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Abstract—Spatially-Coupled LDPC (SC-LDPC) ensembles
achieve the capacity of binary memoryless channels (BMS),
asymptotically, under belief-propagation (BP) decoding.In this
paper, we study the BP decoding of these code ensembles over
a BMS channel and in the presence of a single random burst of
erasures. We show that in the limit of code length, codewords
can be recovered successfully if the length of the burst is smaller
than some maximum recoverable burst length. We observe that
the maximum recoverable burst length is practically the same if
the transmission takes place over binary erasure channel orover
binary additive white Gaussian channel with the same capacity.
Analyzing the stopping sets, we also estimate the decoding failure
probability (the error floor) when the code length is finite.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes are widely used
due to their outstanding performance under low-complexity
belief propagation (BP) decoding. However, an error probabil-
ity exceeding that of maximum-a-posteriori (MAP) decoding
has to be tolerated with (sub-optimal) BP decoding. Recently,
it has been empirically observed for spatially coupled LDPC
(SC-LDPC) codes — first introduced as convolutional LDPC
codes — that the BP performance of these codes can improve
dramatically towards the MAP performance of the underlying
LDPC code under many different settings and conditions,
e.g. [1]. This phenomenon, termedthreshold saturation, has
been proven rigorously in [2], [3]. In particular, the BP thresh-
old of a coupled LDPC ensemble tends to its MAP threshold
on any binary memoryless symmetric channel (BMS).

Besides their excellent performance on the BEC and AWGN
channels, much less is known about the burst error correctabil-
ity of SC-LDPC codes. In [4], SC-LDPC ensembles over a
block erasure channel (BLEC) are considered with a channel
that erases a complete spatial positions instead of individual
bits. This block erasure model mimics block-fading channels
frequently occurring in wireless communications. The authors
give asymptotic lower and upper bounds for the bit and
block erasure probabilities obtained from density evolution.
Protograph-based codes that maximize the correctable burst
lengths are constructed in [5], while interleaving (therein
denoted band splitting) is applied to a protograph-based SC-
LDPC code in [6] to increase the correctable burst length.
If windowed decoding is used, this approach results however
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in an increased required window length and thus also in
an increased complexity. Recently, it has been shown that
protograph-based LDPC codes can increase the diversity order
of block fading channels and are thus good candidates for
block erasure channels [7], [8]; however, they require large
syndrome former memories if the burst length becomes large.
Closely related structures based on protographs have been
proposed in [9] which spatially couple the special class of
root-check LDPC codes [10] to improve the finite length
performance and thresholds.

In this paper, we are interested in the burst correction
capabilities of general spatially coupled LDPC code ensembles
as introduced in [2]. We chose this ensemble as we know that
it is capacity-achieving for BMS channels and therefore likely
to be picked as potential candidate for various communication
systems. We are in particular interested in knowing if besides
their excellent performance on BMS channels, these codes also
have advantages when subject to burst errors. In this paper,
we extend our results of [11], where we derived tight lower
bounds on the correctability of a long burst of erasures erasing
either a complete spatial position or slightly more. In this
paper, we investigate the maximum length of the correctable
burst by utilizing density evolution to find thresholds on
the correctable bursts in the asymptotic block-length regime.
Additionally, we find expressions for the expected error floor
in the non-asymptotic regime by counting small-size stopping
sets. Finally, we verify all findings in a simulation example.

