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Abstract—We investigate a family of protograph based rate-
compatible LDPC convolutional codes. The code family shows
improved thresholds close to the Shannon limit compared to
their uncoupled versions for the binary erasure channel as well
as the AWGN channel. In fact, the gap to Shannon limit is
almost uniform for all members of the code family ensuring
good performance for all subsequent incremental redundancy
transmissions. Compared to similar code families based on
regular LDPC codes [1] the complexity of our approach grows
slower for the considered rates.

I. INTRODUCTION

The use of incremental redundancy (IR) in modern wireless
communication systems is very popular. The varying nature
of the wireless communication channel makes an adaptive
procedure for forward error correction necessary to support
reliable communication. First schemes of that kind where
introduced in [2]. To obtain this adaptivity the scheme nor-
mally works in the following way. An initial codeword is
transmitted and in case of erroneous reception and a failed
decoding attempt, the transmitter is requested to send ad-
ditional redundant information. For obtaining this redundant
information several ways were proposed. One approach is to
use puncturing. Starting with a mother code of very low code
rate, specific bits of a codeword are punctured to obtain a
codeword of higher code rate. A rate-adaptive family of codes
is then produced by applying different puncturing patterns to
the mother code. The problem of puncturing is that the highly
optimized mother code is always the lowest rate code while the
initial transmission is with high code rate. The optimization
in [3] showed an increasing gap to capacity with higher rate
resulting in an initial transmission with worse performance.
To overcome this issue extension is the opposite approach to
puncturing [4]. Beginning with a high-rate code subsequent
codewords are obtained by extending the parity matrix. The
authors in [5] considered the design of a family of rate-
compatible irregular LDPC codes. These codes outperform the
previously mentioned punctured counterparts as they show a
uniform gap to capacity over a wide range of rates. However
with the use of irregular codes, the degree distributions have
to be optimized for every rate complicating both design and
implementation. The above mentioned solutions fall into the
category of finite discrete rate incremental redundancy code
designs. The introduction of LT codes [6] and Raptor Codes
[7] formed a new coding paradigm of rateless codes which
can virtually generate any desired rate. Similarities between
rateless and finite discrete rate code designs were already
pointed out in [8]. An example of a finite discrete rate code
family design that is motivated by the code structure of Raptor

codes was recently introduced in [9] and can be referred to
as a protograph based rate-compatible LDPC code family that
has a raptor-like code structure.

Investigations on the interconnection of LDPC block codes
revealed a threshold improvement [10] which is only due to
the coupled structure of the resulting graph. The term spatial

coupling was introduced in [11] together with an analytical
treatment of the threshold saturation effect. While this effect
was investigated in conjunction with channel coding the same
behaviour can be observed in other research areas related to
graphical models.

The coupling of an incremental redundancy code family
based on the extension of regular LDPC codes was investigated
in [1]. For this case the codes are proven to achieve capacity
of the binary erasure channel (BEC) [11]. Coupling of rateless
codes was investigated in [12], where the authors coupled a LT
code ensemble and conjectured to universally achieve capacity
on different channels.

In this paper we present a family of protograph-based
rate-compatible LDPC convolutional code ensembles for use
in incremental redundancy applications and give an analysis
of the thresholds and complexity of the code ensembles in
comparison to the regular convolutional codes. The considered
ensembles are spatially-coupled versions of the code family
in [9]. The paper is organized as follows. In Section II the
original raptor-like LDPC codes are introduced and a short
introduction to spatial coupling is given. Then the family of
protograph-based rate-compatible LDPC convolutional codes
is described and the procedure to obtain such an ensemble
is explained. A detailed threshold analysis is then presented
in Section IV, followed by an assessment of the decoding
complexity. Finally, the paper is concluded with an outlook.

II. PRELIMINARIES

A. Raptor-like LDPC Codes for Incremental Redundancy

In [9] a family or rate-compatible LDPC codes with a
raptor-like graph structure was introduced. The term ”raptor-
like” is derived from the similar graphical structure that a
conventional raptor code shows. A raptor code is formed
by a specifically parametrized LT code [6] that is precoded
by a properly chosen LDPC code in order to improve the
error floor behaviour. For a conventional raptor code the
connections of the LT code part are chosen ”on the fly”
in the encoding process resulting in a random definition of
the code during encoding. The following code families differ
from this approach as their description is predetermined. To
obtain a raptor-like code based on protographs as in [9] first a
suitable precode C1 is chosen, defined by the protograph base
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Fig. 1. Exemplary protograph of a raptor-like LDPC code [9]

matrix B
(1) with N1 variable nodes and M1 check nodes.

