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Abstract—We compare LDPC block and LDPC convolutional
codes with respect to their decoding performance under low
decoding latencies. Protograph based regular LDPC codes are
considered with rather small lifting factors. LDPC block and
convolutional codes are decoded using belief propagation. For
LDPC convolutional codes, a sliding window decoder with dif-
ferent window sizes is applied to continuously decode the input
symbols. We show the required Eb/N0 to achieve a bit error
rate of 10−5 for the LDPC block and LDPC convolutional codes
for the decoding latency of up to approximately 550 information
bits. It has been observed that LDPC convolutional codes perform
better than the block codes from which they are derived even at
low latency. We demonstrate the trade off between complexity
and performance in terms of lifting factor and window size for
a fixed value of latency. Furthermore, the two codes are also
compared in terms of their complexity as a function of Eb/N0.
Convolutional codes with Viterbi decoding are also compared
with the two above mentioned codes.

I. INTRODUCTION

Shannon in his famous article in 1948: “A mathematical
theory of communication” [1] has proved that a coded trans-
mission with rates close to capacity is possible with arbitrarily
low error rate given long codes. In practical communication
systems low bit error rate (BER) is a necessary but not a
sufficient requirement. Additionally, one needs to consider the
latency caused by introducing channel coding. Convolutional
codes have been considered as a good choice for applications
with strong latency constraints [2], whereas LDPC block
codes (LDPC-BCs) perform better than convolutional codes
when the requirements on latency are rather permissive. An
investigation in terms of decoding latency is carried out in
[2], where convolutional codes and LDPC-BCs are compared
under equal structural latency. In [3] stack sequential decoding
[4] is applied to convolutional codes with large memory and
the range of latencies over which convolutional codes are
better than block codes is increased.

In this paper, we consider the convolutional counter part
of LDPC-BCs, termed as LDPC convolutional codes (LDPC-
CCs). It can be observed that the LDPC-CC ensembles have
better belief propagation decoding thresholds than the block
codes they are constructed from [5] [6] [7]. In this paper, we
compare the performance of LDPC-BCs and LDPC-CCs over
a range of latencies. While the pipeline decoder considered
in [8] [9] is suitable for highly parallel high-speed processing

of LDPC-CCs, its structure results in fairly large decoding
latency. In order to reduce the decoding latency, a sliding
window decoder has been investigated in [10], which is a one-
sided variant of the window decoder introduced in [6] for a
density evolution analysis. We compare the performance of
such a suboptimal decoding scheme with LDPC-BCs under
low latency over additive white Gaussian noise (AWGN)
channel. For reference purpose, we also compare the two
above mentioned codes with convolutional codes under Viterbi
decoding [11].

The paper is organized as follows; Section II introduces the
system model used throughout the paper to compare the codes
on the basis of their decoding latency. Section III describes
the considered codes together with their respective latency.
Moreover, a simple yet effective stopping rule for the iterative
process in LDPC-CCs is also introduced. A comparison in
terms of performance and complexity is carried out for the
codes under consideration in Section IV. Section V concludes
the paper.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a digital transmission
system to compare the latency introduced by different channel
codes. The channel encoder maps an information block ut of
k information bits to a codeword ct of length n with code
of rate R = k/n. The coded bit stream is then mapped
to xt ∈ {+1,−1} and transmitted over an AWGN channel.
On the receiver side the noisy received word yt is passed
to the channel decoder which removes the redundancy added
by the channel encoder and produces the estimates ût of the
transmitted information bits ut. For a performance comparison
of different codes the information bits and the estimates
produced by the channel decoder are used to calculate the
BER.
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Fig. 1. The system model



The encoder maps the input information word ut to the
output codeword ct. In case of block coding the consecutive
blocks are encoded independently of each other whereas, in
conventional convolutional coding the encoding of ct depends
on several input blocks ut,ut−1, . . .ut−m, where m is the
memory of the code. Often this mapping is done frame wise,
which requires the full frame of length k information bits to
be available at the input before the mapping can be started.
Similarly, decoding cannot start before the complete frame of
n code bits is available at the input of the decoder. The time
that the en/decoder has to wait for the input bits before the
mapping can take place is due to the structure of the code and
hence termed as structural latency 1. We consider here only
the decoding latency since convolutional codes as compared to
block codes have an advantage in terms of structural latency of
the encoder. The input block length k for convolutional codes
is usually in the order of a few information bits. Consider
as an example a convolutional code of rate R = 1/2 with
k = 1 and n = 2. The encoding can be performed as soon
as 1 information bit is available at the input of the encoder.
Whereas, in case of block codes k is the length of one frame
which is usually large. Furthermore, the processing capability
is considered to be infinite and hence processing latency due
to the mapping operation in the encoder and the decoder is
neglected. The transmission delay is not considered as its
effect on all the codes is equal.

