
ar
X

iv
:1

60
7.

04
13

7v
3

 [
cs

.I
T

]
 3

 J
ul

 2
01

7

Balanced Locally Repairable Codes

Katina Kralevska, Danilo Gligoroski and Harald Øverby
Department of Telematics, Faculty of Information Technology, Mathematics and Electrical Engineering,

NTNU, Norwegian University of Science and Technology, Trondheim, Norway,

Email: {katinak, danilog, haraldov}@item.ntnu.no

Abstract—We introduce a family of balanced locally repairable
codes (BLRCs) [n, k, d] for arbitrary values of n, k and d. Similar
to other locally repairable codes (LRCs), the presented codes are
suitable for applications that require a low repair locality. The
novelty that we introduce in our construction is that we relax the
strict requirement the repair locality to be a fixed small number
l, and we allow the repair locality to be either l or l + 1. This
gives us the flexibility to construct BLRCs for arbitrary values
of n and k which partially solves the open problem of finding a
general construction of LRCs. Additionally, the relaxed locality
criteria gives us an opportunity to search for BLRCs that have
a low repair locality even when double failures occur. We use
metrics such as a storage overhead, an average repair bandwidth,
a Mean Time To Data Loss (MTTDL) and an update complexity
to compare the performance of BLRCs with existing LRCs.

Keywords: Locally Repairable codes, Balanced, Storage
overhead, Update complexity, Repair bandwidth, MTTDL

I. INTRODUCTION

A conventional approach for achieving reliability in big
data distributed storage systems is replication. In particular,
the reliability of 3-replication is an accepted industry standard
for management of hardware failures and recovery. That is
an apparent situation in systems such as Hadoop HDFS [1],
OpenStack SWIFT [2] or Microsoft Azure [3]. However,
the accelerated and relentless data growth has made erasure
coding a valuable alternative to 3-replication since erasure
coding provides the same reliability as 3-replication, but with
significant less storage overhead. Recently, there have been
several proposals and experimental beta implementations of
different types of erasure codes for huge distributed storage
systems [4]–[6].

Besides the reliability and the storage overhead, another
important feature in distributed storage systems is the effi-
ciency of the repair of a failed node. The efficiency is measured
with two metrics: the repair bandwidth and the repair locality.
The repair bandwidth is the amount of transferred data during
a node repair, while the repair locality is the number of
nodes contacted during the node repair process. Two types of
erasure codes that address the repair efficiency have emerged:
Regenerating codes [7] and Locally Repairable Codes (LRCs)
[8]–[10].

Regenerating codes [7] aim to minimize the repair band-
width, while LRCs seek to minimize the repair locality.
The main idea behind regenerating codes is using a sub-
packetization. Each block is divided into sub-packets and a
recovery is performed by transferring sub-packets from all
n − 1 non-failed nodes that results in high I/O. A proposal
for reducing the I/O is given in [11]. On the other hand,

LRCs address the issue of accessing less nodes, but the amount
of transferred data is bigger compared to regenerating codes.
However, communicating less nodes is beneficial for storage
applications that require low I/O.

An [n, k, d]q MDS code C has to transfer k symbols to
recover one lost symbol. LRCs were independently introduced
in [8]–[10]. The code C has a locality l if the i−th code symbol
ci, 1 ≤ i ≤ n, can be recovered by accessing l symbols where
l < k. It was proved in [8] that the minimum distance of an
[n, k, d]q code with a locality l is

d ≤ n− k + 2−
⌈k

l

⌉

. (1)

Huang et al. showed the existence of pyramid codes that
achieve this distance when the field size is big enough [12].
Two practical LRCs have been implemented in Windows
Azure Storage [13] and HDFS-Xorbas by Facebook [14].
Both implementations reduce the repair bandwidth and the
I/O for reconstructing a single data block by introducing a
fixed number of l local and r global parity blocks. Any single
data block can be recovered from k

l
blocks within its local

group. However, reconstruction of any global parity block (in
Windows Azure) or double blocks failures is performed in the
same way as with Reed-Solomon (RS) codes, i.e., k blocks
need to be transferred.

