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Abstract—Low-density parity-check (LDPC) convolutional
codes (or spatially-coupled codes) have been shown to approach
capacity on the binary erasure channel (BEC) and binary-input
memoryless symmetric channels. The mechanism behind this
spectacular performance is the threshold saturation phenomenon,
which is characterized by the belief-propagation threshold of
the spatially-coupled ensemble increasing to an intrinsicnoise
threshold defined by the uncoupled system.

In this paper, we present a simple proof of threshold saturation
that applies to a broad class of coupled scalar recursions. The
conditions of the theorem are verified for the density-evolution
(DE) equations of irregular LDPC codes on the BEC, a class
of generalized LDPC codes, and the joint iterative decodingof
LDPC codes on intersymbol-interference channels with erasure
noise. Our approach is based on potential functions and was
motivated mainly by the ideas of Takeuchi et al. The resulting
proof is surprisingly simple when compared to previous methods.

Index Terms—convolutional LDPC codes, spatial coupling,
threshold saturation, density evolution, potential functions

I. I NTRODUCTION

Convolutional low-density parity-check (LDPC) codes, or
spatially-coupled (SC) LDPC codes, were introduced in [1]
and shown to have excellent belief-propagation (BP) thresh-
olds in [2], [3], [4]. Moreover, they have recently been
observed touniversally approach the capacity of various
channels [4], [5], [6], [7], [8], [9], [10], [11].

The fundamental mechanism behind this is explained well
in [12], where it is proven analytically for the BEC that the
BP threshold of a particular SC ensemble converges to the
maximum-a-posteriori (MAP) threshold of the underlying en-
semble. This phenomenon is now calledthreshold saturation.
A similar result was also observed independently in [13] and
stated as a conjecture. The same result for general binary
memoryless symmetric (BMS) channels was first empirically
observed [4], [5] and recently proven analytically [11].

The underlying principle behind threshold saturation ap-
pears to be very general and it has now been applied, with
much success, to a variety of more general scenarios in
information theory and coding. In [14], the benefits of spatial
coupling are described forK-satisfiability, graph coloring,
and the Curie-Weiss model in statistical physics. SC codes
are shown to achieve the entire rate-equivocation region for
the BEC wiretap channel in [6]. The authors observe in [7]
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that the phenomenon of threshold saturation extends to multi-
terminal problems (e.g., a noisy Slepian-Wolf problem) and
can provide universality over unknown channel parameters.
Threshold saturation has also been observed for the binary-
adder channel [15], for intersymbol-interference channels [8],
[9], [10], for message-passing decoding of code-division mul-
tiple access (CDMA) [16], [17], and for iterative hard-decision
decoding of SC generalized LDPC codes [18]. For compres-
sive sensing, SC measurement matrices were investigated first
with verification-based reconstruction in [19], and then proved
to achieve the information-theoretic limit in [20].

In many of these papers it is conjectured, either implicitly
or explicitly, that threshold saturation occurs for the studied
problem. A general proof of threshold saturation (especially
one where only a few details must be verified for each
system) would allow one to settle all of these conjectures
simultaneously. In this paper, we provide such a proof for
systems with scalar density-evolution (DE) equations.

Our method is based on potential functions and was mo-
tivated mainly by the approach taken in [21]. It turns out
that their approach is missing a few important elements and
does not, as far as we know, lead to a general proof of
threshold saturation. Still, it introduces the idea of a potential
function defined by an integral of the DE recursion and this
is an important element in our approach. More recently, a
continuum approach to DE is used, in [20], to prove threshold
saturation for compressed sensing and was reported informally
to give a general proof [22].

II. A S IMPLE PROOF OFTHRESHOLDSATURATION

In this section, we provide a simple proof of threshold
saturation via spatial-coupling for a broad class of scalarrecur-
sions. The main tool is a potential theory for scalar recursions
that extends naturally to coupled systems of recursions.

A. Single-System Potential

First, we define potential functions for a class of scalar
recursions and discuss threshold parameters associated with
the potential.

