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Local-Optimality Guarantees for Optimal Decoding
Based on Paths

Guy Even∗ Nissim Halabi†

Abstract

This paper presents a unified analysis framework that captures recent advances in the
study of local-optimality characterizations for codes on graphs. These local-optimality
characterizations are based on combinatorial structures embedded in the Tanner graph of
the code. Local-optimality implies both unique maximum-likelihood (ML) optimality and
unique linear-programming (LP) decoding optimality. Also, an iterative message-passing
decoding algorithm is guaranteed to find the unique locally-optimal codeword, if one ex-
ists.

We demonstrate this proof technique by considering a definition of local-optimality
that is based on the simplest combinatorial structures in Tanner graphs, namely, paths of
lengthh. We apply the technique of local-optimality to a family of Tanner codes. Inverse
polynomial bounds in the code length are proved on the word error probability of LP-
decoding for this family of Tanner codes.

1 Introduction

The method of decoding error correcting codes based on a linear programming (LP) relax-
ation of maximum-likelihood (ML) decoding was introduced by Feldman, Wainwright and
Karger [FK02, FWK05]. Successful decoding by LP-decoding was analyzed for different
codes and channels (see e.g., [FMS+07, FS05, DDKW08, Ska11]). Significant advances in the
analysis of successful LP-decoding have been achieved recently. Following Koetter and Von-
tobel [KV06], Aroraet al. [ADS09] obtained improved bounds for(3, 6)-regular low-density
parity-check (LDPC) codes over the binary symmetric channel (BSC). These techniques were
extended to memoryless binary-input output-symmetric (MBIOS) channels [HE11] and to Tan-
ner codes [EH11]. The proofs in these papers are based on complicated graphical structures and
on a sophisticated analysis of a random min-sum process. Ourgoal in this paper is to present a
simple analysis based on this proof technique that proves nontrivial bounds for a broad family
of Tanner codes.
The proof technique in [ADS09] is based on the following steps:
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1. Define a set of deviations. A deviation is induced by combinatorial structures in the
Tanner graph or the computation tree [Wib96, KV06, ADS09, Von10, EH11].

2. Define local-optimality. Local-optimality is a combinatorial characterization of a code-
wordx ∈ {0, 1}N with respect to a channel outputλ ∈ R

N . This definition is based on:
(1) a definition of a relative point for a codewordx and each deviationβ [Fel03], and
(2) a definition of the cost of each relative point with respect to the log-likelihood ratios
(LLR) vectorλ. Loosely speaking, a codewordx is locally-optimal if its cost is smaller
than the cost of every relative point.

3. Prove that ifx is locally-optimal codeword w.r.t. an LLR vectorλ, thenx is the unique
maximum-likelihood (ML) codeword. The proof is based on a decomposition lemma
that states that every codeword is a conical sum of deviations.

4. Prove that ifx is locally-optimal codeword w.r.t. an LLR vectorλ, thenx is the unique
linear-programming (LP) codeword. This proof is based on a lifting lemma [HE11] that
states that local-optimality is invariant under liftings of codewords to covering graphs.

5. Analyze the probability that there does not exist a locally-optimal codeword.

We demonstrate this proof technique by considering the simplest combinatorial structures
in Tanner graphs, namely, paths of lengthh. We attach to each pathp a deviationβ ∈ R

N

that equals the multiplicity of each variable node alongp divided by its degree timesh + 1.
Surprisingly, all the ingredients of the proof technique can be demonstrated with respect to this
primitive set of deviations.

The family of codes we consider is the set of Tanner codes thatsatisfy two properties: (1) the
local codes contain only codewords of even weight, and (2) all the variable node degrees are
even. We refer to this family of Tanner codes aseven Tanner codes1. Among the codes in
this family are: (1) LDPC codes with even left degrees, (2) irregular repeat accumulate codes
where the repetition factors are even, and (3) expander codes with even variable node degrees
and even weighted local codes.

Apart from offering a simple application of a powerful prooftechnique, we shed light on
two issues. (1) The deviations shouldnot be limited by the girth of the Tanner graph. In-
deed, we consider paths of arbitrary lengthh which need not be simple for steps 1-4 of the
proof technique. One should note that step 5 that bounds the probability of the existence of
a locally-optimal codeword requires independence of the LLRs in the deviation. Hence, the
bound here holds only for simple paths, thus limitingh by the girth. (2) The Tanner graph need
not be regular. Irregular degrees are handled by dividing the deviations by the node degrees
(see [Von10]).

Local-optimality is also related to iterative decoding. Aniterative message-passing decod-
ing algorithm is presented in [EH11] with the guarantee that, if a locally-optimal codeword
exists, then the decoding algorithm finds it. Moreover, since local-optimality can be verified
efficiently, an ML-certificate is obtained whenever there exists a locally-optimal codeword.