To produce a rate-compatible family of codes {Ck}
K

1 for
K incremental redundancy steps the following procedure is
used. For subsequent incremental redundancy transmissions
a new variable node and a new check node are appended
to the precode and connected to each other with an edge.
Then the connections from the newly generated check node
to the variable nodes of the precode are chosen such that the
threshold is optimized, resulting in a code Ck for incremental
redundancy step k. The procedure obtains a code family with
K members and assigned protographs as in Fig. 1, where for
incremental redundancy step k the protograph consists of the
precode and the incremental redundancy nodes up to index
k. For the rest of the paper we consider the exemplary code
family from [9] with K = 11 code members but the concept
can be extended to code families with an arbitrary number of
members K .

The graph representation also relates to a description via ex-
tended base matrices. Assume the rate-compatible code family

{Ck}
K

1 with associated base matrices B
(k) for k ∈ {1 . . .K}.

Note that B(1) is the base matrix of the precode. Then each
B

(k) is given by

B
(k) =

[

B
(k−1)

0M1+k−1×1

B
(e,k)

01×k−2 1

]

; k = 2, . . .K

(1)
where B

(e,k) is representing the optimized connections be-
tween newly generated check nodes and the variable nodes of
the precode and 0m×n denotes an all-zero matrix of size m×n.
The base matrix for step k−1 is part of the base matrix at step
k, a necessary condition for rate-compatibility. The recursive
construction of base matrices results in a nested structure as
depicted in Fig. 2. The codes presented in [9] exhibit very
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Fig. 2. Extension structure of the base matrix

good thresholds with small gap to the Shannon limit for the
AWGN channel and a similar behavior can be found for the
BEC. Simulations in [9] show the practical applicability of

such code families.

B. Spatial Coupling

The transmission of a sequence of codewords vt with t =
1 . . . L using an LDPC block code is considered in the sequel.
The code structure can be defined by a protograph with M
check- and N variable nodes and an associated base matrix B.
The fundamental difference between a LDPC block code and
its convolutional version is, that in the latter case codewords
of different time instants are interconnected. The codewords
are coupled over several time instants t. The memory ms of
the coupled ensemble defines the maximal distance between
two coupled blocks. To obtain an LDPC convolutional code
from a given chain of LDPC block codes a procedure called
edge spreading was introduced in [13]. Edges from variable
nodes at index t are spread among check nodes in the range
t, t+1, . . . , t+ms. The resulting protograph based terminated
LDPC convolutional code ensemble can be described by its
convolutional base matrix

B[0,L−1] =















B0

...
. . .

Bms
B0

. . .
...

Bms















(L+ms)M×LN

(2)

Uncoupled LDPC block codes are a special case with B0 = B

and ms = 0. The edge spreading procedure can be applied
to any given protograph of regular or irregular kind with
given base matrix. To preserve the original structure of the
computation tree together with maintaining the check- and
variable node degrees, the condition

B =

ms
∑

i=0

Bi (3)

must be satisfied. The termination of the chain after L instants
introduces a rate loss at the boundaries which vanishes if L →
∞.

III. COUPLED PROTOGRAPH-BASED RATE-COMPATIBLE

LDPC CODES

Now we introduce a family of spatially coupled protograph-
based rate-compatible LDPC codes. Spatial coupling is applied
to decrease the gap to the Shannon limit for the original
raptor-like LDPC codes. The obtained protograph code is a
rate-compatible LDPC convolutional code family with raptor-
like graph structure. To generate such a convolutional proto-
graph the edges belonging to an original protograph B

(k) are



spread over several time instants and the resulting structure
is concatenated L times to generate a chain of spatially
connected protographs. A convolutional structure of this kind
is figuratively illustrated in Fig. 3.

. . .

