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Local-Optimality Guarantees for Optimal Decoding
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Abstract

This paper presents a unified analysis framework that capt@cent advances in the
study of local-optimality characterizations for codes aapis. These local-optimality
characterizations are based on combinatorial structurdeeéded in the Tanner graph of
the code. Local-optimality implies both uniqgue maximukelihood (ML) optimality and
unique linear-programming (LP) decoding optimality. Alsm iterative message-passing
decoding algorithm is guaranteed to find the unique looafifmal codeword, if one ex-
ists.

We demonstrate this proof technique by considering a dieiinivf local-optimality
that is based on the simplest combinatorial structures im@agraphs, namely, paths of
lengthh. We apply the technique of local-optimality to a family ofifeer codes. Inverse
polynomial bounds in the code length are proved on the warar grrobability of LP-
decoding for this family of Tanner codes.

1 Introduction

The method of decoding error correcting codes based on arlip®gramming (LP) relax-
ation of maximum-likelihood (ML) decoding was introducey Beldman, Wainwright and
Karger [FKO2,[ FWKO5]. Successful decoding by LP-decodirgsvanalyzed for different
codes and channels (see elg., [FNZ,[FS05, DDKWO0B, Skal1]). Significant advances in the
analysis of successful LP-decoding have been achievedthec&ollowing Koetter and Von-
tobel [KV06], Aroraet al. [ADS09] obtained improved bounds @8, 6)-regular low-density
parity-check (LDPC) codes over the binary symmetric cha(B8C). These techniques were
extended to memoryless binary-input output-symmetric (®B) channels [HE11] and to Tan-
ner codes[EH11]. The proofs in these papers are based oricated graphical structures and
on a sophisticated analysis of a random min-sum processg@alin this paper is to present a
simple analysis based on this proof technique that provesini@l bounds for a broad family
of Tanner codes.

The proof technique in [ADS09] is based on the following step
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1. Define a set of deviations. A deviation is induced by comatarial structures in the
Tanner graph or the computation tree [Wib96, KV06, ADSOQ Mo EH11].

2. Define local-optimality. Local-optimality is a combiwaial characterization of a code-
word z € {0, 1}V with respect to a channel outphite R”. This definition is based on:
(1) a definition of a relative point for a codewotdand each deviatiog [Fel03], and
(2) a definition of the cost of each relative point with reggedhe log-likelihood ratios
(LLR) vector . Loosely speaking, a codewoids locally-optimal if its cost is smaller
than the cost of every relative point.

3. Prove that ifr is locally-optimal codeword w.r.t. an LLR vector, thenz is the unique
maximume-likelihood (ML) codeword. The proof is based on aaaposition lemma
that states that every codeword is a conical sum of devistion

4. Prove that itz is locally-optimal codeword w.r.t. an LLR vectar, thenx is the unique
linear-programming (LP) codeword. This proof is based aiftiadg lemma [HE11] that
states that local-optimality is invariant under liftingsoodewords to covering graphs.

5. Analyze the probability that there does not exist a lgeaptimal codeword.

We demonstrate this proof technique by considering the Isshpombinatorial structures
in Tanner graphs, namely, paths of length We attach to each patha deviation3 € RY
that equals the multiplicity of each variable node algndivided by its degree timek + 1.
Surprisingly, all the ingredients of the proof techniqua ba demonstrated with respect to this
primitive set of deviations.

The family of codes we consider is the set of Tanner codes#tsty two properties: (1) the
local codes contain only codewords of even weight, and (Zhalvariable node degrees are
even. We refer to this family of Tanner codesea&n Tanner codds Among the codes in
this family are: (1) LDPC codes with even left degrees, (Bgular repeat accumulate codes
where the repetition factors are even, and (3) expandersooidk even variable node degrees
and even weighted local codes.

Apart from offering a simple application of a powerful praethnique, we shed light on
two issues. (1) The deviations shouidt be limited by the girth of the Tanner graph. In-
deed, we consider paths of arbitrary lengthvhich need not be simple for steps 1-4 of the
proof technique. One should note that step 5 that boundsrtit®bility of the existence of
a locally-optimal codeword requires independence of th®4.lin the deviation. Hence, the
bound here holds only for simple paths, thus limitingy the girth. (2) The Tanner graph need
not be regular. Irregular degrees are handled by dividiegdiviations by the node degrees
(see[Mon10]).

