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Abstract—This paper investigates hardware cyber-security
risks associated with channel decoders, which are commonly
acquired as a black box in semiconductor industry. It is shown
that channel decoders are potentially attractive targets for
hardware cyber-security attacks and can be easily embedded
with malicious blocks. Several attack scenarios are considered
in this work and suitable methods for mitigating the risks are
proposed. These methods are based on randomizing the inputs
of the channel decoder to obstruct the communications between
attackers and the malicious blocks, ideally without changing the
decoding performance.

Index Terms—Channel decoder, cyber-security, malicious cir-
cuits, hardware Trojan, stochastic techniques.

I. INTRODUCTION

Many companies that design cyber infrastructure, commu-
nications devices, and integrated circuits (ICs) use intellec-
tual property (IP) elements developed by smaller and highly
specialized companies, often without knowing exactly if the
acquired IPs will do anything (possibly nefarious) beyond
what they are supposed to do. These acquisitions are well
justified financially and significantly reduce the cost associated
with developing new ICs and products. This is also a healthy
practice when different and unconventional specialties are
needed. Nevertheless, security should not be compromised and
special tools and design methodologies have to be developed to
prevent any malicious activity carried out by the cyber systems
that contains these ICs.

A malicious block (also called a hardware Trojan) in a
complex IC can be the result of an independent work of a few
people in a large design team in a trustworthy company, or it
can be hidden intentionally in an IP obtained in a supply chain
or a commercial-off-the-shelf (COTS) product, or it can be an
unintentional weakness or back-door that could be exploited
by attackers. The malicious block could have been added in
design, fabrication, packaging, testing, and assembling stages
and it is non-trivial to discover the introduced blocks [1]-[18].

There have been some attempts for discovering hardware
trustworthiness through screening the die’s image to find any
modifications or additional transistors. This is not an easy
task as the number of transistors is huge and often dummy
transistors and blocks are used for improving matching and
manufacturability. Furthermore, processing the image of a
die, sandwiched in a 3-D packaging would be challenging.

Alternatively, generating test signals and characterizing a block
by its input/output relationship, or adding a signature can only
work when the number of inputs and outputs are small. Even
restricting the purchases to a number of trustworthy providers
cannot fix the security issue, since as mentioned earlier, a small
number of designers can always add a few gates without their
supervisor’s permission or attention [5]-[18].

The fact that many big companies are hacked every year
indicates security issues have to be dealt with more rigorously
[19]. While most cyber-attacks target stealing confidential or
precious information, they often cannot harm the hardware,
though they may temporarily interrupt a service. Hardware
oriented attacks pose different challenges and can possibly
cause permanent damages to devices and systems that we are
relying on in our daily life and lack of them could jeopardize
people’s safety and cause economic damages [5].

This paper focuses on developing a design for assurance
by mitigating trustworthiness risks associated with cyber
infrastructure hardware, more specifically in channel error-
correcting decoders, which are an essential part of cyber
systems that contain any digital communications systems or
any computational system that uses memory. Channel decoders
are important blocks in hardware trustworthiness analysis for
the following reasons

1) advanced channel decoders are complex circuits with
millions of gates, thousands of floating point processing
modules communicating through tens of thousands of
wire connections. Yet it is possible to convert a decoder
to a malicious block by using a few gates, which
probably cannot be discovered by processing the die’s
image,

2) channel decoders directly interface with the outside
world, which makes them an ideal block for receiving
commands to start the nefarious act that could easily
cause hardware or software failure,

3) channel decoders process noisy information, either
caused by communication channel imperfections or by
imperfections in storage media, and even a functional de-
coder cannot succeed all the time. A malicious channel
decoder can easily claim false failures to block reception
or retrieving stored information,

4) it is literally impossible to identify a malicious activity
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by running a number of test cases on resource limited
simulation or emulation environments of a channel de-
coder as the number of inputs and outputs combinations
are huge. A code of 2048 bits block length is not
considered a long code [20] and yet the number of
different inputs is 22048 in a hard-decision decoder and it
is 210,240 if soft-decoding with 5-bit resolution is used.
It is thus impossible to verify all cases, and

5) By developing suitable design methodologies and tech-
niques to mitigate trustworthiness risks in channel de-
coders, which pose unique challenges, it becomes possi-
ble to mitigate trustworthiness risks in many other blocks
and circuits that have less verification and implementa-
tion complexities, resulting in a design for assurance.

In this paper, different attack scenarios will be investigated
and possible remedies will be developed to mitigate the risks.
The problem will be tackled by exploiting stochastic tech-
niques to encrypt information internally within an integrated
circuit and manipulating data transmission in its communica-
tion channels to avoid any unauthorized operation and isolate
suspicious blocks. We assume that the cyber-security threats
have not been found by screening the die or other techniques
([5]-[18]). This work develops general techniques to mitigate
the trustworthiness risks instead of trying to eliminate hard-
to-find malicious blocks in a channel decoder with arbitrary
codes and block lengths.