We prove inverse polynomial bounds in the code length on the word error probability for
LP-decoding of even Tanner codes whose Tanner graphs have logarithmic girth. For certain

1The parity of the node degrees is used to prove that the subgraph induced by codewords is Eulerian, a key
component in the decomposition lemma of step3.
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sub-classes of even Tanner codes this technique provides new bounds on the word error prob-
ability of LP-decoding. In the case of repeat accumulate codes, we provide a simple proof of
previous results [FK02, GB11].

Organization. The remainder of the paper is organized as follows. Section 2provides back-
ground on ML-decoding and LP-decoding of Tanner codes over MBIOS channels. Section 3
contains steps 1-4 in the proof technique of local-optimality applied to even Tanner codes.
In Section 4 we demonstrate step 5 by a simple probabilistic analysis of the event where no
locally-optimal codeword exists. We conclude with a discussion in Section 5.

2 Preliminaries

Graph Terminology. LetG = (V,E) denote an undirected graph. LetNG(v) denote the set
of neighbors of nodev ∈ V . LetdegG(v) , |NG(v)| denote the edge degree of nodev in graph
G. A pathp = (v, . . . , u) in G is a sequence of vertices such that there exists an edge between
every two consecutive nodes in the sequencep. A simplepath is a path with no repeated vertex.
A simple cycleis a closed path where the only repeated vertex is the first andlast vertex. A
pathp is backtracklessif every three consecutive vertices alongp are distinct (i.e., a subpath
(u, v, u) is not allowed). Let|p| denote the length of a pathp, i.e., the number of edges inp. Let
girth(G) denote the length of the shortest cycle inG. Thesubgraph ofG induced byS ⊆ V
consists ofS and all edges inE, both endpoints of which are contained inS. LetGS denote
the subgraph ofG induced byS.

Tanner-codes and Tanner graph representation. Let G = (V ∪ J , E) denote an edge-
labeled bipartite-graph, whereV = {v1, . . . , vN} is a set ofN vertices calledvariable nodes,
andJ = {C1, . . . , CJ} is a set ofJ vertices calledlocal-code nodes. We associate with each

local-code nodeCj a linear codeCj
of lengthdegG(Cj). Let CJ

,
{

Cj
: 1 6 j 6 J

}

denote

the set oflocal codes, one for each local-code node. We say thatvi participatesin Cj
if (vi, Cj)

is an edge inE.
A word x = (x1, . . . , xN) ∈ {0, 1}N is an assignment to variable nodes inV wherexi is

assigned tovi. Let Vj denote the setNG(Cj) ordered according to labels of edges incident to
Cj. Denote byxVj

∈ {0, 1}degG(Cj) the projection of the wordx = (x1, . . . , xN ) onto entries
associated withVj .

TheTanner codeC(G, CJ
) based on the labeledTanner graphG is the set of vectorsx ∈

{0, 1}N such thatxVj
is a codeword inCj

for everyj ∈ {1, . . . , J}. LetCj denote theextension

of the local codeCj
from lengthdeg(Cj) to lengthN defined byCj , {x ∈ {0, 1}N | xVj

∈
Cj}. The Tanner code is simply the intersection of the extensions of the local codes, i.e.,

C(G, CJ
) =

⋂

j∈{1,...,J} Cj .

We consider a family of Tanner codes defined as follows.

Definition 1 (even Tanner codes). A Tanner codeC(G, CJ
) based on a Tanner graphG =

(V ∪J , E) is called aneven Tanner codeif: (1) degG(v) is even for everyv ∈ V, and (2) every

codeword in each local codeCj ∈ CJ
has even weight.
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LP decoding of Tanner codes over memoryless channels.Let ci ∈ {0, 1} denote the
ith transmitted binary symbol (channel input), and letyi ∈ R denote theith received sym-
bol (channel output). Amemoryless binary-input output-symmetric(MBIOS) channel is de-
fined by a conditional probability density functionf(yi|ci = a) for a ∈ {0, 1}, that satisfies
f(yi|0) = f(−yi|1). The binary erasure channel (BEC), binary symmetric channel (BSC)
and binary-input additive white Gaussian noise (BI-AWGN) channel are examples for MBIOS
channels. In MBIOS channels, thelog-likelihood ratio(LLR) vectorλ ∈ R

N is defined by
λi(yi) , ln

(

f(yi|ci=0)
f(yi|ci=1)

)

for every input biti. For a codeC, Maximum-Likelihood (ML) decoding
is equivalent to

x̂ML (y) = argmin
x∈conv(C)

〈λ(y), x〉, (1)

whereconv(C) ⊂ [0, 1]N denotes the convex hull of the codewords inC.
In general, solving the optimization problem in (1) for linear codes is intractable [BMvT78].