Since node failures in storage systems are often correlated
[15], there is a need for other erasure codes than LRCs for
recovery from multiple failures. For instance, Shingled erasure
codes (SHEC) have a low average repair bandwidth when
multiple failures occur, but they are not so efficient in terms
of the storage overhead and the reliability [16].

The locality also has an impact on the update complexity
[17]. This is particularly important for hot data, i.e., frequently
accessed data. For instance, an [16, 10] LRC where the locality
is 5, writing a data block takes 6 write operations (1 write to
itself, 1 write to the local parity and 4 writes to the global
parities).

Thus, having a general construction of LRCs that are si-
multaneously optimal in terms of storage overhead, reliability,
locality and update complexity for a single failure and double
failures is an important problem that is addressed in this work.

A. Our Contribution

We define a new family of balanced locally repairable
codes (BLRCs). One of their main characteristics is that every
systematic block has an equal (balanced) influence to the parity
blocks. That is to say, each systematic block affects exactly

http://arxiv.org/abs/1607.04137v3

w parity blocks. Additionally, we pay attention on the repair
locality. In our construction we use a similar (but yet different)
approach to the approaches introduced by Luby et al. for the
construction of irregular LDPC codes [18] and Garcia-Frias
and Zhong for the construction of regular and irregular LDGM
codes [19]. Namely, instead of the strict requirement the repair
locality to be a fixed small number l, it may be either l or
l + 1. This partially solves the open problem given by Tamo
et al. about a general construction of LRCs [20], because we
construct LRCs for arbitrary values of n and k, but the locality
is not strictly equal to l. Moreover, the relaxed locality criteria
gives us an opportunity to search for BLRCs that have a low
repair locality even when double failures occur. We use four
metrics to examine the performance of BLRCs:

• Storage overhead (a ratio of the parity to the data
blocks r

k
);

• Average repair bandwidth (a ratio of the repair band-
width to repair both data and parity blocks to the total
stored data (sum of the data and the parity blocks));

• MTTDL (Mean Time To Data Loss - an estimate of
the expected time that it would take a given storage
system to exhibit enough failures such that at least one
block of data cannot be retrieved or reconstructed);

• Update complexity (a maximum number of elements
that must be updated when any single element is
changed).

In summary, several goals are achieved simultaneously with
this work: 1) low storage overhead; 2) low average repair
bandwidth for single and double failures; 3) high reliability;
and 4) improved update performance.

The paper is organized as follows. In Section II, we in-
troduce the terminology and the definition of balanced locally
repairable codes. In Section III, we give code examples and
examine their performance by using the predefined metrics. We
also compare the properties of our codes to 3-replication, RS
and other LRCs. A reliability analysis is presented in Section
IV. Conclusions are summarized in Section V.

II. DEFINITION OF BALANCED LOCALLY REPAIRABLE

CODES

We use the following notations throughout the rest of
the paper. A file of size M is divided into k equally sized
blocks and encoded in GF (q) with an [n, k, d]q code into n
coded blocks. An [n, k, d]q code is called maximum distance
separable (MDS) if d = n − k + 1. An [n, k, d]q MDS code
reconstructs a failed block from any k out of the n blocks. We
denote the number of parity blocks with r = n− k.

Definition 1: Let C be an [n, k, d]q code over GF (q) with
a generator matrix G:

G = [Ik|P] , (2)

where Ik is an identity matrix of order k and the k × (n −
k) matrix P specifies how the parity is defined for the given
[n, k, d]q linear code. We call C a Balanced Locally Repairable
Code (BLRC), if the Hamming weight of every row in the
matrix P is w where w < k, the Hamming weight of every

column is l or l+1 and for every submatrix P ′ of P consisting
of v rows, 1 ≤ v ≤ w, from P it holds that Rank(P ′) = v.

The field size should be big enough so that the condition for
the rank in Definition 1 is fullfiled.

