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Abstract—Spatially-Coupled LDPC (SC-LDPC) ensembles in an increased required window length and thus also in
achieve the capacity of binary memoryless channels (BMS), an increased complexity. Recently, it has been shown that
asymptotically, under belief-propagation (BP) decoding.In this Protograph—based LDPC codes can increase the diversiey ord

e

paper, we study the BP decoding of these code ensembles ov - .
a BMS channel and in the presence of a single random burst of of block fading channels and are thus good candidates for

erasures. We show that in the limit of code length, codewords block erasure channels![7].1[8]; however, they requiredarg
can be recovered successfully if the length of the burst is safler  syndrome former memories if the burst length becomes large.

than some maximum recoverable burst length. We observe that Closely related structures based on protographs have been
the maximum recoverable burst length is practically the sare if proposed in[[9] which spatially couple the special class of

the transmission takes place over binary erasure channel oover ; . -
binary additive white Gaussian channel with the same capaty. root-check LDPC codes _[10] to improve the finite length

Analyzing the stopping sets, we also estimate the decodingilire ~ Performance and thresholds.
probability (the error floor) when the code length is finite. In this paper, we are interested in the burst correction
capabilities of general spatially coupled LDPC code endemb
as introduced in_[2]. We chose this ensemble as we know that
Low-density parity-check (LDPC) codes are widely useif is capacity-achieving for BMS channels and thereforeliik
due to their outstanding performance under low-complexity be picked as potential candidate for various commurtinati
belief propagation (BP) decoding. However, an error pridbabsystems. We are in particular interested in knowing if besid
ity exceeding that of maximum-a-posteriori (MAP) decodintheir excellent performance on BMS channels, these codes al
has to be tolerated with (sub-optimal) BP decoding. Regenthave advantages when subject to burst errors. In this paper,
it has been empirically observed for spatially coupled LDP@e extend our results of [11], where we derived tight lower
(SC-LDPC) codes — first introduced as convolutional LDPGounds on the correctability of a long burst of erasuresmgas
codes — that the BP performance of these codes can impr@ither a complete spatial position or slightly more. In this
dramatically towards the MAP performance of the underlyingaper, we investigate the maximum length of the correctable
LDPC code under many different settings and conditionsurst by utilizing density evolution to find thresholds on
e.g. [1]. This phenomenon, termedreshold saturation, has the correctable bursts in the asymptotic block-lengthmeygi
been proven rigorously in[2].[3]. In particular, the BPébh- Additionally, we find expressions for the expected error floo
old of a coupled LDPC ensemble tends to its MAP threshoid the non-asymptotic regime by counting small-size stogpi

I. INTRODUCTION

on any binary memoryless symmetric channel (BMS). sets. Finally, we verify all findings in a simulation example
Besides their excellent performance on the BEC and AWGN
channels, much less is known about the burst error corriéctab 1. PRELIMINARIES

ity of SC-LDPC codes. In[]4], SC-LDPC ensembles over .
block erasure channel (BLEC) are considered with a channﬁél The Regu"’_ﬂ (du, d_‘:’ w, L, M) SC-LDPC Ensemble
that erases a complete spatial positions instead of inaid We now briefly review how to sample a code from a random
bits. This block erasure model mimics block-fading chasnelegularCr (dy, d., w, L, M) SC-LDPC ensemble [2]. We first
frequently occurring in wireless communications. The awgh lay out a set of positions indexed from = 1 to L on a
give asymptotic lower and upper bounds for the bit ar@patial dimension. At each spatial position (SP}, there are
block erasure probabilities obtained from density evoluti M variable nodes (VNs) andi/ 4= check nodes (CNs), where
Protograph-based codes that maximize the correctable buvgj—z € N and, d, and d. denote the variable and check
lengths are constructed inl[5], while interleaving (thereinode degrees, respectively. L®t> 1 denote the smoothing
denoted band splitting) is applied to a protograph-based S€oupling) parameter. Then, we additionally consider1 sets
LDPC code in [[6] to increase the correctable burst lengtbf M‘é—: CNsin SPsL+1,..., L+w—1. Every CN is equiped
If windowed decoding is used, this approach results howeweith d. “sockets” and imposes an even parity constraint on its
d. neighboring VNs, connected via the sockets. Each VN in
Parts of this work were conducted while N. Rengaswamy waiings Sp . is connected t@,, CNs in SPs 2+w—1 as follows:
Bell Labs as a research intern funded by a scholarship of th&BRisePro N . T :
programme. The work of L. Schmalen was funded by the Germari@ment eaf:h of thed, edges of this VN is allowed to rar_1dpm|y and
in the frame of the CELTIC+/BMBF project SASER-SaveNet. uniformly connect to any of thevMd, sockets arising from
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the CNs in SPs:, ...,z + w — 1, such that parallel edgese,, and the DE equation turns into a scalar update recursion.
are avoided in the resulting bipartite graph. We avoid pelral In that case, the update equation becomes
edges as it turns out that for practical finit¢, the presence