II. PRELIMINARIES

A. The Regular (dv, dc, w, L,M) SC-LDPC Ensemble

We now briefly review how to sample a code from a random
regularCR(dv, dc, w, L,M) SC-LDPC ensemble [2]. We first
lay out a set of positions indexed fromz = 1 to L on a
spatial dimension. At each spatial position (SP),z, there are
M variable nodes (VNs) andM dv

dc
check nodes (CNs), where

M dv

dc

∈ N and, dv and dc denote the variable and check
node degrees, respectively. Letw > 1 denote the smoothing
(coupling) parameter. Then, we additionally considerw−1 sets
of M dv

dc

CNs in SPsL+1, . . . , L+w−1. Every CN is equiped
with dc “sockets” and imposes an even parity constraint on its
dc neighboring VNs, connected via the sockets. Each VN in
SPz is connected todv CNs in SPsz, . . . , z+w−1 as follows:
each of thedv edges of this VN is allowed to randomly and
uniformly connect to any of thewMdv sockets arising from
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the CNs in SPsz, . . . , z + w − 1, such that parallel edges
are avoided in the resulting bipartite graph. We avoid parallel
edges as it turns out that for practical finiteM , the presence
of parallel edges can have detrimental effects on the models
that we consider. This graph represents the code so that we
haveN = LM code bits, distributed overL SPs. Note that
the CNs at the boundary SPs, i.e., at SPs1, . . . , w − 1 and
L + 1, . . . , L + w − 1, can have degree less thandc, due to
the termination of the code and the absence of VNs outside
SPs1, . . . , L. Zero degree CNs are removed from the code.
Because of additional check nodes in SPsz > L, the code
rate amountsr = 1 − dv

dc
− δ, whereδ = O(w

L
). Throughout

this work, we assume the two mild conditions ofdv ≥ 3 and
wM ≥ 2(dv + 1)dc.

B. Burst Error Channel Model

Due to impairments such as slow fading, carrier phase or
frequency noise, the loss of a data frame, or the outage of a
node in distributed storage, a number of sequential received
code bits may be severely distorted or erased. Depending
on the channel of interest, several error bursts with different
lengths may occur in a codeword. As a building structure
of different models, we consider in this paper a single error
burst of lengthB = bM with a randomly chosen starting
position. For simplicity, we assume that these bits are erased
by the channel. Additionally, we assume that the transmission
takes place over the binary erasure channel (BEC), or over
the binary-input additive white Gaussian noise (BiAWGN)
channel. In a BEC(ε), the received bits outside of the burst
are randomly erased with probabilityε, otherwise received
correctly.

III. T HE MAXIMUM BURST LENGTH IN THE ASYMPTOTIC

BLOCK-LENGTH REGIME

Consider a(dv, dc, w, L,M) SC-LDPC code used for trans-
mission over a BEC(ε). Additionally, a random block of
consecutive code bits is erased by a burst of lengthB = bM .
The starting bit of the burst,S, is uniformly chosen from
code bits[1, LM − bM + 1]. For a givenS, let mz denote
the number of code bits erased by the burst and belonging
to spatial positionz. Define s = S

M
and z0 = ⌈s⌉. Then

(z0 − 1)M < S ≤ z0M and

mz=







0 z < z0
min{bM, z0M − sM + 1} z = z0
max{0,min{M, bM+sM− 1− (z−1)M}} z > z0

Therefore, εz = ε + mz

M
(1 − ε) is the average erasure

probability of code bits in spatial positionz. We use density
evolution (DE) to evaluate the asymptotic performance of the
code ensembleCR(dv, dc, w, L,M) under BP decoding when
M → ∞ [2], [3]. This method estimates how the empirical
distribution of the log-likelihood ratio (LLR) of code bits
at each positionz evolves iteratively during BP decoding,
given the empirical distribution of the received bits’ LLRs.
For transmission over erasure channels, the LLR distribution
can be represented by a scalar value, the erasure probability

εz, and the DE equation turns into a scalar update recursion.
In that case, the update equation becomes

x(t+1)
z = εz






1−

1

w

w−1
∑

i=0



1−
1

w

w−1
∑

j=0

x
(t)
z+i−j





dc−1






dv−1

where x
(t)
z denote the average erasure probability of the

outgoing messages from code bits in positionz and at iteration
t. We initializex

(0)
z = 1 for all z ∈ [1, L] andx(t)

z = 0, t ≥ 0
otherwise. For a givens andb, we hence have

εz =











ε z < ⌈s⌉

ε+ (1 − ε)min{b, ⌈s⌉ − s} z = ⌈s⌉

ε+ (1 − ε)max{0,min{1, b+ s− z + 1}} z > ⌈s⌉

The average probability that a code bit is not recovered after
T iterations is given by

