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Abstract—We address the use of maximum distance separable
(MDS) codes for distributed storage (DS) to enable efficient
content delivery in wireless networks. Content is stored in a
number of the mobile devices and can be retrieved from them
using device-to-device communication or, alternatively, from the
base station (BS). We derive an analytical expression for the
download delay in the hypothesis that the reliability state of the
network is periodically restored. Our analysis shows that MDS-
coded DS can dramatically reduce the download time with respect
to the reference scenario where content is always downloaded
from the BS.

I. INTRODUCTION

The proliferation of mobile devices and the surge of a myr-
iad of multimedia applications has resulted in an exponential
growth of the mobile data traffic. In this context, wireless
caching has emerged as a powerful technique to overcome
the backhaul bottleneck, by reducing the backhaul rate and
the delay in retrieving content from the network. The key
idea is to store popular content closer to the end users. In
[1], a novel system architecture named femtocaching was
proposed. It consists of deploying a number of small base
stations (BSs) with large storage capacity, in which content
is stored during periods of offpeak traffic. The mobile users
can then download the content from the small BSs, which
results in a higher throughput per user. In [2], it was proposed
to store content directly in the mobile devices. Users can
then retrieve content from neighboring devices using device-
to-device (D2D) communication or, alternatively, from the
serving BS.

In both scenarios content may be stored using an erasure
correcting code, which brings gains with respect to uncoded
caching. The use of erasure correcting codes establishes an
interesting link between distributed caching for content de-
livery and distributed storage (DS) for data storage. The key
difference is that in the wireless network scenario, data can
be downloaded from the storage nodes (the small BSs or the
mobile devices) but also from a serving BS, which has always
the content available. Therefore, the reliability requirements in
DS for data storage can be relaxed. In [3], the placement of
content encoded using a maximum distance separable (MDS)
code to small BSs was investigated and it was shown that
the backhaul rate can be significantly reduced. In [4], for the
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scenario where content is stored in the mobile devices, the
repairing of the lost data when a device storing data leaves
the network was considered. Assuming instantaneous repair,
the communication cost of data download and repair was
investigated. In [5], [6], a repair scheduling where repair is
performed periodically was introduced and analytical expres-
sions for the overall communication cost of content download
and data repair as a function of the repair interval were derived.
Using these expressions, the communication cost entailed by
DS using MDS codes, regenerating codes [7], and locally
repairable codes [8] was evaluated in [5], [6].

In this paper, as in [4]–[6], we consider the scenario where
content is stored in the mobile devices, which arrive and
depart from a cell according to a Poisson random process.
In particular, we assume that content is stored using MDS
codes. Our focus is on the delay of retrieving content from
the network, which was not considered in [4]–[6]. We derive
analytical expressions for the download delay and show that
MDS-encoded DS can significantly reduce the delay with
respect to the case where content is solely downloaded from
the BS.

II. SYSTEM MODEL

We consider a single cell in a cellular network where mobile
devices, referred to as nodes, roam in and out according to a
Poisson random process and request a single file at random
times. The file is stored in a number of the mobile devices
using an MDS code. A copy of the file is also available at the
BS serving the cell.

Nodes arrive according to a Poisson process with exponen-
tial independent, identically distributed (i.i.d.) random inter-
arrival time Ta with probability density function (pdf)

fTa
(t) = Mλe−Mλt, λ ≥ 0, t ≥ 0,

where Mλ is the expected arrival rate of a node and t is time,
measured in time units (t.u.). The nodes stay in the cell for an
i.i.d. exponential random lifetime T` with pdf

fT`
(t) = µe−µt, µ ≥ 0, t ≥ 0,

where µ is the expected departure rate of a node. We assume
that µ=λ, which implies that the expected number of nodes in
the network is M .

We assume that nodes request the file at random times with
i.i.d. random inter-request time Tr with pdf

fTr
(t) = ωe−ωt, ω ≥ 0, t ≥ 0, (1)
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where ω is the expected request rate per node.
The file is partitioned into k packets, called symbols, and is

encoded into n coded symbols using an (n, k) MDS erasure
correcting code of rate R = k/n. The encoded data is stored
into n nodes, referred to as storage nodes, and hence each
storage node stores one symbol. In the rest of the paper, for
ease of language, we will sometimes refer to the set of storage
nodes as the DS network. For simplicity, we assume n�M ,
hence the probability that the number of nodes in the cell is
smaller than n is negligible.