dy—1
of parallel edges can have detrimental effects on the models 1wl 1 vl det
that we consider. This graph represents the code so that wét“) =& |1-= Z 1—— Z I,(Ztli_j
have N = LM code bits, distributed ovef. SPs. Note that Wiz vz
the CNs at the boundary SPs, i.e., at SPs..,w — 1 and
L+1,...,L +w—1, can have degree less thdp due to where +Y denote the average erasure probability of the
the termination of the code and the absence of VNs outsidetgoing messa?es from code bits in positicend at iteration
SPs1,..., L. Zero degree CNs are removed from the codeé. We initialize 2\) = 1 for all z € 1, L] andz{” =0,t >0

Because of additional check nodes in SPs- L, the code otherwise. For a given andb, we hence have
rate amounts = 1 — ‘;—“ —d, whered = O(%). Throughout
this work, we assume the two mild conditionsdf > 3 and € 2 < [s]
wM > 2(dy + 1)d,. €z =&+ (1 —&)min{b, [s] — s} z = [s]
e+ (1 —eg)max{0, min{l,b+s—2z+1}} =z>[s]

B. Burst Error Channel Model

. . . . The average probability that a code bit is not recovered afte

Due to impairments such as slow fading, carrier phase friterations s aiven b

frequency noise, the loss of a data frame, or the outage of a 9 y
node in distributed storage, a number of sequential redeive I_1 w1l wel d
code bits may be_ severely distorted or erased._ DependipgTvb’ s) = % Z £, 1_1 Z(l_l Z Ig)i_j)drl
on the channel of interest, several error bursts with dsffier =0 w0 Wi
lengths may occur in a codeword. As a building structure . .
of different models, we consider in this paper a single errgiince forM — oo, s is uniformly random ovef0, L — ], we
burst of lengthB = bM with a randomly chosen startinghave b
position. For simplicity, we assume that these bits areegras P.(T,b,e) = —
by the channel. Additionally, we assume that the transinissi L=0bJo
takes place over the binary erasure channel (BEC), or oWe define the largest recoverable burst lerfgth as follows:
the binary-input additive white Gaussian noise (BIAWGN) )
channel. In a BEGY), the received bits outside of the burst bar(e) = sup{b|b>0, lim Pe(T,b,e)=0}. (1)
are randomly erased with probability otherwise received

P.(T, b, s)ds.

We numerically compute.(¢) for the two ensembles

correcily. Cr(3,6,w,L) andCx(4,8,w, L) with w = 3,4,5 and L >>
lIl. THE MAXIMUM BURSTLENGTH IN THEASymMpTOTIC ~w- FOr @ givenb, we run DE and evaluaté(7’,b,s) over
BLOCK-LENGTH REGIME all s = kA, wherek € N and A = 0.001. The number of

Consider &dy, d, w, I, M) SC-LDPC code used fortrans_|terat|onsT is limited by the following stopping criterion:
mission over a BEG{. Additionally, a random block of . 1 & (t-1) (1) s
consecutive code bits is erased by a burst of lergjth b)M. T'=minqt i3 Z 2 = <1077

The starting bit of the burstS, is uniformly chosen from z=1

code bits[1, LM — bM + 1]. For a givenS, let m, denote  Fig.[d showsbg:(¢) for Cz(3,6,w,L) andCr (4,8, w, L).
the number of code bits erased by the burst and belongé observe thab,.(¢) is decreasing in terms of and it

to spatial positionz. Defines = = and 2, = [s]. Then becomes zero at{s®""") ~ 0.488 and «\3*""") ~ 0.497.
(20— 1)M < S < zoM and As one may expect, a longer burst can be recovered as the gap
0 s< to the BP threshold of the ensemble on a BEC without bursts
0

increases. Moreover, we observe that(e) is increasing in
w but is decreasing ag. increases.

