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Abstract—Polar codes are a recent family of error-correcting
codes with a number of desirable characteristics. Their disruptive
nature is illustrated by their rapid adoption in the 5th-generation
mobile-communication standard, where they are used to protect
control messages. In this work, we describe a two-stage system
tasked with identifying the location of control messages that
consists of a detection and selection stage followed by a decoding
one. The first stage spurs the need for polar-code detection
algorithms with variable effort to balance complexity between
the two stages. We illustrate this idea of variable effort for
multiple detection algorithms aimed at the first stage. We propose
three novel blind detection methods based on belief-propagation
decoding inspired by early-stopping criteria. Then we show
how their reliability improves with the number of decoding
iterations to highlight the possible tradeoffs between accuracy
and complexity. Additionally, we show similar tradeoffs for a
detection method from previous work. In a setup where only one
block encoded with the polar code of interest is present among
many other blocks, our results notably show that, depending on
the complexity budget, a variable number of undesirable blocks
can be dismissed while achieving a missed-detection rate in line
with the block-error rate of a complex decoding algorithm.

I. INTRODUCTION

Adaptive modulation and coding (AMC) is an effective tech-
nique that is used by most modern communications systems in
order to adapt the information-data rate of the system to the
conditions of the wireless channel over which transmission
takes place. The AMC information is transmitted over a
dedicated control channel, which commonly uses a restricted
number of modulation and coding combinations. However, in
recent standards substantial amounts of control data have to be
transmitted so that AMC techniques are also used for the con-
trol channel. To avoid using an additional control channel for
the control channel, blind detection techniques are commonly
employed to determine if control messages are present. The
location of control messages along with their code parameters
need to be blindly detected. The blind code detection task has
been shown to be NP-hard in general [1], [2], so that heuristic
algorithms are used in practice. For example, various methods
have been proposed for the blind detection of Hamming and
BCH codes (e.g., [3], [4] and references therein), convolutional
codes (e.g., [5], [6] and references therein), Turbo codes (e.g.,
[7], [8] and references therein), and LDPC codes (e.g., [9], [10]
and references therein). However, so far, the blind detection of
polar codes, which were recently included in the 5G standard,
has received little attention [11]–[13].

M-1 B-1

Detection &
Pre Selection

Decoding

0
1

...

0

...

Fig. 1. Overall system with detection stage and decoding stages.

We are interested in the following blind detection scenario.
We are given a set of M received noisy blocks of length N ,
out of which exactly one originates from a codeword of a
particular polar code C, while the remaining blocks originate
from random i.i.d. bit-sequences of length N (that models data
that is not of interest and encoded by some other code). The
relevant polar codes used in 5G are concatenated with a cyclic
redundancy check (CRC). Thus, we could attempt to decode
all M received blocks with a powerful decoding algorithm
(e.g., successive-cancellation list (SCL) decoding) and to use
the CRC to identify the block that was actually encoded
using the polar code C with high probability. However, this
approach has a high complexity and existing methods [11]–
[13] consider a two-step approach, where a low-complexity
algorithm is first used to discard some candidate blocks and
only B < M candidate blocks are passed on to the high-
complexity decoding algorithm as illustrated in Fig. 1.

Contributions: In this paper, we present blind polar-code
detection methods that enable the fine-grained adjustment of
the tradeoff between the missed-detection rate (MDR) and
complexity, where the complexity is determined by the effort
spent on the detection-metric calculations and the number of
retained candidates in the first and second stage, respectively.
To this end, we present new polar-code detection algorithms
based on belief-propagation (BP) decoding of polar codes by
adapting early-stopping criteria developed for BP decoding for
the purpose of detection. Using the newly proposed algorithms
as well as a detection algorithm from [13] (with a slight mod-
ification that enables complexity-performance tradeoffs), our
simulation results show that good accuracy can be achieved
with a significant reduction in complexity.

Outline: The remainder of this paper starts with Section II
that provides background on the construction, decoding, and
detection of polar codes. In Section III, we describe three
detection methods based on BP decoding. Then, we explore
the various tradeoffs between detection accuracy and com-
plexity that can be achieved with the proposed algorithms in
Section IV. Finally, Section V concludes this paper.
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II. BACKGROUND

In this section, we provide some background on the con-
struction of polar codes, and on the successive-cancellation
(SC), fast simplified SC (fast-SSC), and BP decoding algo-
rithms. We also briefly describe an existing fast-SSC-based
blind detection method for polar codes.

A. Construction of Polar Codes

Polar codes are linear block codes with a structured N ×N
generator matrix G [14]. Specifically, we have:

G =

[
1 0
1 1

]⊗n
, (1)

where n = log2N , and ⊗n denotes the n-fold Kronecker
product. Let A ⊆ {0, . . . , N − 1} and let Ac, referred to
as the frozen-bit set, denote the complement of A. Then,
encoding of a 1×N polar codeword is performed as x = uG,
where uA contains information bits and uAc = 0. Due to
the particular structure of the generator matrix defined in
(1) and the associated decoding algorithm described in the
following section, the different bit locations in u have different
reliabilities. The set A for a polar code of rate R = K

N is
chosen to contain the K most reliable bit positions [14].

B. Decoding Algorithms

1) SC and Fast-SSC Decoding: SC decoding traverses a
data-dependency graph (DDG) [14] and produces a vector of
decision log-likelihood ratios (LLRs) α that is used to produce
an estimate of u, denoted by û, as follows:

ûi = δu(αi) =

0, if i ∈ Ac,
0, if i ∈ A and αi ≥ 0,
1, if i ∈ A and αi < 0.