In this work we focus on the download process. Each node
in the cell can request the file and attempts to retrieve it from
the DS network using D2D communication. If the file cannot
be completely retrieved from the storage nodes, the BS assists
in providing the missing coded symbols. Thanks to the MDS
property, the file can be recovered collecting any subset of
k coded symbols. The download of a symbol from a storage
node incurs td t.u., and from the BS tbs t.u.. We assume that
tbs � td due to the congestion of the BS-to-node link and the
fact that D2D communication occurs over a better channel due
to the reduced distance between the involved nodes. We further
assume that only one D2D link at a time can be established,
and that the D2D communication does not interfere with the
communication between the BS and the nodes. Therefore, if
the DS network is not idle, the whole file is downloaded from
the BS. Moreover, to simplify the analysis, we assume that
multiple BS-to-node links can coexist. Here we do not address
the repair problem of restoring the initial state of reliability of
the DS network when storage nodes leave the cell [5], [6]. In
particular, we assume that the BS keeps track of the storage
nodes and repair is performed every ∆ t.u. and, for simplicity,
we assume that incurs no transmission delay. Alternatively,
we can also assume that nodes arriving in the cell can bring
content. This corresponds to the case where the same content
is also stored in mobile devices in adjacent cells. Nevertheless,
they do not join the DS network instantaneously, but the BS
serving the cell periodically updates and broadcasts the list
of storage nodes every ∆ t.u.. Therefore, our model complies
with both cases. Similar to [5], [6], the parameter ∆ is referred
to as the repair interval in the sequel.

III. AVERAGE FILE DOWNLOAD DELAY

Our performance measure is the download time, referred to
as download delay. A node which requests the file is allowed
to use D2D communication only if the DS network is idle.
Therefore, we introduce the binary random variable (RV)
I ∈ {0, 1} which describes the status of the DS network.
I = 1 if the network is idle and I = 0 otherwise. If the DS
network is idle, the requesting node uses D2D communication
to download as many coded symbols as possible (up to k)
from the DS network and turns to the BS to recover possible
missing symbols. If the DS network is occupied, the file is
entirely downloaded from the BS. The average file download
delay, T dw, can then be computed as

T dw = Pr{I = 1}(T η + (k − η)tbs) + Pr{I = 0}k tbs , (2)

where η is the average number of coded symbols downloaded
using D2D communication per request and T η is the cor-
responding delay. In the following, T η is referred to as the
average D2D download delay.

The first step in our derivation is the computation of the
probability that the DS network is idle. Let I(`) be the status
of the network at the time of the `th request. We have

Pr{I = 1} = lim
L→∞

1

L

L∑
`=1

Pr{I(`) = 1}. (3)

In order to compute Pr{I(`) = 1}, we introduce the RV W (j)

that denotes the time instant of the jth request. Also, let T (j)

be the time during which the DS network is occupied by the
jth request. The DS network is idle at the time of the `th
request if none of the previous requests is still using D2D
communication. Therefore, Pr{I(1) = 1} = 1 and

Pr{I(`) = 1}=
∏
i<`

Pr{W (`)>W (`−i)+ T (`−i)}, ` > 1. (4)

Assuming that if the DS network is occupied at time W (`) is
because of the (`− 1)th request, the product in (4) reduces to
the term involving the (`− 1)th request only, i.e.,

Pr{I(`) = 1} ' Pr{W (`) > W (`−1) + T (`−1)} (5)

=

∫ ∞
0

Pr{W (`) > W (`−1) + t}fT (`−1)(t)dt ,

where fT (`−1)(t) is the pdf of T (`−1). Since the requests
are i.i.d. with inter-request time distributed as in (1) and on
average there are M nodes in the cell, we can compute

Pr{W (`) > W (`−1) + t} = e−ωMt , t > 0, ` > 1 ,

and (5) can be written as

Pr{I(`) = 1} ' ET (`−1){e−ωMT (`−1)

}, ` > 1,

where Ex{·} represents the expectation with respect to the
variable x. If ωT (`−1) � 1,

e−ωMT (`−1)

' 1− ωMT (`−1) (6)

and

Pr{I(`) = 1} ' ET (`−1){e−ωMT (`−1)

} '
' ET (`−1){1− ωMT (`−1)}
= 1− ωMT η Pr{I(`−1) = 1}. (7)

In (7), we have used the fact that the average D2D download
delay is independent of the specific request (if ` is sufficiently
large). This result is proven in Lemma 1. Substituting (7) in
(3) and after some simple calculations, we obtain

Pr{I = 1} =
1

1 + ωMT η
.