Now we consider the transmission over the BIAWGN chan-
Therefore,e. = ¢ + G7(1 — ¢) is the average erasurenel with an additional burst of erasures. We assume that the
probability of code bits in spatial position We use density received bits have signal-to-noise ratio (SNR)log;,(2/No)
evolution (DE) to evaluate the asymptotic performance ef tldB. We again use DE to compute the recoverable burst length
code ensembléx(d,, d., w, L, M) under BP decoding when b, when M — oo. The DE equations for SC-LDPC codes
M — oo [2], [3]. This method estimates how the empiricabver a BMS channel are detailed inl [3]. For a giverand
distribution of the log-likelihood ratio (LLR) of code bitsb, the received bits in spatial position are erased with
at each positionz evolves iteratively during BP decoding,probability 57, or distorted by the Gaussian noise. Thus, the
given the empirical distribution of the received bits’ LLRsSLLR distribution of received bits in each spatial positigrthe
For transmission over erasure channels, the LLR distobuticonvex combination of two LLR distributions: the distrikrt
can be represented by a scalar value, the erasure propabdit BIAWGN channel and the distribution of erased bits.

m, =< min{bM, zoM — sM + 1} Z =2y
max{0, min{M,bM+sM—1— (z—1)M}} z> z
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P.(b,[s]) > Pe(b, s). It suggests that the worst case scenario

— EEEZ - is s = [s], i.e. z is fully erased.
BEC,w =5 .
o[ - BIAWGN, w =3 || Conditions on w for 1 < bgp(0) < k:
. - - - BIAWGN, w =4 Assumeb = 1 and s = [s] € Z without further random
£ BIAWGN, w =5 noise € = 0), then the DE equation is simplified to
1 .
) = (1= (1= a0yt
w
which is the DE equation ofd,,d.) LDPC ensemble over
0O 01 02 03 o4 0.5 a BEC V.VIth eras(lfirederobablllt%. It implies thatP.(T,b :.
e, 1— C(No) 1) #0, if % > epp /, the BP threshold of the underlying
3 : ; i i (dy,d.) LDPC ensemble. Thus, the necessary condition for
—— BEC,w =3 1< byp(e) is w > [1/elkde)7,
T EEEZ f: On the other handw > [(k + 1)/51(3@“"1‘:)] is a sufficient
9l - - BIAWGN, w =3 | condition (but not tight) forbz,(0) < &, Wherek. is integer.
\\\ - -~ BIAWGN, w = 4 The steps of proof arefi) a burst (bsr(0),s) is a better
& BIAWGN, w = 5 channel than a burgb = k+ 1, [s]), (#4) Using DE equation
) for the latter burst,zgﬁj“ 2! can be upper-bounded by
the DE equation ofd,, d.) LDPC ensemble over BEG:L).
IV. THE BURSTLENGTH IN THE FINITE BLOCK LENGTH
% 0.1 0.2 0.3 0.4 0.5 REGIME
e,1— C(No) In the limit of M, we observe that the decoding failure

probability has a sharp transition from zero to one as the
Fig. 1. The BP recoverable burst lengihp for (a) Cr (3,6, w, L) and length of burst erasures increases. In particubar,(e) is
(b) Cr(4,8,w, L) ensembles. Solid lines are when the transmission is ovéhe BP threshold of the combined channel of BECand
the BEC, and dashed lines are when the transmission is ogeBilWGN. burst erasures. For a finifef, the decoding failure probability
comprises two parts: the waterfall region forvalues close
to byp(e), and the error-floor region fob < bgp(e). This

numerically computéy, (No), we use the DE method GF[12, behaviour is illustrated in Fig.]2, which shows simulation

. ) . e results for eCx (d, = 3,d. = 6,w = 3, L = 30, M) ensemble
App. B] in which the quantized LLR distributions are updateg(‘ir - —0.1n 7tah(|s section. we estimate the err02 floor part by
recursively. For a giveth, we run DE over alls = kA, and ” . - .
enumerating the size-&opping sets as a function ofM.

éEzO.Ol. We also use a similar stopping criterion as for the A subset A of VNs in a code is astopping st if all

Fig. @ also showsbys(Ny) for Cr(3,6,w,L) and the nmg_hbonpg CNs of (the VN_s iny con_nect toA at
Cr(d S.w. L) To have a fair comparison with BEC WeIeast twice [[12]. In such a case, if all VNs id have been
R(4,8,w, L). P : erased by the channel, then the BP decoder will fail as all the

plot bB.P(NO) n terms of 1 — C(.NO)’ where C'(Np) is the neighboring CNs are connected to at least two erased VNSs.
capacity of BIAWGN channel with SNRO log,,(2/Ny) dB. L
For simplicity, we assume here that we have only burst

We observe thabs, () and b (Ng) arealmost equal when : D
C(No) = 1 — e. Note that the deviation of both curves foro aoures, l.ec = 0 in Fig. [I. The results can be later