Example 1: Let us consider the following [13, 8, 3] code
with a generator matrix:

G =



















1 0 0 0 0 0 0 0 0 0 c1,11 c1,12 0
0 1 0 0 0 0 0 0 c2,9 0 0 c2,12 0
0 0 1 0 0 0 0 0 c3,9 0 c3,11 0 0
0 0 0 1 0 0 0 0 0 0 c4,11 0 c4,13
0 0 0 0 1 0 0 0 0 0 0 c5,12 c5,13
0 0 0 0 0 1 0 0 0 c6,10 0 0 c6,13
0 0 0 0 0 0 1 0 0 c7,10 c7,11 0 0
0 0 0 0 0 0 0 1 c8,9 c8,10 0 0 0



















,

where ci,j are some nonzero elements from GF (q). Note that
the Hamming weight of every row in P is w = 2 < k, while
the Hamming weight of every column in P is either l = 3
or l + 1 = 4. Finally, since any two rows in P are linearly
independent, the rank condition from Definition 1 is fulfilled.
Thus, the code is a balanced locally repairable code.

From the erasure recovery point of view, we use the min-
imum distance of the code as a metric for its fault tolerance.
We have the following Lemma:

Lemma 1: If [n, k, d]q is a balanced locally repairable code
defined in a finite field GF (q), then

d = w + 1. (3)

Proof: The minimum distance d of a code C is equal
to the number of failed blocks (erasures) after which the
data cannot be recovered. Note that if one systematic block
and w parity blocks that are linear combinations of the
specific systematic block fail, then the systematic block is
non-recoverable. This is true due to the fact that all w + 1
parts that have (non-encoded or encoded) information about
the systematic block have been lost. Thus, it follows that
d ≤ w + 1. Let us assume that ws systematic and wp

parity blocks are lost where w = ws + wp. If we consider
that the lost wp parity blocks are linear combinations from
the ws systematic blocks that have been also lost, then the
systematic blocks can be recovered only if for every submatrix
P ′ consisting of ws rows of P it holds that Rank(P ′) = ws.
After recovering the systematic blocks, the lost parity blocks
can be recovered. Let us consider that ws = w systematic
blocks have been lost. The lost systematic blocks can be
recovered by selecting the corresponding rows that contain the
specific w systematic blocks in the matrix P and producing a
matrix P ′. Since Rank(P ′) = w, the lost systematic blocks
can be recovered. On the other hand, if wp = w parity
blocks have been lost, then each of the parity blocks can be
recovered from l or l+1 systematic blocks. In any case d > w.
Consequently, it follows that d = w + 1.

The locality of a systematic code C is defined as the
number of data blocks that each parity block is a function
of.

Lemma 2: Let [n, k, d]q is a balanced locally repairable
code defined in a finite field GF (q). Then for its locality l, it
holds:

l =
⌊ (d− 1)× k

n− k

⌋

. (4)

Proof: The parity part P of the generator matrix G is an
k× (n− k) matrix. Since every row has w nonzero elements,
with k such rows, the total number of nonzero elements in
P is w × k. It follows that the average number of nonzero

elements in every column of P is l =
⌊

(d−1)×k

n−k

⌋

.

The number of transferred blocks during a repair process
and the update complexity for BLRCs are captured in the
following propositions:

Proposition 1: When recovering one lost block (a system-
atic or parity block) in an [n, k, d]q balanced locally repairable
code, the number of transferred blocks is l or l+ 1.

The proof for Proposition 1 in connection with Lemma 2
includes a detailed algorithm how to construct BLRCs. We do
not include it in this short paper due to space limitations, but
we will include it in an extended version.

Proposition 2: The number of writes per update of an
[n, k, d]q balanced locally repairable code is w + 1.

Since the node failures in storage systems are often corre-
lated [15], we next give an algorithm for finding BLRCs that
have a low repair locality even when two blocks have failed.
Algorithm 1 uses a stochastic hill-climbing search in a similar
manner as in [21], [22].

Algorithm 1 A general Stochastic Hill-Climbing search for
finding a locally repairable code for given n, k and d
Input: n, k and d;
Output: A Balanced Locally Repairable Code.

1: Find a random [n, k, d] linear code as in Definition 1 where
w = d − 1 is the Hamming weight of every row of the
matrix P ;

2: Repeatedly improve the solution by searching for codes
with low average locality when two blocks failures have
to be recovered, until no more improvements are neces-
sary/possible.