Definition 1: An scalar admissible system(f, g) parame-
terized byε ∈ [0,1], is defined by the recursion

x(ℓ+1) = f(g(x(ℓ)); ε), (1)

where f ∶ [0,1] × [0,1] → [0,1] is strictly increasing in
both arguments forx, ε ∈ (0,1], and g ∶ [0,1] → [0,1]
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Figure 1. The potential function of the (3,6)-regular LDPC ensemble is
shown for a range ofε. Hereε∗

s
≈ 0.4294, ε∗ ≈ 0.4881, and the stationary

points are marked. Notice that, forε < ε∗s , U(x; ε) has no stationary points.

satisfies g′(x) > 0 for x ∈ (0,1). We also assume that
f(0; ε) = f(x; 0) = g(0) = 0 and thatf, g have continuous
second derivatives on[0,1] w.r.t. all arguments.

Definition 2: The potential functionU(x; ε) of a scalar
admissible system(f, g) is defined by

U(x; ε) ≜ ∫
x

0

(z − f(g(z); ε))g′(z)dz
= xg(x) −G(x) −F (g(x); ε), (2)

whereF (x; ε) = ∫ x

0
f(z; ε)dz andG(x) = ∫ x

0
g(z)dz.

Definition 3: Forx, ε ∈ [0,1], we have the following terms.

● For fixedε, x is a fixed point(f.p.) iff x = f(g(x); ε).
● For fixedε, x is a stationary point(s.p.) if U ′(x; ε) = 0.
● For 0 < x ≤ f(g(x); 1), we defineε(x) to be the unique
ε-root of the equationx − f(g(x); ε) = 0.

Lemma 1:The potential function of a scalar admissible
system has the following properties:

1) U(x; ε) is strictly decreasing inε, for ε ∈ (0,1].
2) An x ∈ [0,1] is a f.p. iff it is a s.p. of the potential.

Proof: These properties hold because the potential func-
tion is the integral of(z − f(g(z); ε))g′(z) w.r.t. z, which is
strictly decreasing inε, for ε ∈ (0,1], and zero iffz is a fixed
point of the recursion.

Definition 4: The single-system thresholdis defined to be

ε∗s = sup{ε ∈ [0,1] ∣ U ′(x; ε) > 0 ∀ x ∈ (0,1]} ,
and is theε-threshold for convergence of the single-system
recursion to 0. It is well defined becauseU ′(x; ε) is strictly
decreasing inε. This implies that, forε < ε∗s , (1) has no
fixed points in(0,1]. For DE recursions associated with BP
decoding, the thresholdε∗s is called the BP threshold.

Example 1:For the standard irregular ensemble of LDPC
codes (e.g., see [23]), the DE recursion,

x(ℓ+1) = ελ(1 − ρ(1 − x(ℓ))),
is an scalar admissible system withf(x; ε) = ελ(x) and
g(x) = 1 − ρ(1 − x). In this case, the single-system potential
is given by (6) and is shown in Fig. 1 for the(3,6)-regular
LDPC code ensemble defined by(λ, ρ) = (x2, x5).
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Figure 2. A portion of a generic SC system. Thef -node at positioni is
coupled with theg-nodes at positionsi, . . . , i + w − 1 and, by reciprocity,
g-node at positioni is coupled with thef -nodes at positionsi−w+1, . . . , i.
Here,πi andπ′

i
are random permutations.

Definition 5: For ε > ε∗s , we define theminimum unstable
fixed point to be

u(ε) = sup{x̃ ∈ [0,1] ∣ f(g(x); ε) < x,x ∈ (0, x̃)}.
Definition 6: Let thepotential thresholdof the system be

ε∗ = sup{ε ∈ [0,1] ∣ u(ε) > 0, min
x∈[u(ε),1]

U(x; ε) ≥ 0} (3)

and∆E(ε) = minx∈[u(ε),1]U(x; ε) be theenergy gapof the
system forε ∈ (ε∗s ,1].

Remark 1:One consequence of this definition is that, if
ε<ε∗, thenU(x; ε)>0 for x ∈ (0,1]. Likewise, if ∆E(ε) = 0
andu(ε)>0, thenε=ε∗. For DE recursions associated with BP
decoding, the potential threshold is analogous to the threshold
predicted by the Maxwell conjecture [24, Conj. 1].

B. Coupled System Potential

Now, we extend our definition of potential functions to
coupled systems of scalar recursions. In particular, we consider
a “spatial-coupling” of the single-system recursion, (1),that
gives rise to the vector recursion (4). For the vector recursion
of the coupled system, we define a potential function and show
that, for ε < ε∗, the only fixed point of the coupled system is
the zero vector.