Feldmanet al. [Fel03, FWK05] introduced a linear programming relaxationfor the problem of
ML decoding of Tanner codes with single parity-check codes acting as local codes. We consider
an extension of this definition to the case in which the local codes are arbitrary as follows. The
generalized fundamental polytopeP , P(G, CJ

) of a Tanner codeC = C(G, CJ
) is defined

by
P ,

⋂

Cj∈CJ

conv(Cj). (2)

Given an LLR vectorλ for a received wordy, LP-decoding is defined by the following
linear program:

x̂LP(y) , argmin
x∈P(G,CJ

)

〈λ(y), x〉. (3)

The difference between ML-decoding and LP-decoding is thatthe fundamental polytopeP(G, CJ
)

may strictly contain the convex hull ofC. Vertices ofP(G, CJ
) that are not codewords ofC

must have fractional components and are calledpseudocodewords.

3 A Local Combinatorial Certificate for an Optimal Code-
word

In this section we define a simple type of local-optimality characterization that is based on
backtrackless paths of arbitrary lengthh in the Tanner graph. We prove that for codewords of
even Tanner codes, this characterization suffices both for ML-optimality and LP-optimality.

Definition 2 (normalized characteristic vector). Consider a Tanner graphG = (V ∪ J , E).
Thenormalized characteristic vectorχG(p) ∈ R

|V| of a pathp is defined as follows. For every
v ∈ V the component[χG(p)]v equals to the multiplicity of the variable nodev in the pathp
divided by its degree inG. Formally,

[χG(p)]v =
1

degG(v)
·
∣

∣ {v | v ∈ p}
∣

∣. (4)

If p is closed (i.e., a cycle), then we count the multiplicity of the endpoints only once.
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The normalization bydegG(v) is needed ifG has irregular variable node degrees.
For any fixedh, letB(h) denote the set of normalized characteristic vectors of backtrackless

paths of lengthh in G scaled by a factor1
h+1

. That is,

B(h) ,

{

χG(p)

h + 1

∣

∣

∣

∣

p is a backtrackless path of length h

}

. (5)

Vectors inB(h) are calleddeviations. Note thatB(h) ∈ [0, 1]|V| because every variable node
appears less thanh+ 1 times in a path of lengthh.

For two vectorsx ∈ {0, 1}N andf ∈ [0, 1]N , let x ⊕ f ∈ [0, 1]N denote therelative point
defined by(x⊕ f)i , |xi− fi| [Fel03]. The following definition characterizes local-optimality
based on backtrackless paths for even Tanner codes over MBIOS channels.

Definition 3 (path-based local-optimality). Let C(G) ⊂ {0, 1}N denote an even Tanner code
and leth ∈ N+. A codewordx ∈ C(G) is h-locally optimal with respect toλ ∈ R

N if for all
vectorsβ ∈ B(h),

〈λ, x⊕ β〉 > 〈λ, x〉. (6)

For two vectorsy, z ∈ R
N , let “∗” denote coordinate-wise multiplication, i.e.,(y∗z)i , yi ·

zi. For a wordx ∈ {0, 1}N , let (−1)x ∈ {±1}N denote the vector whoseith component equals
(−1)xi. The following proposition and corollary state that the mapping (x, λ) 7→ (0N , (−1)x ∗
λ) preserves local-optimality.

Proposition 4. [EH11] For everyλ ∈ R
N and everyβ ∈ [0, 1]N ,

〈(−1)x ∗ λ, β〉 = 〈λ, x⊕ β〉 − 〈λ, x〉. (7)

Corollary 5 (symmetry of local-optimality). For everyx ∈ C, x is h-locally optimal w.r.t.λ if
and only if0N is h-locally optimal w.r.t.(−1)x ∗ λ.

Proof. By Proposition 4,〈λ, x⊕ β〉 − 〈λ, x〉 = 〈(−1)x ∗ λ, β〉.

Corollary 5 suggests that a codewordx can be verified to beh-locally optimal w.r.t. a given
LLR λ by verifying that each backtrackless path of lengthh has positive normalized cost w.r.t.
(−1)x ∗λ. That is, if the minimum normalized cost of every path with lengthh w.r.t. (−1)x ∗λ
is positive, thenx is h-locally optimal w.r.t.λ. A min-cost path of lengthh in a graph can be
computed by a simple dynamic programming algorithm (Floyd’s algorithm) in timeO(h · |E|).
Hence, a codeword can be efficiently verified to be locally-optimal w.r.t.λ.