The construction of our codes has some similarities with
the construction of several classes of LDPC codes reported in
the literature. In particular, several families of LDPC codes
that are based on Finite Geometries are defined in [20]. In
that work, the restrictions that are inferred by the properties
of Finite Geometries restrict the possible choices of different
n and k. Variable irregular LDPC codes are constructed by
puncturing the codes or by splitting the columns and rows of
the parity-check matrix H .
We have been inspired by two other works that are also from
the area of LDPC codes. Namely, Luby et al. in 2001 intro-
duced the principle of allowing irregularities for variable nodes
in a LDPC construction [18]. They allowed those irregularities
to have degree 2, 3, 4 or even 20, while in our construction
the degree of locality is either l or l+1. On the other hand, in
2003 Garcia-Frias and Zhong proposed regular and irregular
LDGM codes in [19]. For the regular LDGM codes, the parity
matrix P has always a fixed row weight X and fixed column
weight Y which is equivalent to the LRC case where the row
weight is fixed at w and the column weight is fixed at l. For
the irregular LDGM codes the parity matrix P has an average
row weight X and an average column weight Y , while in

our construction the row weight is fixed to w but the column
weight can be either l or l + 1.

III. EXAMPLES OF CODE CONSTRUCTIONS

In this Section we present several parity parts P (not to be
confused with a parity-check matrix H) of BLRCs for different
code parameters.

The parity part P1 of an [15, 10] code for l = 6 and w = 3
is:

P1 =

























c1,11 c1,12 0 c1,14 0
c2,11 0 0 c2,14 c2,15
c3,11 0 c3,13 c3,14 0
c4,11 c4,12 0 0 c4,15
c5,11 0 c5,13 0 c5,15
c6,11 c6,12 c6,13 0 0
0 c7,12 c7,13 0 c7,15
0 0 c8,13 c8,14 c8,15
0 c9,12 c9,13 c9,14 0
0 c10,12 0 c10,14 c10,15

























,

where the coefficients ci,j , i ≤ 10 and 11 ≤ j ≤ 15, are
elements from a finite field GF (q). Since we do not show
the Ik matrix, the index j for the non-zero coefficients is in
the range between k + 1 and n. Note that the number of
non-zero elements in P1 per row is w = 3 and per column
is l = 6. A transposed P1 is graphically represented in
Figure 1c. The non-zero elements are represented with the
shaded blocks in Figure 1c. The average repair bandwidth
for a single failure is 6 and for double failures is 9. For
comparative purposes we graphically represent the parity parts
of an [14, 10] RS and an [16, 10] LRC in Figure 1a and 1b,
respectively. As we can see the RS code has the biggest locality
l = 10. Consequently, a transfer of 10 blocks is required to
repair any systematic or parity block when the RS code is
used. The [16, 10] LRC has locality equal to 5 for the local
parity blocks and 10 for the global parity blocks. Therefore,
it requires a transfer of 5 blocks to repair a single failure of
the systematic and the local parity blocks, while it takes 10
blocks to repair the global parities. Hence, the average repair
bandwidth for a single failure with the [16, 10] Azure LRC is
(5 × 12 + 10 × 4)/16 = 6.25. However, the [16, 10] Xorbas
LRC reduces the number of transferred blocks for a repair of
any single global parity block to 5 by introducing an implied
parity block. Thus, it has a lower average repair bandwidth
compared to the Azure LRC implementation. A comparison
of the performance metrics for the [15, 10] code with parity
part P1 with 3-replication, the [14, 10] RS and the [16, 10]
Xorbas LRC is presented in Table I, while additionally the
Azure LRC is added in Figure 2. The way how we calculate
the MTTDL is described in Section IV.