Local-optimality is also related to iterative decoding. kerative message-passing decod-
ing algorithm is presented in [EH11] with the guarantee,tifad locally-optimal codeword
exists, then the decoding algorithm finds it. Moreover, silozal-optimality can be verified
efficiently, an ML-certificate is obtained whenever theresesxa locally-optimal codeword.

We prove inverse polynomial bounds in the code length on theelverror probability for
LP-decoding of even Tanner codes whose Tanner graphs hgastlonic girth. For certain

The parity of the node degrees is used to prove that the splbgnduced by codewords is Eulerian, a key
component in the decomposition lemma of s3ep



sub-classes of even Tanner codes this technique providebamends on the word error prob-
ability of LP-decoding. In the case of repeat accumulateespd/e provide a simple proof of
previous results [FK02, GB11].

Organization. The remainder of the paper is organized as follows. SeCtipmZdes back-
ground on ML-decoding and LP-decoding of Tanner codes o8tQ& channels. Sectidd 3
contains steps 1-4 in the proof technique of local-optitpapplied to even Tanner codes.
In Section 4 we demonstrate step 5 by a simple probabilisiatyais of the event where no
locally-optimal codeword exists. We conclude with a diséas in Sectiofn 5.

2 Preliminaries

Graph Terminology. LetG = (V, E) denote an undirected graph. LEE (v) denote the set
of neighbors of node € V. Letdeg(v) £ |Ng(v)| denote the edge degree of nade graph

G. A pathp = (v,...,u) in G is a sequence of vertices such that there exists an edgedretwe
every two consecutive nodes in the sequenck simplepath is a path with no repeated vertex.
A simple cyclas a closed path where the only repeated vertex is the firstamtdrertex. A
pathp is backtracklessf every three consecutive vertices alopgre distinct (i.e., a subpath
(u,v,u) is not allowed). Letp| denote the length of a pathi.e., the number of edgesin Let
girth(G) denote the length of the shortest cycledn The subgraph ofG induced byS C V
consists ofS and all edges irF, both endpoints of which are containedin Let G5 denote
the subgraph of7 induced bys.

Tanner-codes and Tanner graph representation. Let G = (V U J, E') denote an edge-
labeled bipartite-graph, whebé = {vq, ..., vy} is a set of N vertices calledrariable nodes
andJ = {Ci,...,C;} is a set ofJ vertices calledocal-code nodesWe associate with each

local-code nod€’; a linear cod€” of lengthdeg,,(C;). LetC” 2 {5j : 1< j < J} denote
the set olocal codesone for each local-code node. We say thaiarticipatesin c if (v, Cy)
is an edge inF.

Awordz = (z1,...,zy) € {0,1}" is an assignment to variable nodesVirwherez; is
assigned ta;. LetV; denote the seW(C;) ordered according to labels of edges incident to
C;. Denote byzy, € {0,1}%%c(C) the projection of the word = (21, ..., zy) onto entries
associated withy;.

The Tanner codeﬂ(G,@J) based on the labelethnner graph is the set of vectors €
{0,1}" such that:y, is a codeword i’ for everyj € {1,...,J}. LetC’ denote thextension
of the local code?’ from lengthdeg(C;) to lengthN defined byC/ £ {z € {0,1}" | zy, €
Ej}. The Tanner code is simply the intersection of the exterssmthe local codes, i.e.,
C<Gagj) = ﬂje{l .....

We consider a family of Tanner codes defined as follows.

Definition 1 (even Tanner codesA Tanner code(Z(G,Ej) based on a Tanner grapf =
(VUJ, E)is called aneven Tanner codé (1) deg(v) is even for every € V, and (2) every

codeword in each local cod® € ¢ has even weight.