II. CYBER-SECURITY IN INTEGRATED CIRCUITS

Tackling cyber-security issues in integrated circuits and
electronic systems is a relatively new problem and exhibits
new challenges [1]-[18]. A malicious block can be added to
otherwise functional IP blocks by

1) a few people in a design team within a trustworthy
company acting without their supervisors’ notice,

2) companies with ill intentions selling IPs, possibly un-
derpriced, to get into supply chain of trustworthy com-
panies, and

3) an honest mistake of the design team leaving a vul-
nerability or a back-door that can be later exploited by
hackers.

In addition to design stage, a malicious block can be added
during fabrication in a foundry, or during packaging, testing,
assembling, and installing process. Again a few people in
trustworthy companies can alter the original design without
their supervisors’ notice. Thus, there is always some chance
that circuits and systems, even those developed by trustworthy
companies would contain malicious blocks. This likelihood
will be higher when there is no control over or access to
companies selling their products in a supply chain or make
commercial-off-the-shelf products.

The malicious block could have been designed
1) to collect confidential information and pass it to unau-

thorized people (i.e., for espionage),
2) to partially degrade the performance metrics (such as bit-

error-rate, dynamic range, signal-to-noise ratio, lifespan,

or energy-efficiency) in a competing product to win the
market,

3) to temporarily interrupt a service, make a system unsta-
ble, or cause malfunction, and

4) to sabotage and permanently destroy the integrated cir-
cuit or electronic system (i.e., hardware attacks during
cyber warfare).

These acts could be for political, economic, or military ad-
vantages. The first three items are commonly seen in cyber-
attacks; however, software-based cyber-attacks cannot directly
destroy an integrated circuit or electronics hardware. However,
a malicious embedded circuit block can destroy an integrated
circuit using many different techniques. For example by

1) intentionally causing latch-up problem ([21]-[22]) in
an integrated circuit by forward-biasing the substrate
junctions to burn the integrated circuit and electronics
system,

2) short-circuiting the supply voltage or clock signal to
damage power or clock tree,

3) causing breakdown in gate oxide of MOS transistor by
generating high-voltages using hidden capacitive voltage
multipliers [22], and

4) increasing power consumption beyond thermal dissipa-
tion capabilities of the substrate to burn the integrated
circuit and the electronics system.

The malicious circuit can also generate noise to obstruct
communications or normal operations or stop the related IP
to induce malfunctions on integrated circuit or electronics
systems. The malicious circuit can be most dangerous if they
are activated simultaneously in a wide area, for example all
smartphones or computers stop working at a specific moment
based on receiving a direct command or a pattern embedded
in the input signals or reaching to a preset time and date.
Furthermore, a malicious circuit can be activated based on
an internal clock or by exploiting parameters that show aging
process in an integrated circuit such as electromigration [22].

In order to protect integrated circuits, it is currently sug-
gested to (see for example [1]-[18])

1) limit purchases to trustworthy companies,
2) process die’s image to discover any alteration or any

suspicious circuits,
3) investigate input/output relationship to discover any ab-

normality, and
4) add signatures, develop physical unclonable function

(PUF) modules, or use software-inspired Proof- Carry-
ing Code (PCC).

III. DETERMINISTIC SYSTEMS VERSUS STOCHASTIC
SYSTEMS

The Achilles’ heel of security in electronic and computer
systems is, arguably, their universal architecture and determin-
istic behavior, which make them stationary targets [3]. This
means that no individual identity is given to these systems and
studying or tampering a single sample is enough to discover
how similar models are working. In fact, we are making



electronic and computer systems to be exactly identical. This
feature is mainly the result of mass production of these systems
and a desire to repair and possibly upgrade parts of the system
in the future. While, this might seem a necessity for all similar
systems, it is not exactly true for biological systems. Human
beings do not think or observe exactly the same way, neither do
they respond to external stimulates, diseases, and medications.
Transplanting organs is not an easy task in human beings and
it is quite tricky to deceive body’s defense system not to reject
a life-saving transplanted organ. We have always been envying
machines that can last forever by replacing their faulty parts.
However, this feature can also generate security vulnerability
that malicious parts can be added to systems for nefarious
purposes.

A possible alternative to this paradigm is to promote
stochastic systems, changing stationary targets to moving
targets [3], where each system follows a different trajectory in
its normal operation and performs the required task differently
to that extent that systems won’t be exactly identical and even
detailed information about the sample system does not provide
the required knowledge to hackers to attack other similar
systems.

One approach to mitigate malicious blocks, which are
activated by a command message is to wrap deterministic parts
in stochastic envelopes or shields to make all communications
within a system encrypted and hidden to external observers.
In other words, building blocks of the system will operate in
complete darkness and only process altered information using
an encryption system that will be unique to each sample of an
integrated circuit or system.