Fig. 3. Banded structure of a rate-compatible LDPC convolutional code

Here white rectangles denote all-zero sub-matrices and
shaded rectangles denote non-zero sub-matrices. The chain is
terminated after L time instants to form a block code with a
convolutional structure and LNk variable nodes.

To generate a rate-compatible convolutional LDPC code
family the spreading procedure introduced in Section II-B
is applied to the base matrices B

(k). This can be done in
various ways and only minor constraints have to be taken into
account. We consider the rate-compatible family of raptor-like

LDPC codes {Ck}
K

1 with associated base matrices B
(k) from

[9] with no further optimization as the origin for our code
design. The edge spreading procedure must now be carried
out for every base matrix of the protograph code family and
for the rest of the paper we consider ms = 1. As shown in
(1), the subsequent base matrices are nested – a property that
simplifies the spreading process. The procedure is as follows.
The precode B

(1) denoted by

B
(1) =

[

4 1 1 2 1 2 1 2
1 2 2 1 2 1 2 1

]

(4)

is exemplary spread over ms + 1 = 2 time instants into the

base matrices B
(1)
0 and B

(1)
1 as

B
(1)
0 =

[

3 0 1 0 1 1 0 2
1 0 1 1 0 1 1 0

]

(5)

B
(1)
1 =

[

1 1 0 2 0 1 1 0
0 2 1 0 2 0 1 1

]

. (6)

As the extension of the original raptor-like LDPC code was
accomplished by simply adding a row [B(e,k+1)

01×k−2 1]
to B

(k) denoting the LT code connections, this procedure
can be adopted for the spreading procedure. To obtain a new
incremental redundancy step k, the row

[B(e,k)
01×k−2 1] (7)

is spread into

[B
(e,k)
0 01×k−2 1] (8)

[B
(e,k)
1 01×k−2 0]. (9)

Note that the single entry rightmost in the extension vector
(denoting the single edge between check node and variable
node of the incremental redundancy part in step k), is ran-
domly assigned to a specific time instant. An example spread
for incremental redundancy step k = 2 is shown below where

[B(e,2) 1] = [1 1 1 1 1 1 1 1 1] (10)

is arbitrarily spread to

[B
(e,2)
0 1] = [1 0 1 0 1 0 1 0 1]

[B
(e,2)
1 0] = [0 1 0 1 0 1 0 1 0]

The complete spreading of the extension vectors can be seen
in (14) on the next page. The resulting rate-compatible LDPC
convolutional code base matrix for incremental redundancy
step k is then given by

B
(k)
[0,L−1] =













B
(k)
0

B
(k)
1

. . .

B
(k)
0

. . . B
(k)
1













(11)

with

B
(k)
i =

[

B
(k−1)
i 0M1+k−1×1

B
(e,k)
i 01×k−2 1

]

; k = 2, . . . ,K

(12)
for i = 0, 1. In the preceding example a spreading over ms +
1 = 2 time instants is shown while other arbitrary spreadings
with ms > 1 are possible as long as (3) is fulfilled. The design
rate of the rate-compatible convolutional code ensemble for
incremental redundancy step k with Mk check nodes and Nk

variable nodes is given by

Rk = 1−

(

L+ms

L

)

Mk

Nk

= 1−

(

L+ms

L

)

M1 + k

N1 + k
(13)

which introduces a rate loss that vanishes with increasing L.
Special attention must be drawn to rows with low check degree
as the spreading might introduce checks of degree one that
must be avoided. Such rows should not be spread and remain
in one time instant introducing an additional rate loss at the
boundary which also vanishes with L.

IV. ENSEMBLE ANALYSIS

A. Thresholds

To evaluate the performance of the constructed code family
under belief propagation decoding, density evolution was
applied to the protographs of the individual incremental re-
dundancy steps.