The next example of an [16, 10] code for l = 5 and w = 3
shows even a better performance when double failures occur.
The average repair bandwidth for a single failure is 5, while it
is 7 for double failures. This code tolerates up to any 3 failures
and recovers the data successfully with 99.45%, 96.02% and
79.66% from 4, 5 and 6 failures, respectively. Its parity part

.%# ./# .0# .&# .1# .-# .2# .3# .4# .%(#

5%#

5/#

50#

5&#

5%#

5/#

50#

5&#

51#

5-#

5%#

5/#

50#

5&#

51#

#

####9) # # # # # # # # # # # ##############:)# # # # # # # # # # # # #############;) #

.%# ./# .0# .&# .1# .-# .2# .3# .4# .%(# .%# ./# .0# .&# .1# .-# .2# .3# .4# .%(#

Figure 1. (a) An [14, 10] RS code where l = 10; (b) An [16, 10] LRC where l = 5 for the local parities p1 and p2 and l = 10 for the global parities
p3, p4, p5 and p6; (c) An [15, 10] BLRC where l = 6 and w = 3

A
v
e
ra
g
e
re
p
a
ir
b
a
n
d
w
id
th

æ æ æ æææ

à

à à à à à

ì

ì ì ì ì ì

ò

ò

ò ò òò

ô

ô

ô ô ô ô

æ @14,10D RS

à @16,10D LRC Xorbas, l=5

ì @16,10D LRC Azure, l=5

ò @15,10D BLRC, l=6, w=3

ô @16,10D BLRC, l=5, w=3

0 1 2 3 4 5 6
4

5

6

7

8

9

10

Number of block failures

Figure 2. Average repair bandwidth for different number of block failures

is given as

P2 =

























c1,11 0 0 0 c1,15 c1,16
0 c2,12 c2,13 0 0 c2,16
0 c3,12 0 0 c3,15 c3,16
0 0 c4,13 c4,14 c4,15 0

c5,11 0 0 c5,14 0 c5,16
0 c6,12 c6,13 c6,14 0 0

c7,11 c7,12 0 c7,14 0 0
c8,11 0 0 c8,14 c8,15 0
0 0 c9,13 0 c9,15 c9,16

c10,11 c10,12 c10,13 0 0 0

























.

We depict the average repair bandwidth for different number of
block failures for the RS, Xorbas LRC, Azure LRC and BLRCs
in Figure 2, under the condition of almost equal MTTDL.
BLRCs achieve an average repair bandwidth that is less than
or equal to the average repair bandwidth with the other codes
in case of a single block failure, while it is always less than
the average repair bandwidth achieved with the other codes in
case of double block failures. Note that the storage overhead is
less with the BLRC compared to the Xorbas LRC when they
achieve the same average repair bandwidth for a single failure.

The next example shows how the repair bandwidth can be
reduced even more, but then the fault tolerance is worse. This
has a direct impact on the reliability, i.e., MTTDL. The parity

part of an [16, 10] code for l = 3 or l = 4 and w = 2 is

P3 =

























c1,11 0 0 0 0 c1,16
0 0 0 c2,14 c2,15 0
0 0 0 c3,14 0 c3,16
0 0 0 0 c4,15 c4,16

c5,11 0 0 c5,14 0 0
0 c6,12 0 0 c6,15 0

c7,11 c7,12 0 0 0 0
c8,11 0 c8,13 0 0 0
0 0 c9,13 0 c9,15 0
0 c10,12 c10,13 0 0 0

























.

When applying this code the average repair bandwidth for a

single block failure is reduced to 3.33, while for double block
failures to 5.22. On the other hand, the fault tolerance is worse
compared to the [16, 10] code for l = 5 and w = 3. Thus, the
MTTDL is reduced from 5.7378× 1014 days to 7.2338× 108

days for an [16, 10] code when l = 5, w = 3 and l = 3.33,
w = 2, respectively.

An overview of the performance metrics for the codes
presented in this Section is given in Table I.

IV. RELIABILITY ANALYSIS

We perform a reliability analysis by calculating the
MTTDL with a Markov model. The authors in [14] report
values from the Facebook cluster and show that the [16, 10]
Xorbas LRC provides significantly longer MTTDL compared
to the [14, 10] RS and 3-replication.

In our analysis, we use the same parameters as in [14]
in order to compare the results. The total size of the cluster
data is C = 30PB and this data is stored in N = 3000
nodes. The mean time to failure of a disk node is 4 years
(=1/λ) and the block size is B = 256MB. The node failures
are independent. The bandwidth for cross-rack communication
for repairs is limited to γ = 1Gbps. Under an [15, 10] code,
each stripe consists of 15 blocks where each block is placed
in different racks to provide a higher fault tolerance. Thus
the total number of stripes in the system is C/(nB) where
n = 15. The MTTDL of a stripe is calculated by using the
Markov model shown in Figure 3. Each state in the Markov
model represents the number of available (non-failed) blocks
(data and parity blocks). The circles denote the states when
the system is up and the squares denote the states when there
is a data loss in the system, i.e., the system is down.

