|Sz - z|_ < L follows from
a rectangular matrix with reduced column sums near the w
boundaries. In particulardsg () is a length2L + 1 vector - T = ;{’:’01 Zij -k ;{:01 Ziaoj < L,
representing the inputs to tfd. + 1 active f-functions. ) . _ )

Definition 9 (cf. [12]): The one-sided spatially-coupled Wherézi = 0 for all ¢ < 0. Sincez is non-decreasing, the
systenis a modification of[{4) defined by fixing the values of--10"M Sum telescopes and we gz — x|, = [0 - 21| +
positions outsideC’ = {-L,L +1,...,io}, whereig = | 2] Yisg|tior = wi| = 2 = [®] . u

2 . ; ;
is the position of the maximum element of). It fixes the  -€Mma 4:For the vector one-sided SC system, a shift
P changes the potential By (Sx;e) - U(x;¢) = -U(z4y;€).

left boundary to zero by definingy) =0 fori< -L and ) o 027"
all ¢. It forces the right boundary to a floating constant by Sketch of Proof. Rewriting the coupled potential gives
settingz"”) = 2{") for i > iy and all . Uwie) = 320" Tg(xi)a - G(ai) - F ([Ag(x)]ise)] .-

i=—L-w
Definition 10: Let the vector one-sided SC recursidre

Remark 2:In contrast to[[1P], the SC recursion defing$)
to be theSC-averageof the f-function (e.g., bit node in the

(e+1) . @ One can verify that the contribution, from the first two terims
" = A f(Ag(x™);e), (5) the square brackets, @6(Sx;c)-U(x;¢) is a telescoping sum
that leaves only the difference between the first and lasiegl

£) _ 1.0 () i ;

wherez (") = (270 -+ Zau i, ] AN A is the (L+3w+io+  For the third term in the square brackets, more care is reduir

1) x (L+3w+ip+1) matrix given by Since the firsw values ofz are 0 and the lagtw+1 values of
1 1 - 1 0 e 0] x equalz;,, it can be shown thgt > F ([Ag(Sx)];;e)-
0 1 1 1 o F([Ag(z)]ise) = F(9(0);¢) - F'(9(wi, );€). Thus, we have
S
: U(Sxz;e)-U(x;e) = -Ul(x;,;¢). [ |

A= l 0O - 0 1 1 - 1l. ( ) (z;¢) (i3 )
Wlio 0 - 0 1 - 1 Lemma 5:For the SC potential, the norm of the Hessian

0 0 0 0 1 : U"(x;¢) is independent of. andw and satisfies
00 000 [U"(@56) o0 < K 2 19 oo + 19" 1% 1f oo + 19" o

Remark 3:The right hand side of{5) accurately representShere 1] oo
a single iteration of the one-sided SC system updaté ¢af’,
but cannot be used recursively unless the boundary conditio
(" = 2" for i > iy is enforced after each step. U'(x;¢) = g'(z) - (Ag'(2))" f'(Ag(x);¢) Ag'(x)
Lemma 2 (cf.[[I2, Lem. 14])For both the basic and one- +g"(x)diag(z - AT f(Ag(z);¢)),
sided SC systems, the recursions are component-wise decre% . _ " _ :
ing with iteration and converge to well-defined fixed pointdV€"€9 () = diag([g"(x:)]). Taking the norm gives
The one-sided recursion is also a component-wise upperbouny” (z; )|, < |g'()| ., + | Ag' (@), | £ (Ag(z):e)|_
on the basic SC recursion foe £ and it converges to a non- , ” .
decreasing fixed-point vector. ’ 1Ag (). + Hg (a:)dlag(:n - ATf(Ag(w);E))
Proof: The proof follows easily from the arguments inSince||A|_ =|A[,=1 and|g'(z)|.=]9'()]; < |9 ], We
[12, Sec. V] and is, hence, omitted. m find that |[U"(z;e) | < g oo+ 1912 ] f oo+ [|g" ] oo- [
Definition 11: The coupled-system potentiglan be com-  We now state the main result of the paper. Roughly speak-
puted for general vector recursions written in the form[df (5ing, it says that, it < ¢* andw is sufficiently large, then one

= SUDP,[0,17 [P(x)| for functionsh : [0, 1] — R.
Proof: One can verify that the Hessian is given by

||oo



can always lower the coupled potential of a non-zero vegtor In this case, the potentidl (x;¢) is the same as the pseudo-
shifting. Since this implies the next step of the recursiarstm dual of the Bethe variational entropy in [25, Part 2, pp. &G2-6
reduce some value, the only fixed point is the zero vector.