Pe(T, b, s) =
1

L

L−1
∑

z=0

εz



1−
1

w

w−1
∑

i=0

(1−
1

w

w−1
∑

j=0

x
(T )
z+i−j)

dc−1





dv

Since forM → ∞, s is uniformly random over[0, L− b], we
have

Pe(T, b, ε) =
1

L− b

∫ L−b

0

Pe(T, b, s)ds.

We define the largest recoverable burst lengthbBP as follows:

bBP(ε) = sup{b | b > 0, lim
T→∞

Pe(T, b, ε) = 0}. (1)

We numerically computebBP(ε) for the two ensembles
CR(3, 6, w, L) andCR(4, 8, w, L) with w = 3, 4, 5 andL ≫
w. For a givenb, we run DE and evaluatePe(T, b, s) over
all s = k∆, wherek ∈ N and∆ = 0.001. The number of
iterationsT is limited by the following stopping criterion:

T = min

{

t

∣

∣

∣

∣

∣

1

L

L
∑

z=1

|x(t−1)
z − x(t)

z | < 10−5

}

.

Fig. 1 showsbBP(ε) for CR(3, 6, w, L) andCR(4, 8, w, L).
We observe thatbBP(ε) is decreasing in terms ofε and it
becomes zero atε(3,6,w,L)

BP ≈ 0.488 and ε
(4,8,w,L)
BP ≈ 0.497.

As one may expect, a longer burst can be recovered as the gap
to the BP threshold of the ensemble on a BEC without bursts
increases. Moreover, we observe thatbBP(ε) is increasing in
w but is decreasing asdc increases.

Now we consider the transmission over the BiAWGN chan-
nel with an additional burst of erasures. We assume that the
received bits have signal-to-noise ratio (SNR)10 log10(2/N0)
dB. We again use DE to compute the recoverable burst length
bBP whenM → ∞. The DE equations for SC-LDPC codes
over a BMS channel are detailed in [3]. For a givens and
b, the received bits in spatial positionz are erased with
probability mz

M
, or distorted by the Gaussian noise. Thus, the

LLR distribution of received bits in each spatial position is the
convex combination of two LLR distributions: the distribution
of BiAWGN channel and the distribution of erased bits.
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Fig. 1. The BP recoverable burst lengthbBP for (a) CR(3, 6, w,L) and
(b) CR(4, 8, w, L) ensembles. Solid lines are when the transmission is over
the BEC, and dashed lines are when the transmission is over the BiAWGN.

For a given SNR, we can definebBP(N0) similar to (1). To
numerically computebBP(N0), we use the DE method of [12,
App. B] in which the quantized LLR distributions are updated
recursively. For a givenb, we run DE over alls = k∆, and
∆ = 0.01. We also use a similar stopping criterion as for the
BEC.

Fig. 1 also shows bBP(N0) for CR(3, 6, w, L) and
CR(4, 8, w, L). To have a fair comparison with BEC, we
plot bBP(N0) in terms of 1 − C(N0), whereC(N0) is the
capacity of BiAWGN channel with SNR10 log10(2/N0) dB.
We observe thatbBP(ε) and bBP(N0) are almost equal when
C(N0) = 1 − ε. Note that the deviation of both curves for
SNR values close to the BP threshold is mainly because the
quantization level of the LLR distributions was not small
enough for those SNR values. However, it is very unlikely that
bBP(ε) and bBP(N0) are exactly equal as the BP threshold of
these ensembles over the BEC and BiAWGN channel without
burst errors are not equal either (but they are very close).