Note that in the expression above, with some abuse of no-
tation, we use equal sign to avoid carrying all the way the
approximation sign due to the approximations introduced in
(5) and (6).



We now consider the computation of the average D2D
download delay and the average number of coded symbols
downloaded using D2D per request. We assume that a node
cannot download in parallel from multiple nodes, but it serially
tries to download k symbols from the DS network. When a
node requests the file, if the DS network is idle, it randomly
choses one of the storage nodes from the list supplied by
the BS. After each downloaded symbol, the requesting node
randomly choses the next storage node among those belonging
to the list and still alive. We assume that a requesting node that
has collected less than k symbols turns to the BS when all the
reference storage nodes left or when the download of a symbol
fails, even if other storage nodes are available. To simplify
the analysis, we assume that both cases (the failed symbol
download and the absence of storage nodes) incur td t.u., even
if the node could contact the BS earlier. We also assume that
the download from the DS network fails if the requesting node
itself leaves the cell before collecting k symbols. In this case,
the download is also completed from the BS.

The download from the storage nodes can be fully success-
ful or only partially accomplished. In order to describe the
D2D download, we define S1 the binary RV which describes
the success of download at the first attempt. More precisely,
S1 = 1 represents the successful download of the coded
symbol from the first contacted storage node. If download is
not successful from the first contacted storage node, S1 = 0.
Similarly, we define Sj the binary RV describing the download
at the jth attempt and we denote by S[i], i ≥ 1 the random
vector (S1, ..., Si). In the following, 1j represents the all-ones
vector of length j.

According to our model, the requesting node completes the
download of k symbols from the DS network in ktd t.u. with
probability Pr{S[k] = 1k}, while the partial download of j <
k symbols happens with probability Pr{S[j] = 1j , Sj+1 = 0}
and incurs (j + 1)td t.u.. In the computation of the average
D2D download delay, we also consider the case where down-
load from the DS network completely fails. The corresponding
probability is Pr{S1 = 0} and the delay is td. To simplify the
analysis, we do not take into account the fact that the request
may originate from a storage node, i.e., we do not consider
that a storage node needs to download k− 1 symbols instead
of k. Finally, the average D2D download delay T η and the
average number of D2D downloaded symbols η are given by

η =kPr{S[k] = 1k}+

k−1∑
j=1

j Pr{S[j] = 1j , Sj+1 = 0}

T η =td

(
η + Pr{S1 = 0}+

k−1∑
j=1

Pr{S[j] = 1j , Sj+1 = 0}
)
.

In the next section, we derive Pr{S1 = 0}, Pr{S[k] = 1k},
and Pr{S[j] = 1j , Sj+1 = 0}.

IV. PROBABILITY OF D2D DOWNLOAD

In this section, we derive the probability that the content
is fully recovered from the DS network, Pr{S[k] = 1k},

the probability that it is only partially recovered, Pr{S[j] =
1j , Sj+1 = 0}, and the probability that no symbols can be
downloaded from the DS network, Pr{S1 = 0}. We also show
that the average D2D download time T

(`)

η , E{T (`)} does not
depend on the specific request if ` is sufficiently large.

We introduce of the following RVs and events.
• S

(`)
i ∈ {0, 1} is the binary RV describing the successful

symbol download at the ith attempt of the `th request.
• X

(`)
i ∈ {0, . . . , n} is the number of storage nodes

available at the time of the ith attempt of the `th request,
i.e., the available storage nodes not yet contacted. In [5],
it was shown that the probability that there are x1 storage
nodes at the instant of the `th request, X(`)

1 = x1, does
not depend on ` (when ` grows large), and is given by

Pr{X(`)
1 = x1} =

1

∆

n∑
i′=x1

1− pi′
µi′

n∏
j=x1

j 6=i′

j

j − i′
− 1

∆

n∑
i′=x1+1

1− pi′
µi′

n∏
j=x1+1
j 6=i′

j

j − i′
,

where µi′ = i′µ and p′i = e−µi′∆.
To ease notation in the remainder of the paper, we define
h(x1) , Pr{X(`)

1 = x1}.
• F

(`)
i ∈ {0, . . . , n} is the number of departures in td t.u.

among the X
(`)
i storage nodes available at the time of

the ith attempt of the `th request. We are interested in
the probability Pr{F (`)

i = f |X(`)
i = x}. Its derivation is

similar to that of Pr{X(`)
1 = x1}. We obtain

Pr{F (`)
i = f |X(`)

i = x} =
x∑

i′=x−f

e−µi′ td

x∏
j=x−f
j 6=i′

j

j − i′
−

x∑
i′=x−f+1

e−µi′ td

x∏
j=x−f+1
j 6=i′

j

j − i′
.