Theorem 1:Consider a scalar admissible systéf1g). If Lemma 6:Consider the potential threshatd given by [3).
e<e* andw > K ,/AE(¢), then the only fixed point of the Let eM® be the Maxwell threshold [24, Conj. 1], defined by
spatially-coupled system, defined Iy (4),ais- 0. M = min {e(z) | P(z) = 0,z € [0,1]}. @)

Proof: Using Lem[2, letz be the unique fixed point of Max
: . ! . o .Then,e* = ¢V for the ensemble LDPQ\, p).

the one-sided recursion defined in DEf. 9. This fixed point ) Max .

: ) . : Sketch of Proof: Let z be thez-value that achieves
upper bounds the fixed point of the basic SC system defln%d - . Max . - Max
. the minimum. Then,[{6) and(7) imply/ (zV2*;eMax) =
in Def.[@. If x # 0, thenz;, > u(e) because the system has NQ;(;Max M Max~ /77
) . . . (x5 e(2™™)) = —P(2¥*)/L'(1) = 0. One can show
fixed points withz; < u(e) for all <. From Lem[4, we have Max Max. _Max N T Max
AU = . AE(V®) = U (2V®;e"¥) = 0, which impliese* =", =

U=zU(Sx;e)-U(x;e) = -U(xi,;€). Expandingl (Sx; €) K 5 | blegMax Is th
in a Taylor series (with remainder) aroubt{x; <) gives Remark 5: For regular ensembles, ™ equas the MAP

’ thresholdsMAP and this is conjectured to hold in general.

U'(z;e)- (Sx—-x) =U(Sz;e) - U(x;¢) Consider an SC ensemble of irregular LDRCP) codes
1 defined as follows. Th¢-nodes at each position are replaced
- fo (1-t)(Sx-z)'U"(x(t);e)(Sz —x)dt by M copies of the node degree profiléx) = 3, A;x?, where

1 A; is the number of bit nodes of degrée The g-nodes at
/ (1-t)(Sz-x)'U"(x(t);e)(Sz - x)dt| each position are replaced by copies of the node degree
0 profile P(z) = ¥, P;x', where P; is the number of check
nodes of degreé. For sufficiently largeM, these nodes can
be coupled uniformly using an averaging window of length
(see Fig[R) in a manner similar to tife, r, L,w) ensemble

<-U(wipie) + =Ky, defined in [12].

< U(zyy:e) + AE(e) <0, Corollary 1: Applying TheoreniIL shows that, i < ¢M&

andw > Ky ,/AE(¢e), then the SC DE recursion converges to

where the last steps hold because K; ,/AE(¢), z;, <1, the zero vector.

andU (z;¢e) > AE(e) for x > u(e). B. Generalized LDPC Codes on the BEC and BSC

Now, we observe thafx — x < 0 (i.e., the fixed point is . . .
non-decreasing) andSa — z]; is zero(fori ¢ L' So U’p(m-s) Consider a generalized LDPC (GLDPC) code with degree-2
is positive in at least one c:)mponent (e t.heré e>q]$££’ bits and generalized check constraints based on a BCH code of
such that[U"(a; )], > 0). Sinceg’(z) > OIa.r%d (U (z:)]s = block-lengthn. For iterative decoding using bounded-distance
g () - ATfy(Agl(x)-s;-)]z it fgollows_ that ¢/ (z;) 50 a:n_d decoding of the BCH code, the DE recursions can be derived
[AT}(Ag(m)'s)]- < 7So“one more iterationlmust reduc%r both the BEC and binary symmetric channel (BSC) [18].
the value of t’ha'-zth colr.npohent for somee £'. This gives a n the BEC, the code is chosen to correct all patterns of at
contradiction and shows that the only fixed point of the ongJOStt erasures and, on the BSC, the code is chosen to correct

all error patterns of weight at most

sided SC system ig = 0. The result follows since the fixed . X .
oint of the basic SC system is upper bounded by this ip For both cases, the iterative decoding performance of
P "this ensemble is characterized by a DE recursion of the

I11. APPLICATIONS form (1), wheres denotes the channel parameter. In this

. . . L case, the scalar system is defined je) = and
In this section, we consider some applications of The@emﬁ? y Bhz; ) "

<AU +

SAU + [ Sz -z, e 1U" (@ (); €)oo |52 - 2

<-U(@igs€) + 24, max U (2(t);€) ]

for coding broblems that are characterized b laf 1 z) = 302t (" )2 (1-2) "1 7¢. Here,z denotes the erasure
or coding problems that are characterized by a scaiar 1ec esp. error) probability of bit-to-check messages for BieC
sion. We liberally use notation and definitions from|[23].