Remark 1: We definedbBP(ε) in (1) based on average “bit
error probability”. In general, it gives an upper bound for
the maximum recoverable burst length that the “block error
probability” will converge to zero. However, the simulation
results in the next section suggest the tightness of upper-bound
whendv ≥ 3.

Remark 2: In simulations of both BEC and BiAWGN
channel, we numerically observe that for anyb > bBP(ε),

Pe(b, ⌈s⌉) ≥ Pe(b, s). It suggests that the worst case scenario
is s = ⌈s⌉, i.e. z0 is fully erased.

Conditions on w for 1 ≤ bBP(0) ≤ k:

Assumeb = 1 and s = ⌈s⌉ ∈ Z without further random
noise (ε = 0), then the DE equation is simplified to

x(t+1)
s = (1 − (1−

1

w
x(t)
s )dc−1)dv−1,

which is the DE equation of(dv, dc) LDPC ensemble over
a BEC with erasure probability1

w
. It implies thatPe(T, b =

1) 6= 0, if 1
w

> ε
(dv,dc)
BP , the BP threshold of the underlying

(dv, dc) LDPC ensemble. Thus, the necessary condition for
1 ≤ bBP(ε) is w ≥ ⌈1/ε

(dv,dc)
BP ⌉.

On the other hand,w ≥ ⌈(k + 1)/ε
(dv,dc)
BP ⌉ is a sufficient

condition (but not tight) forbBP(0) ≤ k, wherek is integer.
The steps of proof are:(i) a burst (bBP(0), s) is a better
channel than a burst(b = k+1, ⌈s⌉), (ii) Using DE equation
for the latter burst,

∑⌈s⌉+k+1
z=⌈s⌉ x

(t)
z can be upper-bounded by

the DE equation of(dv, dc) LDPC ensemble over BEC(k+1
w

).

IV. T HE BURST LENGTH IN THE FINITE BLOCK LENGTH

REGIME

In the limit of M , we observe that the decoding failure
probability has a sharp transition from zero to one as the
length of burst erasures increases. In particular,bBP(ε) is
the BP threshold of the combined channel of BEC(ε) and
burst erasures. For a finiteM , the decoding failure probability
comprises two parts: the waterfall region forb values close
to bBP(ε), and the error-floor region forb ≪ bBP(ε). This
behaviour is illustrated in Fig. 2, which shows simulation
results for aCR(dv = 3, dc = 6, w = 3, L = 30,M) ensemble
for ε = 0. In this section, we estimate the error floor part by
enumerating the size-2stopping sets as a function ofM .

A subsetA of VNs in a code is astopping set if all
the neighboring CNs of (the VNs in)A connect toA at
least twice [12]. In such a case, if all VNs inA have been
erased by the channel, then the BP decoder will fail as all the
neighboring CNs are connected to at least two erased VNs.

For simplicity, we assume here that we have only burst
erasures, i.e.ε = 0 in Fig. 1. The results can be later
extended for the combined channel of BEC and burst erasures.
We first focus on size-2 stopping sets as these dominate the
performance in the error floor region [11].

A. Size-2 Stopping Sets

The random burst can span over multiple spatial positions
because of its random starting positionsM , and its potentially
large lengthbM . A size-2 stopping set can be formed within a
single spatial position or across coupled spatial positions. We
first compute the probability of such a stopping set:

Theorem 1. Consider the CR(dv, dc, w, L,M) ensemble. Let
vi denote a randomly chosen VN in spatial position z ≤ L,
and vj denote a random VN in spatial position z + k, for
a non-negative integer k with z + k ≤ L. The probability



that these two random VNs form a stopping set of size 2 is
independent of z and amounts to

qk = PR

(

1−
k

w

)dv

, k ∈ {0, 1, . . . , w − 1}, (2)

where PR is

PR
.
=

(

1− 1
dc

)dv

dv
∑

ℓ=0

(

dv

ℓ

)(wM
dv

dc
−dv

dv−ℓ

)

(

1− 1
dc

)ℓ
. (3)

For k ≥ w, we have qk = 0.