LP decoding of Tanner codes over memoryless channelsLet ¢; € {0,1} denote the
ith transmitted binary symbol (channel input), andyetc R denote theth received sym-
bol (channel output). Anemoryless binary-input output-symmeifidBIOS) channel is de-
fined by a conditional probability density functigity;|c; = a) for a € {0, 1}, that satisfies
f(y:]0) = f(—w;|1). The binary erasure channel (BEC), binary symmetric chia(B@&C)
and binary-input additive white Gaussian noise (BI-AWGNaonel are examples for MBIOS
channels. In MBIOS channels, thag-likelihood ratio (LLR) vector A € RY is defined by
Xi(y;) & In (L2929 for every input biti. For a code?, Maximum-Likelihood (ML) decoding

: . f(yilei=1)
is equivalent to

M (y) = argmin(A(y), ), (1)
z€conv(C)
whereconv(C) C [0, 1] denotes the convex hull of the codeword€’in
In general, solving the optimization problem(in (1) for lareodes is intractable [BMvT78].
Feldmaret al. [Fel03,[FWKO05] introduced a linear programming relaxationthe problem of
ML decoding of Tanner codes with single parity-check codeisig as local codes. We consider
an extension of this definition to the case in which the locales are arbitrary as follows. The
generalized fundamental polytofe 2 P(G,C”) of a Tanner cod€ = C(G,C”) is defined
by
P £ ﬂ conv(C). 2
ciecd
Given an LLR vector\ for a received word,, LP-decoding is defined by the following
linear program:

~LP

#7(y) £ argmin (A(y), ). ©
2eP(GCY)

The difference between ML-decoding and LP-decoding isttreatundamental polytopge(G, EJ)

may strictly contain the convex hull @¢f. Vertices ofP(G,EJ) that are not codewords of
must have fractional components and are cgtleelildocodewords

3 A Local Combinatorial Certificate for an Optimal Code-
word

In this section we define a simple type of local-optimalityadcterization that is based on
backtrackless paths of arbitrary lendthin the Tanner graph. We prove that for codewords of
even Tanner codes, this characterization suffices both fopptimality and LP-optimality.

Definition 2 (normalized characteristic vectorConsider a Tanner grapty = (V U J, E).
Thenormalized characteristic vectgy(p) € RV of a pathp is defined as follows. For every
v € V the componenity:(p)], equals to the multiplicity of the variable noden the pathp
divided by its degree i6/. Formally,

B 1
degG(v)

[xa(p)]o v v ep}| (4)

If pis closed (i.e., a cycle), then we count the multiplicityhaf €ndpoints only once.



The normalization byleg,(v) is needed itz has irregular variable node degrees.
For any fixedh, let B’ denote the set of normalized characteristic vectors oftoackiess
paths of lengtth in GG scaled by a factoh%l. That is,

BM & {%(P&) ’ p is a backtrackless path of length h} . (5)

Vectors inB™ are calleddeviations Note thatB") ¢ [0, 1]V because every variable node
appears less than+ 1 times in a path of length.

For two vectorse € {0,1}" andf € [0, 1]V, letz @ f € [0, 1] denote theelative point
defined by(x @ f); = |z; — f;| [Fel03]. The following definition characterizes local-wpélity
based on backtrackless paths for even Tanner codes over Mé&i@nnels.

Definition 3 (path-based local-optimality).et C(G) c {0,1}" denote an even Tanner code
and leth € IN,. A codewordr € C(G) is h-locally optimal with respect ta. € R if for all
vectorss € B®),

Nz @ B) > (\ ). (6)

For two vectorg, = € RY, let “+” denote coordinate-wise multiplication, i.€y,* z); = y; -
z;. Forawordr € {0,1}", let(—1)® € {£1}*" denote the vector whosth component equals
(—1)%. The following proposition and corollary state that the piag (z, \) — (0V, (—1)® *
A) preserves local-optimality.

Proposition 4. [EH11] For every\ € RY and everys € [0, 1]V,

(=D = A, B8) = (A z® B) — (A x). (7)

Corollary 5 (symmetry of local-optimality) For everyz € C, = is h-locally optimal w.r.t. \ if
and only if0" is h-locally optimal w.r.t.(—1)% % \.

Proof. By Proposition4{\,x @ 3) — (A, z) = ((—1)" x A\, ). ]

Corollary[5 suggests that a codewardan be verified to bé-locally optimal w.r.t. a given
LLR X by verifying that each backtrackless path of lenfytiias positive normalized cost w.r.t.
(—1)* % A\. Thatis, if the minimum normalized cost of every path withdgén/ w.r.t. (—1)* x A
is positive, thenr is h-locally optimal w.r.t. \. A min-cost path of lengtlt in a graph can be
computed by a simple dynamic programming algorithm (Fleygorithm) in timeOD(h - |E)).
Hence, a codeword can be efficiently verified to be locallyiroal w.r.t. \.