3.1 Local-Optimality Implies ML-Optimality

In the following section we show that local-optimality is sufficient for ML-optimality (Theo-
rem 8). The proof of Theorem 8 is based on the representation of every codeword as a conical
combination of deviations inB(h) (Corollary 7). We first prove that every codeword in an even
Tanner code is a conical combination of normalized characteristic vectors of simple cycles in
the Tanner graph (Lemma 6). Then we show that every cycle of lengthℓ is a conical combina-
tion of ℓ deviations inB(h) for any arbitraryh, which implies Corollary 7.
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Lemma 6 (simple cycles decomposition). Let C(G) denote an even Tanner code, and letΓ
denote the set of simple cycles inG. For every codewordx 6= 0N , there exists a distributionρ
over the setΓ and anα > 1, such that

x = α · Eγ∈ρΓ

[

χG(γ)
]

. (8)

Proof. Let Vx , {v | xv = 1}, and letGx denote the subgraph of the Tanner graphG induced
by Vx ∪ NG(Vx). Becausex is a codeword in an even Tanner code, the degree of every node
(both variable nodes and local-code nodes) inGx is even. Therefore, each connected compo-
nent inGx is Eulerian. Denote by{G(j)

x } the set of connected components ofGx, and letψ(j)

denote an Eulerian cycle inG(j)
x .

Consider a variable nodev in the connected componentG(j)
x , then the multiplicity ofv in

ψ(j) equalsdegG(v)
2

. Therefore,2 ·∑j[χG(ψ
(j))]v = 1 (and, by definition,xv = 1).

Every Eulerian cycleψ(j) can be decomposed into a set of edge disjoint simple cycles. Let
Γ(j) denote the decomposition ofψ(j) into simple cycles. Then,χG(ψ

(j)) =
∑

γ∈Γ(j) χG(γ).
Thus,

xv = 2 ·
∑

j

∑

γ∈Γ(j)

χG(γ).

Let ρ denote the uniform distribution over∪jΓ
(j) and lets ,

∣

∣∪jΓ
(j)
∣

∣. Then,

x = 2s · Eγ∈ρΓ

[

χG(γ)
]

.

Corollary 7. Let C(G) denote an even Tanner code, and leth ∈ N+. For every codeword
x 6= 0N , there exists a distributionρ over the setB(h) and anα′ > 1 such that

x = α′ · Eβ∈ρB(h) [β].

Proof. Following Lemma 6, it suffices to show that, for every simple cycle γ, the set{ψi} of
paths inγ of lengthh satisfy

∃δγ ≥ 1 : χG(γ) = δγ ·
|γ|−1
∑

i=0

1

h + 1
· χG(ψi). (9)

Indeed, letβi(γ) , 1
h+1

· χG(ψi), then

x = α ·
∑

γ

ρ(γ) · χG(γ)

= α ·
∑

γ

(

ρ(γ) · δγ ·
∑

i

βi(γ)

)

= α ·
∑

β

(ρ(γβ) · δγ · β) .

Note that in the last line, we use the fact that the cycles inGx are decomposed into edge disjoint
cycles, and hence each deviationβ appears in exactly one cycle, denoted byγβ. The corollary
follows because the coefficientsρ(γβ) · δγ are nonnegative and their sum is at least one.

6



We now prove Equation (9). Letγ = (v0, v1, . . . , vℓ−1, vℓ = v0) be a simple cycle inG of
lengthℓ. For every0 6 i 6 ℓ− 1, letψi = (vi, vi+1 mod ℓ, ..., vi+h mod ℓ) denote a segment of
γ that starts at nodevi and containsh edges. (Note that ifh > girth(G), then a single segment
may traverse a node in the cycle more than once.) For every0 6 j 6 h, a nodev appears
exactly once as thejth node in one of the paths{ψi}ℓ−1

i=0 .
If h is not a multiple ofℓ, then the multiplicity of every vertexv ∈ γ in ∪ℓ−1

i=0ψi equalsh+1.
Therefore,

χG(γ) =

ℓ−1
∑

i=0

1

h + 1
· χG(ψi).

Otherwise,ℓ dividesh, and everyψi is a cycle whose both endpointsvi are counted as one
occurrence inχG(ψi). Hence, the multiplicity of every vertexv ∈ γ in ∪ℓ−1

i=0ψi equalsh, and

χG(γ) =
h+ 1

h

ℓ−1
∑

i=0

1

h+ 1
· χG(ψi).

Theorem 8(local-optimality is sufficient for ML). Let C(G) denote an even Tanner code. Let
λ ∈ R

N denote the LLR vector received from the channel and leth ∈ N+. If x is h-locally
optimal codeword w.r.t.λ, thenx is also the unique maximum-likelihood codeword w.r.t.λ.