The probability above is independent of ` and i and we
define g(f, x) , Pr{F (`)

i = f |X(`)
i = x}. It follows that

g(f, x) = 0 if f > x and g(0, 0) = 1.
• D(`) is the departure time of the node which places the
`th request.

• A(`)
i = {D(`) −W (`) > itd} is the event that the node

which places the `th request stays in the network for
more than itd t.u. from the start of the download. The
corresponding probability does not depend on ` and is
given by

Pr{A(`)
i } = e−iµtd .

We define ai , Pr{A(`)
i }.

• B(`)
i = {(i−1)td < D(`)−W (`) < itd} is the event that

the node which places the `th request departs after the
(i − 1)th download attempt but before the ith one. The
probability of this event is

Pr{B(`)
i } = e−(i−1)µtd(1− e−µtd)

and is independent of `. We define bi , Pr{B(`)
i }.

In the following, the probabilities Pr{S(`)
j |X

(`)
j , F

(`)
j ,A(`)

j }
are computed by ignoring the fact that the download request



may originate from a storage node itself. The goodness of this
approximation for the considered scenarios has been validated
through computer simulations.

A. No Symbol is Downloaded

We first consider Pr{S1 = 0}, which is given by

Pr{S1 = 0} = lim
L→∞

1

L

L∑
`=1

Pr{S(`)
1 = 0} ,

and compute Pr{S(`)
1 = 0}. The recovery of the first symbol

fails if the requesting node leaves the cell before completing
the download. It also fails if the requesting node stays in the
cell but no storage nodes are available or if it chooses to
download from a storage node which departs before tn t.u.
from the start of the download. Therefore,

Pr{S(`)
1 = 0} =

Pr{S(`)
1 = 0|B(`)

1 }Pr{B(`)
1 }+ Pr{S(`)

1 = 0|A(`)
1 }Pr{A(`)

1 }

= b1 + a1

∑
x1f1

Pr{S(`)
1 = 0|X(`)

1 = x1, F
(`)
1 = f1,A(`)

1 }·

· Pr{F (`)
1 = f1, X

(`)
1 = x1|A(`)

1 } . (8)

The joint probability mass function of the number of storage
nodes available for download and the number of storage nodes
that depart before W (`) + td is independent of the departure
time of the requesting node (note that this is an approximation
if the requesting node is a storage node). Hence, we have

Pr{F (`)
1 = f1, X

(`)
1 = x1|A(`)

1 } =

Pr{F (`)
1 = f1|X(`)

1 = x1}Pr{X(`)
1 = x1} = h(x1)g(f1, x1) .

The probability Pr{S(`)
1 = 0|X(`)

1 = x1, F
(`)
1 = f1,A(`)

1 } is
equal to 1 if there are no storage nodes available, i.e., x1 =
0. Otherwise, it equals the probability to choose one of the
f1 storage nodes that leave the cell in td t.u., i.e., f1/x1,
with f1 ≤ x1. Since the probabilities involved in (8) are all
independent of `, we finally have

Pr{S1 = 0} = b1 +a1h(0) +a1

n∑
x1=1

x1∑
f1=0

f1

x1
h(x1)g(f1, x1) .

B. Partial and Complete Download

To evaluate the probability that k symbols are downloaded
from the DS network, we start with the following limit

Pr{S[k] = 1k} = lim
L→∞

1

L

L∑
`=1

Pr{S(`)
[k] = 1k} .

We consider the `th request and, similarly to the previous case,
we will find that this probability is independent of `. We have

Pr{S(`)
[k] = 1k} =

∑
xf

Pr{S(`)
[k] = 1k, X

(`)
k = x, F

(`)
k = f}

=
∑
xf

Pr{S(`)
k = 1|X(`)

k = x, F
(`)
k = f,A(`)

k }ak·

· Pr{F (`)
k = f,X

(`)
k = x,S

(`)
1,k−1 = 1k−1} .

The probability Pr{S(`)
k = 1|X(`)

k = x, F
(`)
k = f,A(`)

k } for
x > 0 and f < x equals the probability to choose one of the
storage nodes that stay in the cell, i.e., x−fx .