Figure 1 shows an example for a general case when multiple
modules are used in an electronic system. A seed is generated
using a random noise that is sampled and quantized using an
analog-to-digital converter (ADC) at the first boot-up. This
seed will be a unique identity of the system and is sent to
all modules within the system at the first boot-up and will
be stored permanently, to form an encryption system that is
device dependent. As an example, the random seed can be a
long random binary sequence B with variable length, which is
XORed with the output of each module (Xout) to generate an
encrypted version of the output (Xencrypted

out = B⊕Xout). The
module that receives the encrypted signal can only obtain Xout

if it has B since Xout = B⊕Xencrypted
out . In this way, replacing

the genuine modules with malicious modules will fail the
system (as a rejected transplanted organ in human body) and
is not possible. Also by tapping the wire connections, only the
encrypted signals can be obtained, which will seem random
(since it has been generated using random noise). Furthermore,
even by successfully hacking a system only B can be obtained
but it does not reveal any information regarding other samples
of the electronic system.

IV. TRUSTWORTHINESS IN CHANNEL DECODERS

Channel coding is an indispensable part of any modern
digital communications system. It works by introducing some

Random
Noise

ADC
Seed 

Generator

Module 1 Module 2 Module 3 Module 4 Module 5

Fig. 1. Generating a random seed in the first boot-up to
initialize encryption in modules of an electronic system. Any
attempt for replacing genuine modules with malicious mod-
ules or tapping the communications among modules will be
difficult and sample dependent.
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Noise
Transmitter
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n

Fig. 2. A simple model for digital communications systems.

redundancy to the transmitted information to make com-
munications reliable as shown in Figure 1. At the receiver
side, a decoder exploits the added redundancy to find and
possibly correct any mistake that may have happened due to
transmission channel imperfections [23] and [24].

Let’s assume a binary linear block code is used and an
encoder, which is located in the transmitter, maps a message
vector m to a codeword vector c using a generator matrix G
and channel noise (n) is additive and the decoder receives r
vector which is equal to c+ n.

In the following sections, it is assumed that the attackers
can broadcast signals that are received by a channel decoder
embedded with a malicious block.

A. Case-I: The Malicious Circuit is Activated by a Sequence
of Codewords

Let’s assume the malicious circuit inside a channel decoder
is activated, to say cause latch-up problem to burn the IC, if
five codewords c1, c2, c3, c4, and c5 (or their corresponding
messages, i.e., m1, m2, m3, m4, and m5) are detected in a
specific sequence. Obviously, it is not feasible to generate all
possible scenarios like this to discover the malicious circuit.

Based on the following Lemma, a stochastic envelope can
be developed to surround the channel decoder.

Lemma: If D is a maximum likelihood decoder or any
suboptimal decoder that equally treats codewords and D(r) =
m̂ (m̂ = m if decoding is successful with no undetectable
error) then D(r + cx) = m̂ + mx where mx is a random
message and cx is its corresponding codeword. In hard-
decision decoding, r + cx = c ⊕ e ⊕ cx, where e is the error
vector. In soft-decision decoding, the polarity of log-likelihood
ratio (LLR) representation [24], corresponding to each bit in
r′ = r+ cx will be equal to the binary addition of cx with the
hard-decision corresponding to each bit in r. Obviously, the
magnitude of LLR representation will not be changed. This
Lemma can be proved based on the fact that for any linear
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Fig. 3. A suspicious decoder wrapped in a stochastic envelope
cannot receive any command based on codewords. mx is a
random message and cx is its corresponding codeword.

block code, the addition of every two codewords is also a
codeword.♣

Therefore, the received information (r) can be mapped
randomly to another vector (r′ = r + cx) before it is applied
to the decoder. The output of the decoder will be m̂+mx and
will be added again with mx to result the expected output of
the decoding (m̂) and the decoder cannot discover what was
the codeword (see Figure 3). Meanwhile, mx is a randomly
selected message that can be changed each time based on a
different seed in different samples, making it difficult to tamper
a sample device to attack other devices using the malicious
decoder. The probability of observing the sequence of c1 , c2,
c3, c4, and c5 for a device using the proposed stochastic system
will not be exactly zero. However, the extremely unlikely event
of activating the malicious block by chance (based on random
cxs) will not happen when the attackers want, thus makes the
orchestrated attack practically ineffective.

It is also important to note the malicious circuit, in this
example, can be very small (in the order of a few hundred
gates), which can be easily hidden in advanced multi-million
gate decoders [25]-[32].