Proof. The proof follows [ADS09, proof of Theorem 2] and [HE11, proof of Theorem 6].
We use the decomposition proved in Corollary 7 to show that for every codewordx′ 6= x,
〈λ, x′〉 > 〈λ, x〉. Let z , x ⊕ x′. By linearity,z ∈ C(G). Moreover,z 6= 0N becausex 6= x′.
By Corollary 7 there exists a distribution over the setB(h), such thatEβ∈B(h)β = δ · z, where
δ , 1

α′ < 1. Let f : [0, 1]N → R be the affine linear function defined byf(β) , 〈λ, x⊕ β〉 =
〈λ, x〉+∑N

i=1(−1)xiλiβi. Then,

〈λ, x〉 < Eβ∈B(h)〈λ, x⊕ β〉 (by local-optimality ofx)

= 〈λ, x⊕ Eβ∈B(h)β〉 (by linearity off and linearity of expectation)

= 〈λ, x⊕ δz〉 (by Lemma 6)

= 〈λ, (1− δ)x+ δ(x⊕ z)〉
= 〈λ, (1− δ)x+ δx′〉
= (1− δ)〈λ, x〉+ δ〈λ, x′〉.

which implies that〈λ, x′〉 > 〈λ, x〉 as desired.

Remark: Lemma 6 allows one to define local-optimality with respect todeviations induced
by simple cycles. Local-optimality based on backtracklesspaths of arbitrary lengthh decouples
the definition of local-optimality from the girth of the Tanner graph. The implication of this
decoupling on iterative decoding is discussed in Section 5.

3.2 Local-Optimality Implies LP-Optimality

In the following section we show that local-optimality is sufficient for LP-optimality (Theo-
rem 11). We consider graph cover decoding introduced by Vontobel and Koetter [VK05] and
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its extension to Tanner codes [Hal11, Chapter 2.6]. The proof of Theorem 11 is based on
Lemma 10 that states that local-optimality is preserved under lifting to anyM-cover graph.

The presentation in this section uses the terms and notationof Vontobel and Koetter [VK05]
(see also [Hal11, Chapter 2.6]). Let̃G denote anM-cover ofG. Let x̃ = x↑M ∈ C(G̃) and
λ̃ = λ↑M ∈ R

N ·M denote theM-lifts of x andλ, respectively.

Proposition 9 (local-optimality of the all-zero codeword is preserved byM-lifts). 0N is h-
locally optimal codeword w.r.t.λ ∈ R

N if and only if0N ·M is h-locally optimal codeword w.r.t.
λ̃.

Proof. Consider the surjectionϕ of paths with lengthh in G̃ to paths inG. This surjection
is based on the covering map betweenG̃ andG. Given a pathψ̃ in G̃, let ψ , ϕ(ψ̃). Let
β̃ , 1

h+1
χG̃(ψ̃) andβ , 1

h+1
χG(ψ). The proposition follows because〈λ, β〉 = 〈λ̃, β̃〉.

The following lemma states that local-optimality is preserved by lifting to anM-cover.

Lemma 10. x is h-locally optimal w.r.t.λ if and only ifx̃ is h-locally optimal w.r.t.λ̃.

Proof. Assume that̃x is h-locally optimal codeword w.r.t.λ̃. By Corollary 5,0N ·M is h-
locally optimal w.r.t. (−1)x̃ ∗ λ̃. By Proposition 9,0N is h-locally optimal w.r.t. (−1)x ∗ λ.
By Corollary 5,x is h-locally optimal w.r.t. λ. Each of these implications is necessary and
sufficient, and the lemma follows.

The following theorem is obtained as a corollary of Theorem 8and Lemma 10. The proof
is based on arguments utilizing properties of graph cover decoding. Those arguments are used
for a reduction from ML-optimality to LP-optimality [HE11,Theorem 8].

Theorem 11(local-optimality is sufficient for LP optimality). If x is ah-locally optimal code-
word w.r.t.λ, thenx is also the unique optimal LP solution givenλ.

Proof. Suppose thatx is h-locally optimal codeword w.r.t.λ ∈ R
N . By [VK05, Proposition

10], for every basic feasible solutionz ∈ [0, 1]N of the LP, there exists anM-coverG̃ of G and
an assignment̃z ∈ {0, 1}N ·M such that̃z ∈ C(G̃) andz = ζ(z̃), whereζ(z̃) is the image of
the scaled projection of̃z in G (i.e., the pseudo-codeword associated withz̃). Moreover, since
the number of basic feasible solutions is finite, we concludethat there exists a finiteM-cover
G̃ such that every basic feasible solution of the LP admits a valid assignment iñG.

Let z∗ denote an optimal LP solution givenλ. Without loss of generalityz∗ is a basic
feasible solution. Let̃z∗ ∈ {0, 1}N ·M denote the0 − 1 assignment in theM-cover G̃ that
corresponds toz∗ ∈ [0, 1]N . By [VK05, Proposition 10] and the optimality ofz∗ it follows that
z̃∗ is a codeword inC(G̃) that minimizes〈λ̃, z̃〉 for z̃ ∈ C(G̃), namelyz̃∗ is the ML codeword
in C(G̃) w.r.t. λ↑M .