Proof: Let N (vi) denote the set ofdv check nodes con-
nected to VNvi. Recall that this ensemble contains no parallel
edges. From Section II-A, we know thatN (vi) can have
contributions from SPs{z, z+1, . . . , z+w−1} andN (vj) can
have contributions from SPs{z+k, z+k+1, . . . , z+k+w−1}.
A size-2 stopping set is formed if and only ifN (vi) = N (vj).
For k ≥ w, this condition cannot be fulfilled and thus,qk = 0.
Fork < w, all check nodes ofN (vi) must be lying in a subset
{z + k, . . . , z + w − 1}. As the edges of the variable nodes
uniformly connect tow neighboring SPs, the probability of
such a selection forvi is (w−k

w
)dv . Now, we compute the the

probability thatvj connects exactly to the same CNs asvi,
i.e., N (vi) = N (vj). We label all the sockets of CNs in SPs
{z + k, . . . , z + k + w − 1}. Let T denote the total number
of sub-graphs from{vi, vj} and let Tss denote the number
of sub-graphs in which these VNs form a size-2 stopping set.
Each of the CNs inN (vi) hasdc − 1 free distinct sockets.
Thus, the number of sub-graphs fulfillingN (vi) = N (vj) is,

Tss = dv!(dc − 1)dv ,

wheredv! is due to the permutation of edges and(dc − 1)dv

is due to the different ways of connecting to free sockets of
N (vi). In general,vi andvj may connect to someℓ common
CNs,0 ≤ ℓ ≤ dv. On one hand, there are

(

dv

ℓ

)

(dc−1)ℓ socket
selections for theℓ common CNs. One the other hand, there
are
(wM

dv

dc
−dv

dv−ℓ

)

ddv−ℓ
c for all other distinctwM dv

dc
− dv CNs.

Includingdv! permutation of edges, we have,

T = dv!
dv
∑

ℓ=0

(

dv

ℓ

)(wM
dv

dc
−dv

dv−ℓ

)

(dc − 1)ℓ(dc)
dv−ℓ.

We getPR = Tss

T
, simplified further to (3), and hence,qk =

(

w−k
w

)dv

PR.
Let N2 denote the number of size-2 stopping sets in a

random code instance ofCR(dv, dc, w, L,M) ensemble. We
introduce the stopping set indicator functionUij with

Uij =

{

1 if VNs vi andvj form a stopping set
0 otherwise

Then,N2 =
∑ML−1

i=1

∑ML

j=i+1 Uij . Note thatUij are correlated
random variables. However, we can simply calculate the

average number of size-2 stopping sets over the ensemble,

E[N2] =

ML−1
∑

i=1

ML
∑

j=i+1

E[Uij ] =

ML−1
∑

i=1

ML
∑

j=i+1

P{Uij = 1}

=

L
∑

z=1

w−1
∑

k=0

M
∑

i,j=1

qk1[i < kM + j, z + k ≤ L] =

w−1
∑

k=0

λk,

whereλk denote the average number of size-2 stopping sets
between VNs lying in two SPs with differencek and

λ0 = L

(

M

2

)

q0 ; λk = (L− k)M2qk. (4)

We see thatλk ∼ O(LM2−dv). To verify these expectations,
let us consider theCR(3, 6, 3, 100,M = 64) SC-LDPC en-
semble. By averaging over1000 random code instances of
the ensemble, the average number of size-2 stopping sets is
obtained(λ0, λ1, λ2) ≈ (0.876, 0.488, 0.060) which is close
to (0.829, 0.494, 0.061) from (4), thoughM is rather small.