III. CODES AND LATENCY CALCULATION

A. Low-Density Parity-Check Block Codes

A regular (J,K) LDPC-BC is characterized by a sparse
parity-check matrix H, containing exactly J ones in each
column and K ones in each row. Here we restrict ourselves
to protograph based codes. A protograph is a rather small
bipartite graph consisting of nc check nodes and nv variable
nodes and is represented by its bi-adjacency matrix B, called
base matrix. The matrix H of a particular code is obtained
by using a copy-and-permute operation where each 1 in B is
replaced by an N ×N permutation matrix and each 0 by an
N×N zero matrix. The resultant parity-check matrix consists
of Nnc check and Nnv variable nodes. The permutation
matrices can be generated using progressive edge growth
(PEG) algorithm introduced in [12] such that short cycles are
avoided, wherever possible.

A regular LDPC-BC represented by a matrix H maps an
input information word of length k = N(nv − nc) to an
output codeword of length n = Nnv bits. Similarly, at the
decoder side the entire frame needs to be received before belief
propagation (BP) is applied. This causes a latency of NnvR
information bits. So the structural decoding latency TB of a
block code in terms of number of information bits is given as

TB = N(nv − nc). (1)

1We consider here the structural latency as it is a feature of the coding
scheme itself, regardless of current and future ways of implementation. Hence,
as pointed out in [2], it provides an ultimate lower bound on the actual delay
of the code.
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Fig. 2. Window decoder representation for latency calculation.

For a particular protograph the latency depends only on the
lifting factor. Codes of various lengths can be constructed by
using different lifting factors in the PEG algorithm.

B. Low-Density Parity-Check Convolutional Codes

Low-density parity-check convolutional codes are charac-
terized by a semi-infinite diagonal type parity-check matrix
H. Analogous to LDPC-BCs the parity-check matrix H of the
LDPC-CCs can also be derived by the protograph expansion.
Consider the transmission of a sequence of codewords ct, t =
1, . . . , L of length n each. In case of block encoding, these
L codewords are encoded independently. Whereas, for LDPC-
CCs these L blocks are coupled over various time instants t.
The memory m of the code determines the maximal distance
between a pair of coupled blocks. Consider an example of
a regular ensemble of a (J,K) block code defined by its
base matrix B with dimension nc × nv where nc and nv
are the number of check and variable nodes in the base
protograph. The edges are spread according to the component
base matrices B0,B1, . . .Bm such that the following condition
holds [13],

m∑
i=0

Bi = B.

The resultant ensemble of terminated LDPC-CCs can be
described by means of a convolutional protograph with base
matrix

B[1,L] =


B0

...
. . .

Bm B0

. . .
...

Bm


(L+m)nc×Lnv

(2)

The parity-check matrix H of the LDPC-CC can be obtained
by applying the lifting procedure to the base matrix in (2). In
this paper we construct the parity-check matrix of an LDPC-
CC by unwrapping [8] the corresponding H matrix of an
LDPC-BC.

Window Decoding (WD): Due to the convolutional structure
of the code, the variable nodes which are at least N(m + 1)
units apart in the matrix H are not connected to the same



check node. This characteristics is exploited in the window
decoder to decode the terminated LDPC-CC continuously [10].
The sliding window decoder of size W operates on a section
of W · Nnc rows and W · Nnv columns of the matrix H.
This corresponds to W coupled blocks of size Nnv code bits
each. Moreover, due to the memory of the code the WD also
requires read access to the m previously decoded blocks as
shown in Fig. 2. The size W of the window can range from
m + 1 to L − 1. At every window position t only the first
Nnv symbols at time instant t are decoded and hence termed
as target symbols. After a certain number of iterations It are
performed at position t, the window slides Nnc rows down
and Nnv columns right in H.

Figure 2 shows the symbols inside the window when
symbols in yt are the target symbols. The decoding of yt
can only start once the succeeding W − 1 received words
are available. The structural latency for the window decoder
TWD in terms of number of information bits can be expressed
as [14]

TWD =W ·Nnv ·R. (3)

The decoding latency of a window decoder depends on W
and N . One can either use a strong code by using a large lifting
factor together with a small value for W or a weak code (small
N ) can be decoded using a relatively large window size W . In
the next section the choice of N and W is analyzed in detail.