The investigated spreading for incremental redundancy steps
k = 2 . . . 11 is shown in (14) while assuming the base matrix
of the precode for step k = 1 to be spread according to (4),
(5) and (6). Density evolution was applied to the protograph
of every single incremental redundancy step to obtain the
channel threshold for the specific ensemble. Additionally these
thresholds were calculated for different termination lengths L
and the analysis was carried out on the BEC. For comparison
the incremental redundancy family based on regular LDPC
codes [1] is also considered.
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Fig. 4. Threshold/rate plane for coupled rate-compatible LDPC code
ensemble on the BEC (Shannon limit ǫSh)

Fig. 4 shows the thresholds for the rate-compatible proto-
graph based convolutional LDPC code family for the BEC.
Clearly the threshold improvement for increasing L can be
recognized. The uncoupled threshold curve shows a significant
gap to the Shannon limit that vanishes when spatial coupling
is applied. The coupled incremental redundancy family obtains
an almost uniform gap to the Shannon limit.

The thresholds for the comparable regular LDPC convo-
lutional code family were obtained using density evolution
on the ensemble in [1] and are shown in Fig. 5 for different
check degrees dc. The code family with dc = 10 was chosen
according to its very good performance close to capacity but
the rates obtained in the regular case differed significantly from
those of the proposed rate-compatible LDPC convolutional
code ensemble. Therefore a second family of regular codes
was analyzed with higher check degree of dc = 36 and differ-
ent smoothing parameters w [1]. This family approximates
the rates of our incremental redundancy family very well
but the performance is decreased due to larger check degree.
To overcome this issue the smoothing parameter w can be
increased resulting in an improved performance. For w ≥ 7 the
performance of the code family is approaching the Shannon
limit but exhibits a larger rate loss as compared to smaller w.
It is also desirable to have small memory ms (respectively w)
because this parameter directly influences the complexity of
a practically attractive windowed belief propagation decoder
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The thresholds for the proposed family of rate-compatible
codes on the AWGN channel are shown in Fig. 6. For the
uncoupled case, the gap to the Shannon limit increases with
k. But as spatial coupling is applied, the effect of threshold
improvement moves the threshold curves towards the Shannon



limit. For sufficiently large L the gap becomes almost equal
at every k and the threshold curves seem to follow the shape
of the Shannon limit.

B. Decoding Complexity

The threshold improvement for all incremental redundancy
steps k of the raptor-like convolutional code ensemble is
of great interest but one should keep in mind at which
price such improved thresholds are achieved. We assume
the decoding of the constructed code family with the belief
propagation algorithm. The complexity of such a message
passing algorithm is essentially determined by the number
of edges in the corresponding Tanner graph. A measure for
the complexity based on this assumption was introduced in
[15] and is denoted as CLDPC = d̄v/R where d̄v is the
average variable degree (or column weight) of the code and
R is the rate. This quantity describes the message calculation
operation per information bit. The complexity of the proposed
rate-compatible LDPC convolutional coding scheme together
with the regular ensembles for different check degrees dc is
shown in Fig. 7. For lower rates the complexity increases
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Fig. 7. Decoding complexity CLDPC of proposed ensemble and comparing
regular ensembles [1]

as the code introduces more redundancy. But for the regular
case the complexity appears to increase almost exponentially
for lower rates which can especially be seen for dc = 10.
A similar behaviour is obtained for the regular incremental
redundancy family with dc = 36. The reason for this is the
increasing variable degree dv at each step k resulting in a
uniformly increasing average variable degree. For the proposed
rate-compatible LDPC convolutional codes, the complexity
increases almost linearly in the range of considered k – an
effect that is due to the irregular edge connections. These
irregular connections are the key to a flexible trade-off between
performance and parametrizable complexity increase.

V. CONCLUSION

This paper proposes a class of protograph based rate-
compatible LDPC convolutional codes with good thresholds
on the BEC and AWGN channel. At lower rates the uncoupled
code families from [9] show an increasing gap to the Shannon
limit and to reduce this gap spatial coupling was applied.

A spreading procedure was introduced to obtain the rate-
compatible LDPC convolutional code ensemble. A thresh-
old analysis with density evolution confirmed the expected
threshold improvement. Additionally, the code families seem
to achieve an almost uniform gap to the Shannon limit.
Comparable spatially coupled regular incremental redundancy
families also show good thresholds for low check degrees with
moderate memory but the complexity may be an issue in the
regular setting especially at lower rates. The irregular edge
connections of the proposed rate-compatible LDPC convolu-
tional codes help to keep the complexity growth moderate for
lower rates which is beneficial in terms of implementation of
efficient decoders.
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