B. Case-II: The Malicious Circuit is Activated by a Sequence
of Error

A more challenging case is when the attack command is
embedded on a superficial error vector (esup) that renders
shifting codewords useless. By superficial error, we mean the
attackers transmit a vector, which is not a codeword, i.e.,
c⊕ esup instead of c and overpower the natural channel noise
in a way that the malicious block can extract esup or some
message embedded in it from the received information. It is
interesting to note by shifting the codeword (Case-I), the error
vector will not change. This is obvious by noting that shifting
codewords changes c⊕ e to c⊕ cx ⊕ e, which does not have
any impact on the error vector.

Deterministic techniques, arguably fail to mitigate this at-
tack. However, stochastic techniques such as stochastic Chase
[29] and dithered belief propagation [30] decoding algorithms
that intentionally add random noise to the received vector be-
fore decoding, to possibly improve the decoding performance
and rely on several decoding trials, can be used for changing
the noise vector and disabling this attack. However, there
is no guarantee that the impact of esup can be completely
removed without adding too much noise and degrading the
communications system.

C. Case-III: The Malicious Circuit is Activated by a Sequence
of Failure and Success in Decoding

In this case, instead of a sequence of codewords or a noise
pattern, a sequence of failure and success in decoding triggers
the malicious circuit. For example, if a failed decoding (when
no m̂ is output) is represented by f, and a successful decoding
(when m̂ is output even if it is not equal to m) is represented
by s, then an example sequence could be fsfsffssfffsssffffssss-
fsfsffssfffsssffffssssfsfsffssfffsssffffssssfsfsffssfffsssffffssss.

The sequence should be long enough to make the likelihood
of naturally observing the sequence near zero. As an example,
let’s assume the chance of failure in decoding is 10−5, then the
probability of observing the above sequence is almost 10−220.

In this case the malicious circuit will be extremely simple
and only consists of an 88 bit shift register and a small number
of simple gates, which makes it even easier to hide in a
large decoder circuit. Obviously, the techniques mentioned in
previous examples do not help in this case, because they do
not change the failure-success sequence.

To mitigate this malicious block, it is possible to
1) erase any memory inside the decoder by powering it

off or by other means after each decoding operation.
The idle time should be long enough to discharge any
capacitive memory that might have been used,

2) randomly reorder the received vectors using a stack at
the input to prevent the decoder know the real sequence,
and

3) use redundant decoders and distribute the received
blocks randomly among the decoders, preventing the
decoders know anything about the real sequence or its
statistics.

In Figure 4, redundant decoders are utilized to change the
failure/success statistics and facilitate powering off the other
decoders.

If internal memories cannot be erased or information is
stored on capacitors hidden in the circuit, which retain the
information during short power-off intervals (a few µs in
low-latency communications systems), then randomizing the
sequence of received vectors wont be completely effective.
Unfortunately, utilizing many redundant decoders is not a
viable approach because channel decoders are big circuits.

If the number of redundant decoders is small, attackers
can utilize communication techniques to convey the attack
command to the malicious channel decoder. For example, they
can use repetition coding scheme [24], i.e., each failure or
success is sent multiple time, for example 10 times. It means
f is replaced by ffffffffff and s is replaced by ssssssssss. If
the received vectors are sent randomly to one of two available
channel decoder in Figure 4, and the malicious decoders are
smart enough to track timing, the sequence will consist of a
number of f and a number of I (standing for idle). For example,
IfIfIIffII, which can be easily recognized as an f unless idle
time intervals are replaced by completely random decoding.

Nevertheless, if the number of random decoding is not large
enough, attackers can still send their message to the malicious
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Fig. 4. Using redundant decoders to prevent exploiting the
sequence of success/failure or other statistical information.

channel decoder by treating this randomizing process similar
to a noisy communication channel and utilizing the decoding
capability of the malicious decoder to recover the original
sequence. After all, a channel decoder is used to recover a
message transmitted through a noisy channel.

V. CONCLUSION

In this paper different scenarios were discussed for mitigat-
ing trustworthiness risks in channel decoders. It was demon-
strated that by completely isolating a block in a circuit from
the outside world, by wrapping it in a stochastic envelope in a
way that no direct data or statistical information is passed to
the block, many attacks can be mitigated. We used additional
redundancy to randomize statistics and developed techniques
for randomly shifting codewords. Stochastic techniques can
also be utilized to further randomize inputs of a malicious
decoder to hide data from the processing modules.

It was also highlighted that a malicious embedded block can
destroy an integrated circuit and harm a cyber-hardware in a
second, which makes it different and more dangerous than
common software cyber-attacks. Furthermore, it was shown
that a malicious block can be very small and can remain hidden
in a large circuit.

These observations and other preliminary results represent
just the tip of an iceberg that cyber infrastructure hardware
would face, and require further investigations and develop-
ments to quantify and mitigate their harmful effects. De-
veloping viable solutions and approaches for safeguarding
integrated circuits and electronic systems utilizing channel
decoders necessitates these comprehensive investigations too.
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