B. Error Floor Estimation

We now estimate the decoding failure (block erasure prob-
ability) when there is a random burst of lengthb ≪ bBP and
starting bitS. LetN2(S, bM) denote the set of size-2 stopping
sets formed by VNs,vi, in the burst, i.e.,i ∈ [S, S+ bM ]. BP
decoding fails if these VNs are erased. Thus,

PB(b) ≥ P{N2(S, bM) ≥ 1}
(i)
≈ E[N2(S, bM)]. (5)

There are two approaches to justify(i). The first approach is
to lower-boundP{N2(S, bM) ≥ 1} using the second moment
method and to show that the bound has a vanishing gap (in
M ) to E[N2(S, bM)]. We applied this method in [11] for the
particular choice ofb = 1 and S = kM + 1, k ∈ [0, L −
1]. An alternative is to use standard arguments [12, App. C]
to approximate the distribution of size-2 stopping sets by a
joint Poisson distribution. The decoding error then corresponds
approximately to the average number of stopping sets.

The starting bitS is chosen uniformly among bits[1, LM−
bM + 1]. We can writeS = (z0 − 1)M + j, for z0 ∈ N and
some integer1 ≤ j ≤ M . Then,

E[N2(S, bM)] =
1

LM − bM + 1

LM−bM+1
∑

k=1

E[N2(S, bM) | S = k]

(i)

'
M

(L− b)M + 1

L−⌈b⌉
∑

z0=1

1

M

M
∑

j=1

E[N2((z0 − 1)M + j, bM)]

(ii)
=

L− ⌈b⌉

(L− b)M + 1

M
∑

j=1

E[N2(S = j, bM)]

≈
1

M

M
∑

j=1

E[N2(S = j, bM)]

(iii)
=

1

M

M
∑

S=1

⌈b⌉+1
∑

z=1

(

(

mz

2

)

q0 +

w−1
∑

k=1

mzmz+kqk

)

. (6)



where(i) is because we neglect a small contribution(O( 1
L
))

of S > (L − ⌈b⌉)M for non-integerb. We have(ii) as
1
M

∑M

j=1 E[N2((z0 − 1)M + j, bM)] is identical for different
z0. Let us justify(iii): for a given starting bit1 ≤ S ≤ M , the
number of erased VNs in SPz ismz defined in Section III. We
have(iii) by summing the average number of size-2 stopping
sets formed between erased VNs in all pairs of SPz andz+k.

We plot the decoding failure probability of
(3, 6, w, L,M)−SC-LDPC codes for different finite values of
M and forw = 3, 4 in Fig. 2 (a)-(b). For each pair ofM
andb, we choose a random instance from the code ensemble
and generate a random burst with lengthbM . The decoding
failure probability,PB, is averaged over all trials until 400
decoding failures occur. We repeat the same experiment for
(4, 8, w = 4, L,M)−SC-LDPC codes, depicted in Fig. 2-(c).
We also plot the error floor estimation (6) for eachM .

These figures show that forb < bBP(ε = 0), the error floor
is well estimated by (6) even for smallM = 100. It implies
that the size-2 stopping sets are the main cause of decoding
error. We also observe that the decoding error increases very
fast forb close tobBP(ε = 0), given in Fig. 1. For largerM , the
waterfall region is sharper around the thresholdbBP(ε = 0).

V. CONCLUSION

In this paper, we have investigated the performance of spa-
tially coupled LDPC codes when the transmission is affected
by a single burst of erasures per codeword. Such a burst erasure
can model different scenarios, e.g., the outage of a node in
distributed transmission. We have derived an expression for
density evolution and shown numerically that the maximum
correctable burst length depends on the channel that affects
the bits not erased by the burst and the code parameters.
Depending on the expected burst, different parameters may
be selected to design a code. The correctable burst length
is practically independent of the transmission channel of the
other bits. Furthermore, we have given expressions for the
error floor that remains after correction. We have successfully
verified all results in a simulation example.
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