Let x̃ = x↑M denote theM-lift of an h-locally optimal codewordx. Note that becausex is
a codeword, i.e.,x ∈ {0, 1}N , there is a unique pre-image ofx in G̃, which is theM-lift of x.
Lemma 10 implies that̃x is h-locally optimal codeword w.r.t.̃λ. By Theorem 8, we also get
thatx̃ is the ML codeword inC(G̃) w.r.t. λ↑M . Moreover, Theorem 8 guarantees the uniqueness
of an ML optimal solution. Thus,̃x = z̃∗. Becausẽx = z̃∗, when projected toG, we get that
x = z∗ and uniqueness follows, as required.
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4 Probabilistic Analysis of Path-Based Local-Optimality

In the previous section, we showed that LP-decoding succeeds if a locally-optimal codeword
exists w.r.t. the received LLR. In this section we analyze the probability that a locally-optimal
codeword exists for even Tanner codes in MBIOS channels. Thefollowing equation justifies
the all-zero codeword assumption for analyses based on local-optimality characterizations.

Pr{LP decoding fails} , Pr{x 6= x̂LP(λ) | c = x}
(1)

6 Pr
{

x is not h−locally optimal w.r.t. λ
∣

∣c = x
}

(2)
= Pr

{

0N is not h−locally optimal w.r.t. (−1)x ∗ λ
∣

∣c = x
}

(3)
= Pr

{

0N is not h−locally optimal w.r.t. λ
∣

∣c = 0N
}

(4)
= Pr

{

∃β ∈ B(h) such that 〈λ, β〉 6 0
∣

∣c = 0N
}

. (10)

Inequality (1) is the contrapositive statement of Theorem 11. Equality (2) follows Corollary 5.
For MBIOS channels,Pr(λi | ci = 0) = Pr(−λi | ci = 1). Therefore, the mapping(x, λ) 7→
(0N , b ∗ λ) wherebi , (−1)xi is a measure preserving mapping. Equality (3) follows by
applying this mapping to(x, b ∗ λ) 7→ (0N , b ∗ b ∗ λ). Equality (4) follows by the definition of
path-based local-optimality.

Following Equation (10), our goal is to prove an upper bound on the probability that there
exists a path of lengthh inGwhose normalized characteristic vector has non-positive cost w.r.t.
λ.

We use the following notation. For a pathψ, thenormalized cost ofψ w.r.t. λ is defined by
cost(ψ) , 〈λ, χG(ψ)〉. Let dmin

L , min{degG(v) | v ∈ V}, dmax
L , max{degG(v) | v ∈ V},

anddmax
R , max{degG(C) | C ∈ J }. LetD , dmax

L · dmax
R .

The intuition of the analysis is that long simple paths are unlikely to have non-positive cost.
We restrict the path length byh < girth(G) only for the probabilistic analysis. Tanner graphs
with logarithmic girth can be constructed explicitly (see e.g. [Gal63]). In particular, we assume
thatgirth(G) > logD(N).

The following theorem presents an analytical bound on the word error probability of the LP
decoder over the BSC.

Theorem 12. Let C(G) denote an even Tanner code of lengthN such thatg , logD(N) <

girth(G). Consider a BSC with crossover probabilityp. For anyǫ > 0, if p < D
−2·(1+ dmin

L
dmax
L

)·(ǫ+ 3
2
+ 1

2
logD(2))

,
then the LP decoder fails to decode the transmitted codewordwith a probability of at mostN−ǫ.

For example, for left-regular codes (i.e.,dmax
L = dmin

L ), setǫ = 1
2
. If p 6 D−8

4
, then the word

error probability of LP-decoding is at most1√
N

.

Proof. By Equation (10) we may assume that the all-zero codeword is transmitted, i.e.,c = 0N .
Henceλv = 1 w.p. (1− p) andλv = −1 w.p. p. We bound the word error probabilityPw using
a union bound over all the events where simple paths of lengthg have non-positive normalized
cost inG w.r.t. λ.

Let ψ be a particular path of lengthg; ψ containsg

2
variable nodes. Each variable node in

the path is assigned+1 with probability (1 − p) and−1 with probabilityp. Because of the

9



degree normalization, at leastg

2
· dmin

L

dmin
L

+dmax
L

of the variable nodes inψ must be assigned−1 to

obtaincost(ψ) 6 0. Let δ , dmin
L

dmin
L

+dmax
L

. Therefore,

Pr{cost(ψ) 6 0} 6

( g

2
g

2
· δ

)

p
g
2
·δ 6 2

g
2 · p g

2
·δ. (11)

There are at most|V| ·D g
2 different simple paths of lengthg in G. By the union bound,

Pw 6 |V| ·D g
2 · 2 g

2 · p g
2
·δ

6 N ·D 1
2
logD(N) · 2 1

2
logD(N) · p 1

2
logD(N)·δ

6 N ·N 1
2 ·N 1

2
logD(2) ·N 1

2
logD(p)·δ

= N
3
2
+ 1

2
logD(2)+ 1

2
logD(p)·δ 6 N−ǫ.