Definition 7 (cf. [12]): The basicspatially-coupled system
is defined by placing2L + 1 single systems at positions in
the setL0 ≜ {−L,−L + 1, . . . , L} and coupling them with
w systems as shown in Fig. 2. Letx(ℓ)i be the input to the
g-function in the i-th position afterℓ iterations and define
x
(ℓ)
i = 0 for i ∉ L ≜ {−L,−L+ 1, . . . , L+w − 1} and allℓ. For

the coupled system, we have the recursion

x
(ℓ+1)
i = 1

w

w−1

∑
k=0

f
⎛
⎝
1

w

w−1

∑
j=0

g(x(ℓ)
i+j−k); εi−k

⎞
⎠ , (4)

whereεi = ε for i ∈ L0 andεi = 0 for i ∉ L0.
Definition 8: The recursion defined by (4) can be rewritten

as avector recursion. Letf(x; ε) andg(x) be defined for vec-
tor arguments by[f(x; ε)]i = f(xi; ε) and [g(x)]i = g(xi),
respectively. Then, (4) is equivalent to

x(ℓ+1) =A⊺
2
f(A2g(x(ℓ)); ε),

whereA2 is the(2L + 1) × (2L +w) matrix given by



1 1 ⋯ 1 0 0 ⋯ 0

0 1 1 ⋯ 1 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 1 1 ⋯ 1 0

0 ⋯ 0 0 1 1 ⋯ 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A2 = 1

w

2
L
+
1

w

2L +w

Remark 2: In contrast to [12], the SC recursion definesx(ℓ)

to be theSC-averageof the f -function (e.g., bit node in the
LDPC example) output values rather than the output values.
Since there are2L+1 activef -function outputs, the vectorx(ℓ)

contains the2L + w active averaged values after convolution
with the length-w averaging sequence. This also shifts the
maximum value of the vector from position 0, in [12], to
position i0 ≜ ⌊w−12

⌋ in this work.
One might also expect thatA2 is square and that all rows

and columns should sum to 1, but the termination leads to
a rectangular matrix with reduced column sums near the
boundaries. In particular,A2g(x) is a length2L + 1 vector
representing the inputs to the2L + 1 activef -functions.

Definition 9 (cf. [12]): The one-sided spatially-coupled
systemis a modification of (4) defined by fixing the values of
positions outsideL′ ≜ {−L,L + 1, . . . , i0}, wherei0 = ⌊w−12

⌋
is the position of the maximum element ofx(ℓ). It fixes the
left boundary to zero by definingx(ℓ)i = 0 for i < −L and
all ℓ. It forces the right boundary to a floating constant by
settingx(ℓ)i = x(ℓ)i0

for i ≥ i0 and allℓ.
Definition 10: Let thevector one-sided SC recursionbe

x(ℓ+1) =A⊺f(Ag(x(ℓ)); ε), (5)

wherex(ℓ) = [x(ℓ)−L−w, . . . , x(ℓ)2w+i0
] andA is the (L+3w+i0+

1) × (L+3w+i0+1) matrix given by

A = 1

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1 0 ⋯ 0

0 1 1 ⋯ 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0

0 ⋯ 0 1 1 ⋯ 1

0 0 ⋯ 0 1 ⋱ 1

0 0 ⋯ 0 0 1 ⋮
0 0 ⋯ 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Remark 3:The right hand side of (5) accurately represents
a single iteration of the one-sided SC system update fori ∈ L′,
but cannot be used recursively unless the boundary condition
x
(ℓ)
i = x(ℓ)i0

for i ≥ i0 is enforced after each step.
Lemma 2 (cf. [12, Lem. 14]):For both the basic and one-

sided SC systems, the recursions are component-wise decreas-
ing with iteration and converge to well-defined fixed points.
The one-sided recursion is also a component-wise upper bound
on the basic SC recursion fori ∈ L and it converges to a non-
decreasing fixed-point vector.

Proof: The proof follows easily from the arguments in
[12, Sec. V] and is, hence, omitted.

Definition 11: The coupled-system potentialcan be com-
puted for general vector recursions written in the form of (5).

Integrating a scaled version of the vector update step alonga
curveC, from 0 to x, gives the potential function

U(x; ε) = ∫
C

g′(z)(z −A⊺f(Ag(z); ε)) ⋅ dz

= g(x)⊺x −G(x) −F (Ag(x); ε),

where g′(x) = diag([g′(xi)]), G(x) = ∫C g(z) ⋅ dz =
∑iG(xi) andF (x; ε) = ∫C f(z; ε) ⋅ dz = ∑i F (xi; ε).