3.1 Local-Optimality Implies ML-Optimality

In the following section we show that local-optimality isfistient for ML-optimality (Theo-
rem[8). The proof of Theorefd 8 is based on the representatieveny codeword as a conical
combination of deviations iB8") (Corollary(7). We first prove that every codeword in an even
Tanner code is a conical combination of normalized charatie vectors of simple cycles in
the Tanner graph (Lemna 6). Then we show that every cyclengthe is a conical combina-
tion of ¢ deviations inB™ for any arbitraryh, which implies Corollary17.



Lemma 6 (simple cycles decomposition)et C(G) denote an even Tanner code, andIlet
denote the set of simple cyclesin For every codeword # 0%, there exists a distributiop
over the set” and ana > 1, such that

v =a-E.er[xe()]. (8)

Proof. LetV, = {v | 2, = 1}, and letG,, denote the subgraph of the Tanner grépmduced
by V. UNg(V.). Becauser is a codeword in an even Tanner code, the degree of every node
(both variable nodes and local-code nodes)inis even. Therefore, each connected compo-
nent inG, is Eulerian. Denote b\]chj)} the set of connected components®f, and lety)"V)
denote an Eulerian cycle @y

Consider a variable nodein the connected componeﬁ?ﬁj), then the multiplicity ofv in
) equals®®e®  Therefore2 - > iIxa(®9)], = 1 (and, by definitiong, = 1).

Every Eulerian cycle)V) can be decomposed into a set of edge disjoint simple cychs. L
I'U) denote the decomposition ¢f/) into simple cycles. Thenya(v) = > 1) xa (7).

Thus,

Jer
Let p denote the uniform distribution over,T'¥ and lets = |U,I')|. Then,
r=2s -, [XG(’Y)] )
L

Corollary 7. LetC(G) denote an even Tanner code, and/let IN,. For every codeword
r # 0N, there exists a distributiop over the seB” and ana’ > 1 such that

xr = O/ . Eﬁepg(h) [ﬁ]

Proof. Following Lemmd.B, it suffices to show that, for every simpjele v, the set{v),} of
paths iny of lengthh satisfy

lv/—1
1
30, > 1:xa(y) =05 - ; hrl X6 (). 9)

Indeed, let3;(7) £ 25 - xa(¢:), then

r=a-> p(y) xc(v)

:O"Z<p(7)'5v'2@(’7)>
=a-Y (p(vs) -6y B).
B

Note that in the last line, we use the fact that the cycles,imre decomposed into edge disjoint
cycles, and hence each deviatio@ppears in exactly one cycle, denotechy The corollary
follows because the coefficient$ys) - d, are nonnegative and their sum is at least one.

6



We now prove Equation|9). Let = (vg, v1,...,v_1,v = vo) be a simple cycle id7 of
length?. Foreveryd < i < ¢ — 1, lety; = (v, Vi1 mod ¢5 - Vith mod ¢) dENOte a segment of
~ that starts at node, and containg edges. (Note that if > girth(G), then a single segment
may traverse a node in the cycle more than once) For évety; < h, a nodev appears
exactly once as thgth node in one of the paths); }‘_

If his not a multiple o/, then the multiplicity of every vertex € y in U!_}v; equalsh + 1.

Therefore,
/-1

Z h—+1 Xa (¥).

Otherwise,/ dividesh, and everyy; is a cycle whose both endpoinzlzs are counted as one
occurrence inyg (). Hence, the multiplicity of every vertex< ~ in U‘Z}v; equalsh, and

xa(7) hilgs 1
G pr—
h = h+1

- Xa(¥i)-

O

Theorem 8 (local-optimality is sufficient for ML) LetC(G) denote an even Tanner code. Let
A € RY denote the LLR vector received from the channel and let IN.. If x is h-locally
optimal codeword w.r.tA, thenz is also the unique maximum-likelihood codeword wA.t.