SNR values close to the BP threshold is mainly because xtended for the combined channel of BEC and burst erasures.
guantization level of the LLR distributions was not smalﬁ?;{f(\e first focus on size-2 stopping sets as these dominate the

enough for those SNR values. However, it is very unlikelyt thgerformance in the error floor region |11].

ber(c) andbsr(No) are exactly equal as the BP threshold of §ze-2 Sopping Sets

these ensembles over the BEC and BIAWGN channel without . . "
The random burst can span over multiple spatial positions

burst errors .are not gqual e|the_r (but they are very closie)._ because of its random starting positiel/, and its potentially
Remark 1: We definedbsr () in (@) based on average “bit ) . o
e oo large lengthh M. A size-2 stopping set can be formed within a
error probability”. In general, it gives an upper bound for. . o . "
; “ single spatial position or across coupled spatial positi®ke
the maximum recoverable burst length that the “block err It compute the probability of such a stopping set:
probability” will converge to zero. However, the simulatio P P Y pping set.
results in the next section suggest the tightness of uppend Theorem 1. Consider the C (d,, d., w, L, M) ensemble. Let
whend,, > 3. v; denote a randomly chosen VN in spatial position z < L,
Remark 2: In simulations of both BEC and BiAWGN and v; denote a random VN in spatial position z + k, for

channel, we numerically observe that for ahy> bs.(¢), a non-negative integer k with z + &k < L. The probability

For a given SNR, we can defirbg,. (Ny) similar to (). To



that these two random VNs form a stopping set of size 2 is average number of size-2 stopping sets over the ensemble,
independent of z and amounts to

ML—-1 ML ML—-1 ML
1o\ o ENg] = > > E[Uyl= > > P{U,;=1}
qx = Pr (1 - —> , ke{0o,1,...,w—1}, (2 i=1 j=it1 i=1 j=itl
w L w-1 M w—1
where Py, is =YD > alli<kM+jz+k<L=) X,
d z=1 k=0 i,j=1 k=0
(1 - di) ’ where )\, denote the average number of size-2 stopping sets
Pr = — - . (3) between VNs lying in two SPs with differendeand
> () NE) (1-4)
Pk dy—t de

Ao = L(]2W>QO A = (L —k)M?qgy. (4)
For k > w, we have ¢, = 0.

We see that\, ~ O(LM?~%). To verify these expectations,
(le?t us consider th&€x(3,6,3,100, M = 64) SC-LDPC en-
Semble. By averaging over000 random code instances of
the ensemble, the average number of Sizgeopping sets is
obtained(Ag, A1, A\2) ~ (0.876,0.488,0.060) which is close
to (0.829,0.494,0.061) from (@), thoughM is rather small.

Proof: Let A/(v;) denote the set of,, check nodes con-
nected to VNv;. Recall that this ensemble contains no parall
edges. From Section 1A, we know that'(v;) can have
contributions from SP$z, z+1, ..., z+w—1} and N (v;) can
have contributions from SRg+k, z+k+1, ..., z+k+w—1}.

A size-2 stopping set is formed if and onlyAf (v;) = N (v;).
For k > w, this condition cannot be fulfilled and thug, = 0. B. Error Floor Estimation

Fork < w, all check nodes al(v;) must be lying in a subset . . .
(z+k 2+ w—1}. As the edges of the variable nodes We now estimate the decoding failure (block erasure prob-

uniformly connect tow neighboring SPs, the probability ofab'“t,Y) When there is a random burst of Ieng;t.h<< ber and_
such a selection for; is (wT—k)dv_ Now, we compute the the starting bitS. Let No(S, I_)M) denote t_he §et of size-2 stopping
probability thatv; connects exactly to the same CNs @s sets formed by VNsy;, in the burst, i.e.; € [, 5+bM]. BP
i.e., N(v;) = N(vj). We label all the sockets of CNs in spdlecoding fails if these VNs are erased. Thus,
{z+k,...,z+ k+w —1}. Let T denote the total number
of sub-graphs from{v;,v;} and letT,; denote the number
of sub-graphs in which these VNs form a sizetopping set.
Each of the CNs inV(v;) hasd. — 1 free distinct sockets.
Thus, the number of sub-graphs fulfilling (v;) = N (v,) is,

P (b) > PN (S,bM) > 1} % E[N;(S,60M)].  (5)

There are two approaches to justif§). The first approach is

to lower-boundP{Ny(S, bM) > 1} using the second moment
method and to show that the bound has a vanishing gap (in
M) to E[Ny(S,bM)]. We applied this method in[11] for the
particular choice ob = 1 andS = kM + 1, k € [0,L —

whered,! is due to the permutation of edges aft} — 1)4 1]. An alternative is to use standard arguments [12, App. C]

is due to the different ways of connecting to free sockets § @Pproximate the distribution of size-2 stopping sets by a
N (v;). In generalp; andv; may connect to somécommon joint Poisson distribution. The decoding error then cqroesls