Remark 4:A key observation in this paper is that a potential
function for coupled systems can be written in the simple
form in Def. 11. Remarkably, this holds for general coupling
coefficients because of theA,A⊺ reciprocity that appears
naturally in SC.

Lemma 3:Let x ∈ [0,1]n be a non-decreasing vector gen-
erated by averagingz ∈ [0,1]n over a sliding window of
size w. Let the shift operatorS ∶ Rn → R

n be defined by
[Sx]

1
= 0 and [Sx]i = xi−1 for i ≥ 2. Then, one can show

∥Sx −x∥∞ ≤ 1

w
and∥Sx −x∥

1
= xn = ∥x∥∞.

Proof: The bound∥Sx −x∥∞ ≤ 1

w
follows from

xi − xi−1 = 1

w∑
w−1

j=0
zi−j −

1

w∑
w−1

j=0
zi−1−j ≤ 1

w
,

where zi = 0 for all i < 0. Sincex is non-decreasing, the
1-norm sum telescopes and we get∥Sx − x∥1 = ∣0 − x1∣ +
∑n

i=2 ∣xi−1 − xi∣ = xn = ∥x∥∞.
Lemma 4:For the vector one-sided SC system, a shift

changes the potential byU(Sx; ε) −U(x; ε) = −U(xi0 ; ε).
Sketch of Proof: Rewriting the coupled potential gives

U(x; ε) = ∑2w+i0

i=−L−w
[g(xi)xi −G(xi) −F ([Ag(x)]i; ε)] .

One can verify that the contribution, from the first two termsin
the square brackets, toU(Sx; ε)−U(x; ε) is a telescoping sum
that leaves only the difference between the first and last values.
For the third term in the square brackets, more care is required.
Since the firstw values ofx are 0 and the last2w+1 values of
x equalxi0 , it can be shown that∑2w+i0

i=−L−w F ([Ag(Sx)]i; ε)−
F ([Ag(x)]i; ε) = F (g(0); ε)−F (g(xi0); ε). Thus, we have

U(Sx; ε) −U(x; ε) = −U(xi0 ; ε).
Lemma 5:For the SC potential, the norm of the Hessian

U ′′(x; ε) is independent ofL andw and satisfies

∥U ′′(x; ε)∥∞ ≤Kf,g ≜ ∥g′∥∞ + ∥g′∥2∞∥f ′∥∞ + ∥g′′∥∞,
where∥h∥∞ = supx∈[0,1] ∣h(x)∣ for functionsh ∶ [0,1]→ R.

Proof: One can verify that the Hessian is given by

U ′′(x; ε) = g′(x) − (Ag′(x))⊺f ′(Ag(x); ε)Ag′(x)
+ g′′(x)diag(x −A⊺f(Ag(x); ε)) ,

whereg′′(x) = diag([g′′(xi)]). Taking the norm gives

∥U ′′(x; ε)∥∞ ≤ ∥g′(x)∥∞ + ∥Ag′(x))∥
1
∥f ′(Ag(x); ε)∥

∞

⋅ ∥Ag′(x))∥∞ + ∥g′′(x)diag(x −A⊺f(Ag(x); ε))∥
∞
.

Since∥A∥∞=∥A∥1=1 and∥g′(x)∥∞=∥g′(x)∥1 ≤ ∥g′∥∞, we
find that∥U ′′(x; ε)∥∞ ≤ ∥g′∥∞+ ∥g′∥2∞∥f ′∥∞+ ∥g′′∥∞.

We now state the main result of the paper. Roughly speak-
ing, it says that, ifε < ε∗ andw is sufficiently large, then one



can always lower the coupled potential of a non-zero vector by
shifting. Since this implies the next step of the recursion must
reduce some value, the only fixed point is the zero vector.

Theorem 1:Consider a scalar admissible system(f, g). If
ε < ε∗ andw >Kf,g/∆E(ε), then the only fixed point of the
spatially-coupled system, defined by (4), isx = 0.