Proof. The proof follows [ADSQ9, proof of Theorem 2] and [HE11, pfad Theorem 6].
We use the decomposition proved in Corollary 7 to show theefery codeword:’ # =z,
(\,2') > (\ 7). Letz £ x @ /. By linearity,z € C(G). Moreover,z # 0V becauser # '
By Corollary[7 there exists a distribution over the 88, such thatE;c 5003 = 6 - z, where
§= L < 1. Letf:[0,1]Y — R be the affine linear function defined By3) £ (\,z & ) =

(A 2) + 30, (—=1)% N8 Then,

(A z) < Egepm(A,z @ B) (bylocal-optimality ofz)
(A 2@ EgepmpB) (by linearity of f and linearity of expectation
= (A z®dz) (by Lemmd_§
(A (L= 8)z +6(x ® 2)
(A, (1 =)z + dz')
= (1=¥8){\z)+d\a).

which implies that A, z') > (), z) as desired. O

Remark: Lemmal6 allows one to define local-optimality with respecti¢viations induced
by simple cycles. Local-optimality based on backtrackfests of arbitrary length decouples
the definition of local-optimality from the girth of the Tamngraph. The implication of this
decoupling on iterative decoding is discussed in Secfion 5.

3.2 Local-Optimality Implies LP-Optimality

In the following section we show that local-optimality isfstient for LP-optimality (Theo-
rem[11l). We consider graph cover decoding introduced byokmitand Koetter [VK05] and
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its extension to Tanner codés [Halll, Chapter 2.6]. Thefppbdheorem[1l is based on
Lemmd 10 that states that local-optimality is preservectuliffing to any M -cover graph.

The presentation in this section uses the terms and nottiMontobel and Koettet [VKO5]
(see also[[Hall1, Chapter 2.6]). Létdenote an\/-cover ofG. Letz = 2™ ¢ C(G) and
A =AM ¢ RNM denote theV/-lifts of = and )\, respectively.

Proposition 9 (local-optimality of the all-zero codeword is preserved ylifts). 0% is h-
locally optimal codeword w.r.tA € RY if and only if0"* is h-locally optimal codeword w.r.t.
A.

Proof. Consider the surjectiop of paths with length. in G to paths inG. ThIS surjection
is based on the coverlng map betwegrand G. Given a path) in G, lety £ @(@b). Let
BA h+1xG(w) andg £ hHXG(@Z)) The proposition follows becausg, 5) = ()\,5>. O

The following lemma states that local-optimality is preset by lifting to ani/-cover.
Lemma 10. z is h-locally optimal w.r.t.\ if and only if7 is h-locally optimal w.r.t.\.

Proof. Assume thati is h-locally optimal codeword w.r.t.A. By Corollary[, 0V is h-
locally optimal w.r.t. (—1)% = \. By Propositioi 0" is h-locally optimal w.r.t. (—1)*  \.
By Corollary[5, z is h-locally optimal w.r.t. A\. Each of these implications is necessary and
sufficient, and the lemma follows. O

The following theorem is obtained as a corollary of Theoréem8 Lemma&_10. The proof
is based on arguments utilizing properties of graph coveodiag. Those arguments are used
for a reduction from ML-optimality to LP-optimality [HE1 T heorem 8].

Theorem 11(local-optimality is sufficient for LP optimality)If x is a h-locally optimal code-
word w.r.t. \, thenzx is also the unique optimal LP solution given

Proof. Suppose that: is h-locally optimal codeword w.r.tA € R". By [VKO5, Proposition
10], for every basic feasible solutiane [0, 1] of the LP, there exists al/-coverG of G and
an assignment € {0,1}"'™ such thatz € C(G) andz = ¢(%), where((%) is the image of
the scaled projection of in G (i.e., the pseudo-codeword associated wjthMoreover, since
the number of basic feasible solutions is finite, we conchidé there exists a finité/-cover
G such that every basic feasible solution of the LP admits i esisignment irt.