We now evaluate the probability Pr{F (`)
j = f,X

(`)
j =

x,S
(`)
1,j−1 = 1j−1} for j > 1, which will be also used for

the computation of the probability of partial D2D download.
For f ≤ x, we have the following recursion

Pr{F (`)
j = f,X

(`)
j = x,S

(`)
1,j−1 = 1j−1} =

g(f, x) Pr{X(`)
j = x,S

(`)
1,j−1 = 1j−1} =

g(f, x)
∑
x′f ′

Pr{X(`)
j = x|X(`)

j−1 = x′, F
(`)
j−1 = f ′, S

(`)
j−1 = 1}·

· Pr{S(`)
j−1 = 1|F (`)

j−1 = f ′, X
(`)
j−1 = x′,S

(`)
1,j−2 = 1j−2}·

· Pr{F (`)
j−1 = f ′, X

(`)
j−1 = x′,S

(`)
1,j−2 = 1j−2} . (9)

We define N(x, x′, f ′) , Pr{X(`)
j = x|X(`)

j−1 = x′, F
(`)
j−1 =

f ′, S
(`)
j−1 = 1}, which is equal to one if x = x′−f ′−1 and x′ >

f ′, and zero otherwise. The condition x = x′− f ′−1 follows
from the fact that the number of available storage nodes after a
successful symbol download is equal to the number of storage
nodes still alive, x′ − f ′, minus the storage node just used.
The condition x′ > f ′ comes from the fact that the (j − 1)th
symbol download is assumed to be successful.

It is easy to prove by induction that the probability (9)
does not depend on ` . By defining γj(x, f) , Pr{F (`)

j =

f,X
(`)
j = x,S

(`)
1,j−1 = 1j−1}, we obtain the following

recursion for j > 1,

γj(x, f)=g(f, x)aj−1

n∑
x′=1

x′∑
f ′=0

x′ − f ′

x′
N(x, x′, f ′)γj−1(x

′, f ′)

with initial condition γ1(x, f) = h(x)g(f, x). The probabili-
ties γj(x, f), j ≥ 1, are equal to zero for f > x.

Finally, the probability of complete download from the DS
network is

Pr{S[k] = 1k} = ak

n∑
x=1

x∑
f=0

x− f
x

γk(x, f) .

Following a similar approach, we can compute the proba-
bility of partial download,

Pr{S[j] =1j , Sj+1 = 0} = γj+1(0, 0)+

+

n∑
x=1

x∑
f=0

(
1− x− f

x
aj+1

)
γj+1(x, f) .

The results above allow also to prove the following lemma.

Lemma 1. The average D2D download time for the `th
request, T

(`)

η , is independent of the specific request if the index
` is sufficiently large.
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Figure 1. Ratio between the file download delay without D2D communication
and that of the scenario using MDS-coded DS. tbs = 10td.

Proof: Similarly to the average D2D download delay, T
(`)

η

is

T
(`)

η =ktd Pr{S(`)
[k] = 1k}+ td Pr{S(`)

1 = 0}+

+

k−1∑
j=1

(j + 1)td Pr{S(`)
[j] = 1j , S

(`)
j+1 = 0} [t.u.] .

The Lemma follows from the fact that the probabilities in the
expression above are independent of `, when ` grows large.

V. RESULTS

In this section, we consider the performance of a wireless
network with M = 30 nodes, departure rate µ = 1, and request
rate ω = 0.02. We compare the average file download delay of
the considered network with MDS-coded DS with the delay of
the traditional scenario where the content is solely downloaded
from the BS. We consider several (n, k) MDS codes and also
an uncoded scenario where one storage node in the cell stores
the file. We denote by Tref = ktbs the delay incurred in the
traditional scenario, and we fix Tref = 1 t.u..

In Figs. 1–3, we show the gain that can be achieved using
MDS-coded DS, by reporting the ratio between Tref and T dw

as a function of the repair interval. In Fig. 1, 2, and 3, td is
10, 100, and 1000 times, respectively, smaller than tbs. The
results clearly show that MDS-coded DS can greatly improve
the performance in terms of content download delay, provided
that the update interval, ∆, is sufficiently small.

VI. CONCLUSIONS

We considered the application of MDS-coded distributed
storage to wireless networks and computed the average file
download delay when users are allowed to use device-to-
device communication. MDS-coded DS can dramatically re-
duce the download delay with respect to the traditional case
where content is always downloaded from the base station.
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Figure 2. Ratio between the file download delay without D2D communication
and that of the scenario using MDS-coded DS. tbs = 100td.
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Figure 3. Ratio between the file download delay without D2D communication
and that of the scenario using MDS-coded DS. tbs = 1000td.
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