(12)

For the case of BI-AWGN channel, we derive a bound on the word error probability for
left-regular even Tanner codes, i.e.,dL = dmin

L = dmax
L . The extension to the case of irregular

even Tanner codes requires exhaustive notation and computations.

Theorem 13. Let C(G) denote a left-regular even Tanner code of lengthN such thatg =
logD(N) whereD , dL ·dmax

R . Consider a BI-AWGN channel with varianceσ2. For anyǫ > 0,
if σ2 < logD(e)

6+4ǫ
, then the LP decoder fails to decode the transmitted codeword with a probability

of at most σ√
π logD(N)

·N−ǫ.

Proof. By Equation (10) we assume that the all-zero codeword is transmitted, i.e.,c = 0N .
Henceλv = 1 + φi whereφi ∼ N (0, σ2) is a zero-mean Gaussian random variable with
varianceσ2. We bound the word error probabilityPw using a union bound over all the events
where simple paths of lengthg have non-positive cost inG.

Let ψ be a particular path of lengthg. If the sum of the costs of the variable nodes inψ is
non-positive, thencost(ψ) 6 0. Hence,

Pr
{

cost(ψ) 6 0
}

= Pr
{

g
2
∑

i=1

(1 + φi) 6 0
}

= Pr
{

g
2
∑

i=1

φi 6 −g
2

}

.

(13)

The sum of independent Gaussian random variables (RVs) withzero mean is a zero-mean
Gaussian RV whose variance equals to the sum of the variancesof the accumulated variables.

Let Φ =
∑

g
2
i=1 φi, thenΦ ∼ N (0, σ2 · g

2
) is a zero-mean Gaussian RV with varianceσ2 · g

2
.

Moreover, the Gaussian distribution function is symmetricaround0. Therefore,

Pr{cost(ψ) 6 0} = Pr
{

Φ 6 −g
2

}

= Pr
{

Φ >
g

2

}

.
(14)

10



For a Gaussian RVφ ∼ N (0, σ2) with zero mean and varianceσ2, the inequality

Pr{φ > x} 6
σ

x
√
2π
e−

x2

2σ2 (15)

holds for everyx > 0 [Fel68]. We conclude that

Pr{cost(ψ) 6 0} 6
σ√
πg
e−

g

4σ2 . (16)

There are at most|V| ·D g
2 different simple paths of lengthg in G. By the union bound,

Pw 6 |V| ·D g
2 · Pr{cost(ψ) 6 0}

6 N ·D g
2
σ√
πg
e−

g

4σ2

6 N
3
2 · σ
√

π logD(N)
e−

logD(N)

4σ2

=
σ

√

π logD(N)
N

3
2
− 1

4σ2 logD(e)

6
σ

√

π logD(N)
·N−ǫ.

(17)

5 Discussion

5.1 Finding Locally-Optimal Codewords with Message-Passing Algorithm

A message-passing decoding algorithm, called normalized weighted min-sum (NWMS), was
presented in [EH11] for Tanner codes with single parity-check (SPC) local codes. TheNWMS

decoder is guaranteed to compute the ML-codeword inh iterations provided that a locally-
optimal codeword with heighth exists. The local-optimality characterization in [EH11] is
stronger and is based on subtrees of computation trees of theTanner graph. We note that
for even Tanner codes with SPC local codes, theNWMS decoder with uniform weights (i.e.,
w = 1h) is guaranteed to compute the ML-codeword inh iterations provided that a path-based
h-locally optimal codeword exists. The number of iterationsh may exceed the girth of the
Tanner graph.

Consider an even Tanner code and an LLR vectorλ. Assume that there exists a codeword
x that ish-locally optimal w.r.t. λ. Given this assumption, maximum-likelihood decoding is
equivalent to solving the following problem: Find an assignmentx ∈ {0, 1}N to variable nodes
such that every path of lengthh in G w.r.t. vertex weights(−1)xv · λv/ degG(v) has positive
weight. By Theorem 11, LP-decoding computes such a valid assignmentx. The iterativeNWMS

decoding algorithm also computes such a valid assignmentx provided that the local codes are
restricted to SPC codes.

11



5.2 Punctured Tanner Codes

Local-optimality characterization and its analysis remain valid under puncturing of a codeword.
Puncturing of a code is specified by a subset of variable nodesthat are not transmitted; this
subset is called thepuncturing pattern. A punctured code can be analyzed simply by zeroing
the LLR values of the punctured variable nodes.