Let z* denote an optimal LP solution givexn Without loss of generality* is a basic
feasible solution. Let* € {0,1}¥"™ denote the) — 1 assignment in thé/-cover G that
corresponds te* € |0, 1] By [VKO5) Proposition 10] and the optimality of it follows that
#* is a codeword ir€(G) that minimizes(\, 2) for z € C(G), namelyz* is the ML codeword
in C(G) w.r.t. X,

Let 7 = 2™ denote thel/-lift of an h-locally optimal codeword:. Note that becauseis
a codeword, i.ex € {0,1}", there is a unique pre-image ©fin G, which is theM-lift of z.
Lemmal L0 implies that is h-locally optimal codeword w.r.tA. By TheoreniB, we also get
thatz is the ML codeword ir€(G) w.r.t. \™™ . Moreover, Theoreii 8 guarantees the uniqueness
of an ML optimal solution. Thusy = z*. Becauser = z*, when projected td-, we get that
x = z* and uniqueness follows, as required. O



4 Probabilistic Analysis of Path-Based Local-Optimality

In the previous section, we showed that LP-decoding suscéedlocally-optimal codeword
exists w.r.t. the received LLR. In this section we analyz=phobability that a locally-optimal
codeword exists for even Tanner codes in MBIOS channels.fdlleving equation justifies
the all-zero codeword assumption for analyses based ohdptianality characterizations.

Pr{LP decoding fails} = Pr{z # 2*°(\) | ¢ = z}

%) Pr{x is not h—locally optimal w.r.t. )\}c = a:}

@ Pr{ON is not h—locally optimal w.r.t. (—1) % /\‘c = ZE}

® Pr{ON is not h—locally optimal w.r.t. )\’c = ON}

< Pr{Elﬁ e B™ such that (\, §) < O}C = ON}. (10)

Inequality (1) is the contrapositive statement of TheordinBquality (2) follows Corollary 5.
For MBIOS channelsPr(); | ¢; = 0) = Pr(—X\; | ¢; = 1). Therefore, the mappin@:, \) —
(0N,b % \) whereb; = (—1)* is a measure preserving mapping. Equality (3) follows by
applying this mapping téz, b x \) — (0¥, b * b x \). Equality (4) follows by the definition of
path-based local-optimality.

Following Equation[(10), our goal is to prove an upper boundh® probability that there
exists a path of lengthin G whose normalized characteristic vector has non-positgéw.r.t.

A.

We use the following notation. For a path thenormalized cost of) w.r.t. X is defined by
cost(¥) = (A, xg(v)). Letd™™ £ min{degg(v) | v € V}, dP™ £ max{dega(v) | v € V},
anddi® £ max{degq(C) | C € J}. Let D & dipax . gmax,

The intuition of the analysis is that long simple paths aréety to have non-positive cost.
We restrict the path length by < girth(G) only for the probabilistic analysis. Tanner graphs
with logarithmic girth can be constructed explicitly (seg.¢Gal63]). In particular, we assume
thatgirth(G) > logp (V).

The following theorem presents an analytical bound on thelwaor probability of the LP
decoder over the BSC.

Theorem 12. Let C(G) denote an even Tanner code of lengfhsuch thatg = logp(N) <
‘ , , - , —2(1+ St )-(e+ 2+ log p (2)
girth(G). Consider a BSC with crossover probabilityFor anye > 0,if p < D 9 202 :

then the LP decoder fails to decode the transmitted codewitida probability of at mosiv <.

For example, for left-regular codes (i.8%9** = d'*"), sete = % If p < Dng, then the word
error probability of LP-decoding is at mo%.

Proof. By Equation[(10) we may assume that the all-zero codewordismitted, i.e. = 0V.
Hence), = 1 w.p. (1 —p) and\, = —1 w.p. p. We bound the word error probabilify,, using
a union bound over all the events where simple paths of lepgtive non-positive normalized
costinG w.r.t. \.

Let ) be a particular path of lengt}y > contains? variable nodes. Each variable node in
the path is assigned1 with probability (1 — p) and —1 with probability p. Because of the



min
dL

degree normalization, at Iea@t- T

obtaincost(¢)) < 0. Letd £ %" __ Therefore,

d?in+drzlax .

of the variable nodes iy must be assigned1 to

g
Pr{cost(¢) < 0} < (g 2 5)p%'5 < 2% . p3o, (11)
g.

There are at mosV| - D# different simple paths of lengihin G. By the union bound,

P, <|V| D% .25 . p5?
< N - Dzlsp@) . 93logp(N) | py3loap(N)-9
12
< N - N% . N%IOgD(Q) . N%logD(p).g ( )
= N%‘f’%logD(Q)-i—%logD(p).(g <N
]

For the case of BI-AWGN channel, we derive a bound on the warar @robability for
left-regular even Tanner codes, i.é;, = d™® = 4%, The extension to the case of irregular
even Tanner codes requires exhaustive notation and cotignsa

Theorem 13. Let C(G) denote a left-regular even Tanner code of lengthsuch thatg =
log(N) whereD £ d; - dn**, Consider a BI-AWGN channel with varianeé For anye > 0,
if 02 < logfif), then the LP decoder fails to decode the transmitted codiwih a probability
of at most—2—— - N°.