Let λ denotes the failure rate of a single block. The blocks
are distributed in different nodes and the failure rate per node

TABLE I. COMPARISON SUMMARY OF PERFORMANCE METRICS FOR 3-REPLICATION, RS, XORBAS LRC AND BLRCS

Scheme Storage overhead
Avr. repair bandwidth

(single failure)
Avr. repair bandwidth

(double failure)
MTTDL (days)

Update
complexity

3-replication 2x 1x 1x 2.3079 × 1010 3

[14, 10] RS code 0.4x 10x 10x 3.3118 × 1013 5

[16, 10] Xorbas LRC, l = 5 0.6x 5x 10x 1.2180 × 1015 6

[15, 10] BLRC, l = 6, w = 3 0.5x 6x 9x 3.3647 × 1014 4

[16, 10] BLRC, l = 5, w = 3 0.6x 5x 7x 5.7378 × 1014 4

[16, 10] BLRC, l = 3 or 4, w = 2 0.6x 3.33x 5.22x 7.2338 × 108 3

!"# !$# !%# !&# !!# !'#

!'(#!!(#

)#!$!% !& !! !')"# !$#!$ %#% &#& !!#!!

!! !'!(#!

!"λ# !$λ# !%λ# !&λ#*$# !!λ#*"# !'λ#

!&λ#+!,*$-#
!!λ#+!,*"-#

ρ!# ρ&# ρ%# ρ$# ρ"#

Figure 3. Markov model for an [15, 10] code where circles represent the
states when the data can be recovered and squares represent the states when
the data is unrecoverable

is λ. When the state is i, i.e., there are i available blocks in a
stripe, the failure rate is iλ. Consequently, the transition rate
from State 15 to State 14 is 15λ. Since BLRCs are not MDS
codes, there are two possible transitions from State 12. One
of the transitions is to State 11 where there are 4 decodable
failures and the other one is to State 11F which represents
a state with 4 non-decodable failures. The percentage of 4
decodable failures is p4 = 99.2674%. Therefore the transition
rate to State 11 is 12λp4 and to State 11F is 12λ(1−p4). The
same situation happens when transitioning from State 11 to
State 10 and State 10F where p5 = 89.677%. When 6 blocks
are lost, i.e., only 9 blocks are available in State 9, the lost
blocks from the stripe cannot be recovered. That is why State
9 is shown as a down state. The lost blocks from the stripe
are also non-recoverable in the States 11F and 10F.

In the reverse direction ρi denotes the repair rate. The rate
at which a block is repaired depends on the number of down-
loaded blocks (the locality), the block size and the bandwidth
dedicated for repairs. For instance, a repair of any single data
or parity block requires downloading 6 blocks, i.e., ρ1 = γ

6B .
Any two lost blocks are repaired by downloading 9 blocks,
while a repair of more than 2 lost blocks requires a transfer
of 10 blocks. Thus, ρ2 = γ

9B and ρ3 = ρ4 = ρ5 = γ

10B . The
MTTDL of the system is calculated as:

MTTDL =
MTTDLstripe

C/(nB)
. (5)

The MTTDL values for 3-replication, the [14, 10] RS, the
[16, 10] Xorbas LRC and few BLRCs are presented in Table
I. We observe that the fast repair and the high fault tolerance
lead to a high reliability with the [15, 10] and [16, 10] BLRCs.

V. CONCLUSIONS

We defined a new family of balanced locally repairable
codes (BLRCs). A novel property of the codes that we pre-
sented is that there is no strict requirement that the repair

locality is a fixed small number l, and it may be either l or
l+1. Advantageously, this provides the flexibility to construct
BLRCs for arbitrary values of n and k which allows a general
construction of LRCs. The properties of the presented codes
are: low storage overhead, low average repair bandwidth for
a single failure and double failures, high reliability and low
update complexity.