Stopping Rule: We introduce a simple, yet effective stop-
ping rule based on the estimates of BER using the log
likelihood ratios (LLR) of the target symbols within a window.
The BER is estimated for the target symbols of current window
and the window moves forward only when the estimated
BER is less than the target BER or the maximum number
of iterations are performed. We call this soft BER estimate as
it is calculated using the soft values of the coded bits. The
soft BER is calculated as follows. The probability that the
hard decision of the ith bit, having LLR Li, is wrong can be
given as

Zi =
1

1 + e|Li|

This is termed as soft bit error indicator in [15]. Once the
soft bit error indicators for all the target symbols in a window
are available, the estimated BER P̂b can be calculated as the
expected value of Z,

P̂b = E[Z] =
1

Nnv

Nnv∑
i=1

Zi. (4)

The window moves forward only when P̂b is less than the
target BER or the maximum number of iterations It,max within
a window at time instant t is reached.

C. Convolutional Code

A continuous encoding for a rate R = k/n convolutional
code can be realized by a simple circuit based on shift registers
with ν memory elements. Similarly, Viterbi decoding can be

applied to continuously decode the input bit stream. Branch
metrics are computed after receiving the k information bits
corresponding to one trellis segment. The maximum likelihood
path is chosen after receiving τ trellis segments. The Viterbi
decoder can be represented in the same way as WD in Fig.
2 with W = τ . Hence, the structural latency of the Viterbi
decoder TV in terms of number of information bits is given as

TV = kτ. (5)

IV. SIMULATION RESULTS

The codes described in the previous section are compared
under different latency values. The system model in Fig. 1 is
used for the comparison and the Eb/N0 required to achieve a
BER of 10−5 is measured for the codes under consideration.
Without loss of generality, we restrict ourselves to proto-
graph based regular LDPC-BCs and LDPC-CCs. Moreover,
a comparison between LDPC-BCs and LDPC-CCs on the
basis of effective number of updates per variable node is also
presented.

A. Performance Comparison

Table I shows the base matrix B and the corresponding
component matrices, used in edge spreading, for rate R = 1/2
LDPC-BCs and LDPC-CCs. In case of window decoding the
edge spreading is chosen such that B0 contains multiple edges
to avoid the low degree variable nodes at the right end of
window. Such an ensemble has been proposed in [10] to
achieve the target BER with a smaller W .

The maximum number of iterations are set to Imax = 500
for LDPC-BCs and the iterative process terminates as soon as
all the checks are satisfied. Whereas, in WD the maximum
number of iterations per window at time t is fixed to It,max =
500 and the soft BER estimate in (4) with target BER of 10−6

is used as a criterion to shift the window to a new position.
In case of LDPC-BCs the decoding latency in (1) depends

only on the lifting factor used in the construction of the code.
In case of LDPC-CC the decoding latency TWD depends on
the lifting factor N and on the choice of the window size W .
Consider a latency of TWD = 200 information bits. Figure 3
shows BER curves for WD when lifting factors of N = 25
and N = 40 with W = 8 and W = 5 are used, respectively.
The BER curve for a (4, 8) LDPC-BC using N = 50 is
also plotted. LDPC-CCs with both choices perform better than
LDPC-BC, but using N = 40 with W = 5 results in better

TABLE I
COMPONENT MATRICES USED IN THE EDGE SPREADING OF LDPC-BCS

AND LDPC-CCS.

Code B m Bi

LDPC-BC [3 3] 2 B0,1,2 = [1 1]

LDPC-BC [4 4] 3 B0,1,2,3 = [1 1]

LDPC-CC [4 4] 2 B0 = [2 2],B1,2 = [1 1]
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Fig. 3. BER for (4, 8) LDPC-BCs and LDPC-CCs with a decoding latency
of 200 information bits.
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performance. The same is observed in [13] Fig. 10, when the
gain between LDPC-BC and LDPC-CC decreases by using
a window size of W = 12 with N = 250 as compared to
W = 6 and N = 500.

Moreover, for a particular code (fixed N ), performance
improves by increasing W but eventually the rate of this
improvement decreases. Figure 4 shows the required Eb/N0

to achieve a BER of 10−5 when N = 25, 40 and 60 is used
with different values of W . After a certain point using a higher
lifting factor together with a rather small window size gives
better performance. But the window size can be adjusted in
the decoder depending on the requirements of the application
at the given time without changing the encoder. This provides
a flexibility in terms of latency and performance of the code
as shown in Fig. 5 for N = 25 and N = 60.