\/mlogp(N)
Proof. By Equation [(ID) we assume that the all-zero codeword istrétted, i.e..c = 0V,
Hence), = 1 + ¢; where¢; ~ N(0,0?) is a zero-mean Gaussian random variable with
variances?. We bound the word error probabilit§,, using a union bound over all the events
where simple paths of lengthhave non-positive cost ify.
Let ¢ be a particular path of length If the sum of the costs of the variable nodes/iis
non-positive, themost(¢’) < 0. Hence,

Pr{cost(¢) <0} = Pr{ Z (1+ ¢;) <0}
o (13)

=Pr{) <5}
=1

The sum of independent Gaussian random variables (RVS) zeith mean is a zero-mean
Gaussian RV whose variance equals to the sum of the variafitles accumulated variables.
Letd = ?:1 ¢:, then® ~ N(0,0% - £) is a zero-mean Gaussian RV with variance: £.
Moreover, the Gaussian distribution function is symmedrimund0. Therefore,

Pr{cost(y) < 0} = Pr{® < —g}

14
— Pr{®> g}. )
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For a Gaussian R ~ N (0, 0%) with zero mean and varianeé, the inequality

o a2
P >l < 202 15
r{¢ >z} o (15)
holds for everyr > 0 [Fel68]. We conclude that
o g
Pr{icost(v) < 0} < —e 2. (16)
{eost(¥) <0} < —

There are at mosV| - D# different simple paths of lengthin G. By the union bound,

P, <|V|-D? - Pr{cost(¢)) < 0}

g
N . D% 6_40%
VTg
o _ logp (N)

< N% ¢ 402
mlogp(N) (17)

N i ogn (@)

<
<

B o
mlogp(IN)

5 Discussion

5.1 Finding Locally-Optimal Codewords with Message-Passg Algorithm

A message-passing decoding algorithm, called normalizeigived min-sumNwMs), was
presented in[EH11] for Tanner codes with single parityesh¢SPC) local codes. Thewms
decoder is guaranteed to compute the ML-codeword iterations provided that a locally-
optimal codeword with height exists. The local-optimality characterization in [EH1%] i
stronger and is based on subtrees of computation trees ofaifveer graph. We note that
for even Tanner codes with SPC local codes,Nmevis decoder with uniform weights (i.e.,
w = 1") is guaranteed to compute the ML-codewordiiterations provided that a path-based
h-locally optimal codeword exists. The number of iteratidgnmay exceed the girth of the
Tanner graph.

Consider an even Tanner code and an LLR vegtoAssume that there exists a codeword
x that ish-locally optimal w.r.t. A. Given this assumption, maximume-likelihood decoding is
equivalent to solving the following problem: Find an assigmtz € {0, 1}" to variable nodes
such that every path of lengthin G w.r.t. vertex weight§—1)*> - \,/ deg.(v) has positive
weight. By Theorerh 11, LP-decoding computes such a valigasentz. The iterativeNwMs
decoding algorithm also computes such a valid assignmentvided that the local codes are
restricted to SPC codes.

11



5.2 Punctured Tanner Codes

Local-optimality characterization and its analysis remailid under puncturing of a codeword.
Puncturing of a code is specified by a subset of variable ntagsare not transmitted; this
subset is called thpuncturing pattern A punctured code can be analyzed simply by zeroing
the LLR values of the punctured variable nodes.

How does puncturing affect the probability that a localpticmal codeword exists? Con-
sider a probabilistic analysis for local-optimality thatbased on a simple union bound over
the set of deviations of a Tanner code. We say that a varialemnparticipatesin deviations
if B, # 0. Suppose that the puncturing pattern is chosen so that éoy eeviations, at most a
constant fractior of participating variable nodes are punctured. Then, theesanion bound
analysis can be applied directly to the punctured Tannez.c8dch an analysis implies bounds
that are similar to the bounds obtained for the (unpuncjufadner code; the only difference
is that some parameters need to be scaled by a constanttfzattcs proportional te.