Proof: Using Lem. 2, letx be the unique fixed point of
the one-sided recursion defined in Def. 9. This fixed point
upper bounds the fixed point of the basic SC system defined
in Def. 7. If x ≠ 0, thenxi0 ≥ u(ε) because the system has no
fixed points withxi < u(ε) for all i. From Lem. 4, we have
∆U ≜ U(Sx; ε)−U(x; ε) = −U(xi0 ; ε). ExpandingU(Sx; ε)
in a Taylor series (with remainder) aroundU(x; ε) gives

U ′(x; ε) ⋅ (Sx −x) = U(Sx; ε) −U(x; ε)
−∫

1

0

(1 − t)(Sx −x)⊺U ′′(x(t); ε)(Sx −x)dt
≤∆U + ∣∫

1

0

(1 − t)(Sx −x)⊺U ′′(x(t); ε)(Sx − x)dt∣
≤∆U + ∥Sx −x∥

1
max
t∈[0,1]

∥U ′′(x(t); ε)∥∞ ∥Sx −x∥∞
≤ −U(xi0 ; ε) + 1

w
xi0 max

t∈[0,1]
∥U ′′(x(t); ε)∥∞

≤ −U(xi0 ; ε) + 1

w
Kf,g

< −U(xi0 ; ε) +∆E(ε) ≤ 0,
where the last steps hold becausew > Kf,g/∆E(ε), xi0 ≤ 1,
andU(x; ε) ≥∆E(ε) for x ≥ u(ε).

Now, we observe thatSx − x ⪯ 0 (i.e., the fixed point is
non-decreasing) and[Sx−x]i is zero fori ∉ L′. So,U ′(x; ε)
is positive in at least one component (i.e., there existsi ∈ L′
such that[U ′(x; ε)]i > 0). Sinceg′(x) ≥ 0 and [U ′(x; ε)]i =
g′(xi)[x −A⊺f(Ag(x); ε)]i, it follows that g′(xi) > 0 and
[A⊺f(Ag(x); ε)]i < xi. So, one more iteration must reduce
the value of thei-th component for somei ∈ L′. This gives a
contradiction and shows that the only fixed point of the one-
sided SC system isx = 0. The result follows since the fixed
point of the basic SC system is upper bounded by this f.p.

III. A PPLICATIONS

In this section, we consider some applications of Theorem 1
for coding problems that are characterized by a scalar recur-
sion. We liberally use notation and definitions from [23].

A. Irregular LDPC Codes

Consider the ensemble LDPC(λ, ρ) and transmission over
an erasure channel with parameterε. Let x(ℓ) be the fraction
of erasure messages sent from variable to check nodes during
iterationℓ. The DE equation can be written in the form of (1),
where f(x; ε) = ελ(x) and g(x) = 1 − ρ(1 − x). It is easy
to verify that f and g describe a scalar admissible system if
λ(0) = 0. The single system potential is given by

U(x; ε) = 1

L′(1)
(−P (x) + (ε(x) − ε)L(1 − ρ(1 − x))) , (6)

whereP (x) is the trial entropy defined in [23, Def. 3.119],
ε(x) = x/λ(1 − ρ(1 − x)) andL(x) = ∫ x

0
λ(y)dy/ ∫ 1

0
λ(y)dy.

In this case, the potentialU(x; ε) is the same as the pseudo-
dual of the Bethe variational entropy in [25, Part 2, pp. 62-65].

Lemma 6:Consider the potential thresholdε∗ given by (3).
Let εMax be the Maxwell threshold [24, Conj. 1], defined by

εMax =min{ε(x) ∣P (x) = 0, x ∈ [0,1]} . (7)

Then,ε∗ = εMax for the ensemble LDPC(λ, ρ).
Sketch of Proof: Let xMax be thex-value that achieves

the minimum. Then, (6) and (7) implyU(xMax; εMax) =
U(xMax; ε(xMax)) = −P (xMax)/L′(1) = 0. One can show
∆E(εMax) = U(xMax; εMax) = 0, which impliesε∗ = εMax.

Remark 5:For regular ensembles,εMax equals the MAP
thresholdεMAP and this is conjectured to hold in general.

Consider an SC ensemble of irregular LDPC(Λ, P ) codes
defined as follows. Thef -nodes at each position are replaced
byM copies of the node degree profileΛ(x) = ∑iΛix

i, where
Λi is the number of bit nodes of degreei. The g-nodes at
each position are replaced byM copies of the node degree
profile P (x) = ∑i Pix

i, wherePi is the number of check
nodes of degreei. For sufficiently largeM , these nodes can
be coupled uniformly using an averaging window of lengthw
(see Fig. 2) in a manner similar to the(l,r, L,w) ensemble
defined in [12].

Corollary 1: Applying Theorem 1 shows that, ifε < εMax

andw >Kf,g/∆E(ε), then the SC DE recursion converges to
the zero vector.