In order to compare over the range of latencies, curves
similar to Fig. 3 are generated for different values of N and
W and the best combination in terms of required Eb/N0

at a BER of 10−5 is chosen. Figure 5 shows the required
Eb/N0 to achieve Pb = 10−5 for the codes under discussion.
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The horizontal axis represents the decoding latency TV, TB
and TWD for convolutional codes, LDPC-BCs and LDPC-CCs
respectively. In case of Viterbi decoding a rate R = 1/2
convolutional code with ν = 10 and different values of τ
is used. For Eb/N0 = 3.1 dB, the Viterbi decoder needs a
minimum latency of TV = 80 information bits and a (4, 8)
LDPC-BC requires a latency of TB = 380 information bits
to achieve Pb = 10−5. This gap can be reduced by ≈ 100
information bits by using a (4, 8) LDPC-CC. Also a (3, 6)
LDPC-BC performs better than a (4, 8) LDPC-BC because of
the lower block code threshold. Furthermore, for all the range
of latencies, the (4, 8) LDPC-CC outperforms the (3, 6) and
(4, 8) LDPC-BC.

B. Complexity Comparison

For complexity analysis between LDPC-BCs and LDPC-
CCs, we compare the average number of updates required per
variable node. In case of LDPC-BC the updates per node are
equal to the number of iterations performed before the correct
codeword is obtained. Due to the sliding window decoder for
LDPC-CCs, each variable node is updated in multiple window
positions. In the classical BP algorithm, all the nodes within
a window are updated in every iteration. Let It denote the
iterations performed to decode the target symbols at time t,
1 ≤ t ≤ L. The effective number of updates for the variable
nodes at time t is given by [16],

U t
eff =

t∑
i=t−W

Ii (6)

For a fair comparison between LDPC-BCs and LDPC-CCs, we
fix the maximum number of effective updates per variable node
to be U t

max = 500, rather than fixing the maximum iteration.
The curves in Fig. 5 shows the best choice of M and W

on the basis of required Eb/N0 at a particular value of TWD.
One can also optimize the choice on the basis of required
number of effective node updates at given latency. Consider a
latency of TWD = 240 information bits. The required Eb/N0



TABLE II
REQUIRED Eb/N0 AND EFFECTIVE NUMBER OF UPDATES PER VARIABLE

NODE FOR TWD = 240 INFORMATION BITS.

N W Eb/N0 [dB] Ueff

40 6 2.88 20

60 4 2.97 13

to achieve BER of 10−5 together with the effective number of
updates per variable node are given in Table II for N = 40
and N = 60. The required Eb/N0 is lower when we select the
combination N = 40 and W = 6 but in terms of complexity
the second combination gives the best choice as it requires
less updates per variable node.

Figure 6 shows the comparison of effective number of
updates for LDPC-BCs and LDPC-CCs as a function of
Eb/N0 at TB = TWD = 360 information bits. At Eb/N0 < 2.3
dB, WD requires less number of updates per variable node. But
at high Eb/N0, WD results in slightly higher complexity. The
BER curves for the corresponding codes are also presented in
the inset plot in Fig. 6.

1.6 1.8 2 2.2 2.4 2.6 2.8 3

E
b
/N

0
 in dB

0

50

100

150

200

250

300

350

U
e
ff

LDPC-BC

LDPC-CC, WD

1 1.5 2 2.5 3 3.5

E
b
/N

0
 in dB

10
-6

10
-4

10
-2

10
0

B
E

R

Fig. 6. Comparison of LDPC-CC using classical flooding schedule and
LDPC-BC under decoding latency of 360 information bits. The BER curves
for the corresponding codes are also presented in the inset plot.

V. CONCLUSION

We compare LDPC-BCs and LDPC-CCs using belief prop-
agation decoding under same decoding latency. Considering
some regular ensembles, it has been demonstrated that LDPC-
CCs outperform the corresponding LDPC-BCs for all the
range of latencies. In WD the window size W can be varied
in the decoder without changing the code. This provides
flexibility in terms of performance and latency. Furthermore,
using WD for LDPC-CC also allows us to adjust the window
size and lifting factor to get a trade off between performance
and complexity under fixed latency. A comparison in terms of
complexity of LDPC-BCs and LDPC-CCs is also considered
for a fixed latency. Due to the sliding window decoder, the

effective number of updates per variable node is larger than
those of the LDPC-BC at high Eb/N0 range and hence the
need of an efficient and smart scheduling within a window is
evident. We show the results for rate R = 1/2 codes only,
but the comparison can be extended to high rate codes with
similar results.
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