5.3 Analysis of Repeat-Accumulate Codes via Local-Optimal/

Feldman and Kargef [FK02, FKD4] introduced the conceptrmddr-programming based de-
coding for repeat-accumulate RA(turbo-like codes. In an RAj codes: (1) an information
word is repeated times, (2) the repeated information word is permuted by &erleaver, and
(3) codeword bit; equals to the parity of the sum of the fiisbits (prefix) of the permuted
repeated information word. For R2) codes over the BSC, they proved that the word error
probability of LP-decoding is bounded by an inverse polyranm the code length, given a
certain constant threshold on the noise. A similar claim alas proved for the BI-AWGN
channel. These bounds were further improved based on exadiicatorial characterization
of an error event and a refined algorithmic analysis [HEO5].

Recently, Goldenberg and Burshtein [GB11] generalizeattadysis of Feldman and Karger [FK04]
to RA(¢) codes with even repetition> 4. For this family of codes, they proved inverse poly-
nomial bounds in the code length on the word error probatolit_P-decoding. These bounds
are based on analyzing complicated graph structuresddajieer-promenades in hypergraphs,
that were defined in [FK04].

In fact, the same bounds can be obtained by local-optimaiitly deviations induced by
short paths. The idea is to consider (nhon-systematic)uteegepeat-accumulate codes with
even repetition factors as punctured Tanner codes (ardted in Figurél). Namely, set the
LLR of each systematic variable node to zero. Notice thatefeery backtrackless path in
Tanner graphs of repeat accumulate codes, at most half ofatieble nodes are systematic.
Therefore, at most half of the variable nodes in each denaif path-based local-optimality
are punctured. We can now analyze the word error probatfilityeplacing$ by § in the
proofs of Theorems 12 afdl13. Hence the unified techniquecaf-mptimality with deviations
induced by short paths yields the same results proved bynfagldand Karger [FK04] and
Goldenberg and Burshtein [GB11]. Improving these boundsumtessful decoding of RAY
codes (fory > 3) remains an intriguing open question.

12



Systematic Variable Nodes

Repetition

Permuation I1

Prefix Accumulation

Codeword Variable Nodes

Figure 1. Tanner graph representation of an irregular tepeaumulate code.

The variable nodes in the top row of nodes (illustrated bytevbircles) correspond to thesystematic
bits. The repetition of every systematic bit correspondthndegreey; of each systematic variable
node (we assume thatis even for every). The interleaving process corresponds to the permutafion
edges. The prefix accumulation corresponds to the altematiain of single-parity check code nodes
(illustrated by plus-squares) and codeword variable nédieisoted by black circles) in the bottom.

6 Conclusions

We present a simple application of the proof techniqué in $8B] for bounds on word error
probability with LP-decoding. The set of deviations useddefining local-optimality is in-
duced by paths in the Tanner graph. We apply the proof teakertiga family of codes, called
even Tanner codes, that contains repeat accumulate cotthes &ien repetition factors, LDPC
codes with even left degrees, and expander codes with ev&ablkanode degrees and even
weighted local codes. Inverse polynomial error bounds evequl for these codes for the BSC
and AWGN channel.

Stronger error bounds have been obtained for LDPC codes 6K¥®S09, HE11] and
Tanner codes [EH11] (without the restriction to even degjgaad even weighted local codes)
by considering more complicated graphical structures ambee sophisticated analysis. In
these cases, inverse exponential error bounds and imphmugttls on noise thresholds were
presented for regular codes whose Tanner graphs havetlogarigirth. For example, the
local-optimality characterization for Tanner codes pnésé in [EH11] is based on projections
of weighted subtrees in computation trees of the TanneihgrBipe error bounds in this case are
based on an analysis of a sum-min-sum random process on W4eke this local-optimality
characterization applies to any regular and irregular €@aoode, the probabilistic analysis and
the error bounds were restricted to regular Tanner codes. sirhplicity of local-optimality
based on paths enables us to obtain (weak) bounds evendgular codes. Two interesting
open questions related to proving stronger bounds on tlog probability are (i) extend the
analysis of inverse exponential bounds to irregular Tagnaphs, and (ii) obtain bounds with
respect to local-optimality even “beyond the girth”.
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