How does puncturing affect the probability that a locally-optimal codeword exists? Con-
sider a probabilistic analysis for local-optimality that is based on a simple union bound over
the set of deviations of a Tanner code. We say that a variable nodev participatesin deviationβ
if βv 6= 0. Suppose that the puncturing pattern is chosen so that for every deviationβ, at most a
constant fractionα of participating variable nodes are punctured. Then, the same union bound
analysis can be applied directly to the punctured Tanner code. Such an analysis implies bounds
that are similar to the bounds obtained for the (unpunctured) Tanner code; the only difference
is that some parameters need to be scaled by a constant factorthat is proportional toα.

5.3 Analysis of Repeat-Accumulate Codes via Local-Optimality

Feldman and Karger [FK02, FK04] introduced the concept of linear-programming based de-
coding for repeat-accumulate RA(q) turbo-like codes. In an RA(q) codes: (1) an information
word is repeatedq times, (2) the repeated information word is permuted by an interleaver, and
(3) codeword biti equals to the parity of the sum of the firsti bits (prefix) of the permuted
repeated information word. For RA(2) codes over the BSC, they proved that the word error
probability of LP-decoding is bounded by an inverse polynomial in the code length, given a
certain constant threshold on the noise. A similar claim wasalso proved for the BI-AWGN
channel. These bounds were further improved based on exact combinatorial characterization
of an error event and a refined algorithmic analysis [HE05].

Recently, Goldenberg and Burshtein [GB11] generalized theanalysis of Feldman and Karger [FK04]
to RA(q) codes with even repetitionq > 4. For this family of codes, they proved inverse poly-
nomial bounds in the code length on the word error probability of LP-decoding. These bounds
are based on analyzing complicated graph structures, called hyper-promenades in hypergraphs,
that were defined in [FK04].

In fact, the same bounds can be obtained by local-optimalitywith deviations induced by
short paths. The idea is to consider (non-systematic) irregular repeat-accumulate codes with
even repetition factors as punctured Tanner codes (as illustrated in Figure 1). Namely, set the
LLR of each systematic variable node to zero. Notice that, for every backtrackless path in
Tanner graphs of repeat accumulate codes, at most half of thevariable nodes are systematic.
Therefore, at most half of the variable nodes in each deviation of path-based local-optimality
are punctured. We can now analyze the word error probabilityby replacingg

2
by g

4
in the

proofs of Theorems 12 and 13. Hence the unified technique of local-optimality with deviations
induced by short paths yields the same results proved by Feldman and Karger [FK04] and
Goldenberg and Burshtein [GB11]. Improving these bounds onsuccessful decoding of RA(q)
codes (forq ≥ 3) remains an intriguing open question.
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q1 qkq2 q3

Repetition

Permuation Π

Systematic Variable Nodes

Prefix Accumulation

Codeword Variable Nodes

Figure 1: Tanner graph representation of an irregular repeat-accumulate code.
The variable nodes in the top row of nodes (illustrated by white circles) correspond to thek systematic
bits. The repetition of every systematic bit corresponds tothe degreeqi of each systematic variable
node (we assume thatqi is even for everyi). The interleaving process corresponds to the permutationof
edges. The prefix accumulation corresponds to the alternating chain of single-parity check code nodes
(illustrated by plus-squares) and codeword variable nodes(denoted by black circles) in the bottom.

6 Conclusions

We present a simple application of the proof technique in [ADS09] for bounds on word error
probability with LP-decoding. The set of deviations used for defining local-optimality is in-
duced by paths in the Tanner graph. We apply the proof technique to a family of codes, called
even Tanner codes, that contains repeat accumulate codes with a even repetition factors, LDPC
codes with even left degrees, and expander codes with even variable node degrees and even
weighted local codes. Inverse polynomial error bounds are proved for these codes for the BSC
and AWGN channel.

Stronger error bounds have been obtained for LDPC codes [KV06, ADS09, HE11] and
Tanner codes [EH11] (without the restriction to even degrees and even weighted local codes)
by considering more complicated graphical structures and amore sophisticated analysis. In
these cases, inverse exponential error bounds and improvedbounds on noise thresholds were
presented for regular codes whose Tanner graphs have logarithmic girth. For example, the
local-optimality characterization for Tanner codes presented in [EH11] is based on projections
of weighted subtrees in computation trees of the Tanner graph. The error bounds in this case are
based on an analysis of a sum-min-sum random process on trees. While this local-optimality
characterization applies to any regular and irregular Tanner code, the probabilistic analysis and
the error bounds were restricted to regular Tanner codes. The simplicity of local-optimality
based on paths enables us to obtain (weak) bounds even for irregular codes. Two interesting
open questions related to proving stronger bounds on the error probability are (i) extend the
analysis of inverse exponential bounds to irregular Tannergraphs, and (ii) obtain bounds with
respect to local-optimality even “beyond the girth”.
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