B. Generalized LDPC Codes on the BEC and BSC

Consider a generalized LDPC (GLDPC) code with degree-2
bits and generalized check constraints based on a BCH code of
block-lengthn. For iterative decoding using bounded-distance
decoding of the BCH code, the DE recursions can be derived
for both the BEC and binary symmetric channel (BSC) [18].
On the BEC, the code is chosen to correct all patterns of at
mostt erasures and, on the BSC, the code is chosen to correct
all error patterns of weight at mostt.

For both cases, the iterative decoding performance of
this ensemble is characterized by a DE recursion of the
form (1), whereε denotes the channel parameter. In this
case, the scalar system is defined byf(x; ε) ≜ εx and
g(x) ≜ ∑n−1

e=t (n−1e )xe(1−x)n−1−e. Here,x denotes the erasure
(resp. error) probability of bit-to-check messages for theBEC
(resp. BSC) case.

It can be verified thatf and g define a scalar admissible
system whose single-system potential is given byU(x; ε) =
1

2
(−P (x) + g(x)(x − f(g(x); ε))), where

P (x) = ∫ x

0
(g(z))2ε′(z)dz = −xg(x) + 2∫ x

0
g(z)dz

is the analogous to the trial entropy defined in [23].
Lemma 7:For 2 ≤ t ≤ ⌊n−1

2
⌋ on the BEC,P (x) has an

unique root,x̄, in (0,1]. Let ε̄ ≜ ε(x̄) be theε-root, andε∗

be the potential threshold defined by (3). Then,ε∗ = ε̄ for the
GLDPC ensemble.

Remark 6:Since this decoder uses suboptimal component
decoders, the threshold defined by the unique zero ofP (x)
does not give an upper bound on the MAP threshold.



We now describe the SC ensemble for the ensemble of
GLDPC codes. Thef -nodes in Fig. 2 are replaced byMn

degree-2 variable nodes and theg-nodes are replaced by2M
BCH codes of block-lengthn. These nodes are coupled using
an averaging window of lengthw in a manner similar to the
(l,r, L,w) ensemble defined in [12] (e.g., see [18]).

Corollary 2: Applying Theorem 1 to this SC GLDPC en-
semble shows that the SC DE recursion converges to the zero
vector wheneverε < ε̄ andw >Kf,g/∆E(ε).
C. Intersymbol-Interference Channels with Erasure Noise

In [26], a family of intersymbol-interference (ISI) channels
with erasure noise is investigated as an analytically tractable
model of joint iterative decoding of LDPC codes and channels
with memory. Letψ(t; ε) be the function that maps thea
priori erasure ratet from the code and the channel erasure rate
ε to the erasure rate of extrinsic messages from the channel
detector to the bit nodes. Then, the resulting DE update equa-
tion for the erasure rate,x(ℓ), of bit-to-check messages can be
written in the form of (1), wheref(x; ε) = ψ(L(x); ε)λ(x)
andg(x) = 1−ρ(1−x) [26]. Under mild conditions onψ(x; ε),
this defines a scalar admissible system with potential

U(x; ε) = 1

L′(1)
Ψ(L(g(x)); ε(x)) −Ψ(L(g(x)); ε)−P (x),

whereε(x) andP (x) are defined in [9] for generalized erasure
channels andΨ(x; ε) = ∫ x

0
ψ(y; ε)dy.

Lemma 8:Consider the potential thresholdε∗ defined by
(3) and letεMax be defined by (7). Then,ε∗ = εMax. If, in
addition,P (x) has a unique root̄x ∈ (0,1], thenε̄MAP = ε(x̄)
is an upper bound on the MAP threshold andε∗ = ε̄MAP.

Proof: Omitted due to similarity with Lem. 6.
Corollary 3: Consider the SC ensemble defined in Sec-

tion III-A. If ε < ε∗ andw > Kf,g/∆E(ε), then Theorem 1
shows that the SC DE recursion converges to the zero vector.

IV. CONCLUSIONS

A new theorem is presented that provides a simple proof
of threshold saturation for many scalar DE recursions. The
conditions of the theorem are verified for the density-evolution
(DE) equations of irregular LDPC codes on the BEC, a class
of generalized LDPC codes, and the joint iterative decod-
ing of some intersymbol-interference channels with erasure
noise. Therefore, threshold saturation is now proved for these
cases. Moreover, we believe this approach opens the door to
threshold-saturation proofs for many more general spatially-
coupled systems.
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