1) Wi J . .
CNs,0 < ¢ < d,. On one hand, there a(é;)(dc— 1)¢ socket apprommat_ely to the average ngmber of stopping sets.
selections for th¢ common CNs. One the other hand, there 1he Starting bitS'is chosen uniformly among bifs, LM —
are (wM‘;—zZ—dv)dgv_g for all other distincthﬁ—“ _d, CNs. M + 1]. We can writeS = (zo — 1)M + j, for zp € N and

Includin{de! permutation of edges, we have, some integedl < j < M. Then,

Tys = dy(d, — 1)%,

d ., 1 LM—-bM+1
T—d,l go (%) (wz‘fiﬁ;d“)(dc 1) (d)d E[Ny(S,bM)] = T 1 ;E[NQ(S, bM) | S = k|
We getPr = L, simplified further to[(B), and hencey = 0 M LZW L iE[Nz((ZO — )M + j,bM)]
(wak)dv Px. g L-bM+1 =M = ’

M

Let Ny denote the number of size-stopping sets in a _
W L=l S gy (s = jom))

random code instance @' (d,,d.,w, L, M) ensemble. We

introduce the stopping set indicator functidf); with (L=5)M+1 j=1
M
. . 1 .
g~ {1 if VNs v; andv; form a stopping set v > E[Na(S = j, bM))]
0 otherwise j=1

M [b]+1 w—1
_ «—ML-1 ML iig) 1 m,
Then Nz = 3.2 57777, | Us;. Note thatl; are correlated (@) 2 > ( )qo + 3 memaga | - (6)
random variables. However, we can simply calculate the M {= = 2 pt



where (i) is because we neglect a small contributi@i(+))
of S > (L — [b])M for non-integerb. We have (ii) as
& 2 E[Ny((20 — 1)M + j,bM)] is identical for different
zo. Let us justify(ii7): for a given starting bit < S < M, the
number of erased VNs in SPis m,, defined in SectiohlI. We
have(iii) by summing the average number of size-2 stoppin
sets formed between erased VNs in all pairs of:3dz + k.

We plot the decoding failure probability of
(3,6,w, L, M)—SC-LDPC codes for different finite values of
M and forw = 3,4 in Fig.[2 (a)-(b). For each pair of\/
andb, we choose a random instance from the code ensem
and generate a random burst with lengthi. The decoding
failure probability, P, is averaged over all trials until 400
decoding failures occur. We repeat the same experiment f
(4,8,w =4, L, M)—SC-LDPC codes, depicted in Fig.(2}.
We also plot the error floor estimationl (6) for eath

These figures show that fér< by, (c = 0), the error floor
is well estimated by[(6) even for smalll = 100. It implies

r&8ure Probability’s

%utput Block E

re Probability’:Q

that the size-2 stopping sets are the main cause of decodi@g 10-2

error. We also observe that the decoding error increasgs ves

fast forb close tobs (¢ = 0), given in Fig[1. For largeis, the E
waterfall region is sharper around the threshigld(e = 0). @
>

o

V. CONCLUSION 3

In this paper, we have investigated the performance of spa-
tially coupled LDPC codes when the transmission is affected
by a single burst of erasures per codeword. Such a burstrerasy,
can model different scenarios, e.g., the outage of a node iﬁ
distributed transmission. We have derived an expression @
density evolution and shown numerically that the maximung
correctable burst length depends on the channel that siffect

the bits not erased by the burst and the code paramete@s.

Depending on the expected burst, different parameters ma
be selected to design a code. The correctable burst lengsh
is practically independent of the transmission channehef t ©

100

F|—— M =100 g
| —— M =300 :
1071 M = 600 E
|| —— M =900 ]
F | —— M = 1200 1
1072 B

1073 | A~===1--C3

10-4 I I I I I I
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Normalized burst lengtfb
100 p T T T T T E|

F|—— M =100
| | —— M =300

10-t M = 600 .
L | —— M =900 |
| —— M = 1200 b

1073 E
104 | | | | |
0 1 1.2 1.4 1.6 1.8 2 2.2
Normalized burst lengtfb
100 T T T T
— M =100
— M =300
10-2 M = 600

10~4

other bits. Furthermore, we have given expressions for th@ 106 :
error floor that remains after correction. We have succégsfu 3 | | | |
verified all results in a simulation example. 1 1.2 1.4 1.6 1.8
Normalized burst lengtfb
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