REFERENCES

[1] D. Borthakur, “The hadoop distributed file system: Architecture and
design,” Hadoop Project Website, 2007.

[2] J. Arnold, “Openstack swift: Using, administering, and developing for
swift object storage,” 2014.

[3] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McK-
elvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci et al., “Windows azure stor-
age: a highly available cloud storage service with strong consistency,”
in 23rd ACM Symposium on Operating Systems Principles, 2011, pp.
143–157.

[4] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, “Diskreduce: Raid for
data-intensive scalable computing,” in Proceedings of the 4th Annual
Workshop on Petascale Data Storage, 2009, pp. 6–10.

[5] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in
c/c++ facilitating erasure coding for storage applications-version 1.2,”
Tech. Rep., 2008.

[6] K. Kralevska, D. Gligoroski, R. E. Jensen, and H. Øverby, “Hashtag
erasure codes: From theory to practice,” CoRR, vol. abs/1609.02450,
2016. [Online]. Available: http://arxiv.org/abs/1609.02450

[7] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Transactions
on Information Theory, vol. 56, no. 9, Sept 2010, pp. 4539–4551.

[8] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of
codeword symbols,” IEEE Transactions on Information Theory, vol. 58,
no. 11, 2012, pp. 6925–6934.

[9] F. E. Oggier and A. Datta, “Self-repairing homomorphic codes for
distributed storage systems,” in INFOCOM, 2011, pp. 1215–1223.

[10] D. Papailiopoulos, J. Luo, A. Dimakis, C. Huang, and J. Li, “Simple
regenerating codes: Network coding for cloud storage,” in IEEE INFO-
COM, 2012, pp. 2801–2805.

[11] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for cloud file systems: minimizing I/O for recovery and
degraded reads,” in Proceedings of the 10th USENIX conference on
File and Storage Technologies, 2012.

[12] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems,” in
IEEE International Symposium on Network Computing and Applica-
tions, July 2007, pp. 79–86.

[13] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in windows azure storage,” in USENIX
Annual Technical Conference, 2012, pp. 15–26.

[14] M. Sathiamoorthy, M. Asteris, D. S. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing elephants: Novel
erasure codes for big data,” vol. 6, no. 5, 2013, pp. 325–336.

http://arxiv.org/abs/1609.02450

[15] D. F., F. Labelle, F. I. Popovici, M. Stokely, V. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed storage
systems,” in 9th USENIX Symposium on Operating Systems Design
and Implementation, 2010, pp. 61–74.

[16] T. Miyamae, T. Nakao, and K. Shiozawa, “Erasure code with shingled
local parity groups for efficient recovery from multiple disk failures,”
in 10th Workshop on Hot Topics in System Dependability. USENIX
Association, 2014.

[17] N. Anthapadmanabhan, E. Soljanin, and S. Vishwanath, “Update-
efficient codes for erasure correction,” in 48th Annual Allerton Con-
ference on Communication, Control, and Computing, Sept 2010, pp.
376–382.

[18] M. G. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman et al.,
“Improved low-density parity-check codes using irregular graphs,” IEEE
Transactions on Information Theory, vol. 47, no. 2, 2001, pp. 585–598.

[19] J. Garcia-Frias and W. Zhong, “Approaching shannon performance by
iterative decoding of linear codes with low-density generator matrix,”
IEEE Communications Letters, vol. 7, no. 6, 2003, pp. 266–268.

[20] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally
repairable codes and connections to matroid theory,” in IEEE Interna-
tional Symposium on Information Theory, 2013, pp. 1814–1818.

[21] Y. Wang, J. S. Yedidia, and S. C. Draper, “Construction of high-girth
qc-ldpc codes,” in 5th International Symposium on Turbo Codes and
Related Topics, Sept 2008, pp. 180–185.

[22] D. Gligoroski and K. Kralevska, “Families of optimal binary non-
mds erasure codes,” in IEEE International Symposium on Information
Theory, June 2014, pp. 3150–3154.

	I Introduction
	I-A Our Contribution

	II Definition of Balanced Locally Repairable codes
	III Examples of Code Constructions
	IV Reliability Analysis
	V Conclusions
	References