(resp. BSC) case.
A. Irregular LDPC Codes It can be verified thaif and g define a scalar admissible

. . system whose single-system potential is givenlbyr;e) =
Consider the ensemble LD and transmission over
RE 0) L(=P(2) + g(x) (- f(g(x);))), where

an erasure channel with parameteiLet z(*) be the fraction 2
of erasure messages sent from variable to check nodes during P(z) = /ox(g(z))zfl(z)dz =-zg(x) + 2/0I9(Z)dz
iteration/. The DE equation can be written in the form bf (1)
where f(z;e) = eA(x) and g(x) = 1-p(1 —x). Iis €asy "y oma 7°For 2 < ¢ < |2=1] on the BEC,P(z) has an
to Vei'fy t?ﬁtf gmldg describe a sc-alla-r aquSStl)b|e system |lﬁnique root,z, in (0,1]. Let ¢ = £(Z) be thee-root, ande*
M(0) = 0. The single system potential is given by be the potential threshold defined 1oy (3). Thehs £ for the
U(a:2) = g7y (-P(x) + (e(x) ~e)L(1 - p(1-2))), (6) GLDPC ensemble. |

Remark 6:Since this decoder uses suboptimal component
where P(x) is the trial entropy defined irl_[23, Def. 3.119],decoders, the threshold defined by the unique zerd @f)
e(z) =z/A(1-p(1-z)) andL(z) = [} M(y)dy/ jol A(y)dy. does not give an upper bound on the MAP threshold.

Is the analogous to the trial entropy defined[in [23].



We now describe the SC ensemble for the ensemble ¢ff M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigaov,
GLDPC codes. Thef-nodes in Fig[P are replaced h\n
degree? variable nodes and thenodes are replaced A
BCH codes of block-length. These nodes are coupled using
an averaging window of lengtty in a manner similar to the
(1,r,L,w) ensemble defined in_[12] (e.g., seel[18]).

Corollary 2: Applying Theoren{1l to this SC GLDPC en-
semble shows that the SC DE recursion converges to the ze[%)

vector whenevet < ¢ andw > Ky ,/AE(¢).

C. Intersymbol-Interference Channels with Erasure Noise

In [26], a family of intersymbol-interference (ISI) chanse
with erasure noise is investigated as an analytically afalet
model of joint iterative decoding of LDPC codes and channels
with memory. Lety(t;¢) be the function that maps the
priori erasure rate from the code and the channel erasure rajg,
¢ to the erasure rate of extrinsic messages from the channe
detector to the bit nodes. Then, the resulting DE update-equa
tion for the erasure rate;(*), of bit-to-check messages can b‘fll]

written in the form of [(1), wheref (z;¢)

P(L(x);e)M(x)

andg(x) = 1-p(1-z) [26]. Under mild conditions o (z; ),
this defines a scalar admissible system with potential

U(zie) = y U (L(g(2));e(@)) - U(L(g(x))se) - P(a),
wheree(z) andP(z) are defined in[9] for generalized erasurém
channels andl (z;¢) = [, ¥ (y;e)dy.

Lemma 8:Consider the potential threshold defined by [14]
@) and leteM® be defined by[{7). Therg* = M If, in

addition, P(z) has a unique roat € (0,1], theng

=MAP

=¢e(Z)

is an upper bound on the MAP threshold arfd= VAP,

Proof: Omitted due to similarity with Leni.]16. [ |

(5]

(6]

(8]

(9]

[12]

[15]

[16]

Corollary 3: Consider the SC ensemble defined in Sec-
tionMl=Al If ¢ <e* andw > Ky ,/AE(e), then Theoreni]l
shows that the SC DE recursion converges to the zero vectgy,

IV. CONCLUSIONS

A new theorem is presented that provides a simple pro%?]
of threshold saturation for many scalar DE recursions. The
conditions of the theorem are verified for the density-etiotu (19
(DE) equations of irregular LDPC codes on the BEC, a class
of generalized LDPC codes, and the joint iterative decogto]
ing of some intersymbol-interference channels with emsur
noise. Therefore, threshold saturation is now proved fes¢h

cases. Moreover, we believe this approach opens the door2tg

threshold-saturation proofs for many more general spgtial
coupled systems.
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