(2)

Fast-SSC decoding reduces the decoding latency of SC de-
coding by exploiting the structure of certain subgraphs in the
DDG. These subgraphs correspond to constituent sub-codes of
the polar code that can be decoded efficiently (and often in a
single time step) by specialized decoding algorithms [15].

2) BP Decoding: BP decoding uses message passing on the
factor graph defined by the generator matrix of a polar code.
This factor graph has practically identical structure with the
DDG used for SC decoding, with the main difference between
the two algorithms being the scheduling of messages and the
fact that in BP decoding all messages are soft (i.e., LLRs)
while a significant part of SC decoding uses hard (i.e., 0 or 1)
messages. BP decoding at iteration I consists of a right-to-left
(or channel-to-information) pass which produces a vector of
decision LLRs αI for the information vector u, followed by a
left-to-right (or information-to-channel) pass which produces
a vector of decision LLRs βI for the codeword vector x.
Similarly to SC decoding, αI can be used to produce estimates
for u using (2), while βI can be used to produce estimates
for x as follows:

x̂Ii = δx(β
I
i ) =

{
0, if βI

i ≥ 0,
1, if βI

i < 0.
(3)

A detailed description of BP decoding can be found in [16].

C. Fast-SSC-Based Blind Detection of Polar Codes

In this section, we briefly summarize an algorithm that we
proposed in previous work [13]. This method is based on fast-
SSC decoding [15], where a detection metric is calculated
with update rules that exploit the inherent structure of the
constituent codes that compose a polar code. In this fast-SSC-
based method, a detection metric Dt is initialized to D0 = 0
and is progressively updated as more and more leaf nodes
in the decoder tree are visited. A threshold on the detection
metric can then be set in order to decide whether a polar-
encoded codeword is present or not. A straightforward way
to adapt this method in order to obtain various tradeoffs
between detection accuracy and calculation effort is to visit
only a limited number of nodes in the decoder tree instead
of traversing the entire tree, and this is the method we use to
obtain the results in Section IV.

In [13], detection-metric calculations are proposed for three
constituent-code types: rate-0 codes, Repetition codes, and
single-parity-check (SPC) codes. In this work, we initially
used all three types but owing to its single parity bit, as
opposed to the rate-0 and Repetition codes, SPC codes are
the least reliable code of the three. As will be shown in
Section IV, it may be beneficial not to update the detection
metric after visiting an SPC node. For a detailed description
of the detection-metric calculations, we refer the reader to [13].

III. BP-BASED BLIND DETECTION

Existing blind detection methods for polar codes use vari-
ants of SC decoding for detection [11]–[13]. Due to the
stringent latency requirements for blind detection imposed
by the 5G standard, blind detection methods based on BP
decoding are of interest for the first stage because BP decoding
is highly parallelizable and its complexity can be scaled easily
by changing the number of performed iterations. Thus, in this
section we propose three novel blind detection methods for
polar codes based on BP decoding that are inspired by early-
stopping criteria found in the literature [16]–[21]. BP decoding
refines the reliabilities of the LLRs at each iteration, a property
that all proposed methods exploit.

A. Method 1: Tracking of Decision-LLR Signs

Under BP decoding, decodable noisy polar-encoded blocks
should converge to some codeword as the number of iterations
increases. Thus, the signs of the decision LLRs are expected
to gradually stabilize, meaning that an increasing number of
decision LLRs should have the same signs between different
iterations. This fact can be exploited in order to define the
following metric for blind BP-based detection of polar codes:

DI
LS =

∣∣{i ∈ {0, . . . , N − 1} : sign
(
αI
i

)
= sign

(
αI−1
i

)}∣∣ ,
(4)

where αI
i is the decision LLR at bit location i at iteration I ,

and αI−1
i is the decision LLR for the same bit location but at

iteration (I−1). In words, DI
LS is the number of decision-LLR

signs that remained unchanged in-between iteration I and the
one preceding it.



B. Method 2: Frozen-Bit Set Inspection

By construction of the polar code, we know that ui = 0
for i ∈ Ac. As such, even though the frozen channels are
the least-reliable channels, one would expect that, as BP
decoding converges, an increasing number of decision LLRs
corresponding to frozen-bit locations should become non-
negative. Using this observation, we can define the following
metric for blind BP-based detection of polar codes:

DI
FS =

∣∣{i ∈ Ac : αI
i ≥ 0

}∣∣ , (5)

where αI
i is the decision LLR at bit location i at iteration

I . In words, DI
FS is the number of non-negative frozen-bit

decision-LLR signs at iteration I .

C. Method 3: Decision-Vector Re-Encoding

In BP decoding, the right-to-left pass performs decoding,
while the left-to-right pass is similar to soft encoding of the
decision LLRs obtained with the right-to-left pass. For this
reason, as BP decoding converges, one would expect the re-
encoded version of the decision vector ûI to become equal
to the decision vector x̂I obtained with (3), i.e., by taking
hard decisions on the right-hand-side LLRs of the BP graph.
In other words, if decoding is successful, we should have
ûIG = x̂I , and we can use this property in order to define the
following metric for blind BP-based detection of polar codes:

DI
RE =

∣∣{i ∈ {0, . . . , N − 1} : x̃Ii = x̂Ii
}∣∣ , (6)

where x̃I = ûIG. In words, DI
RE is equal to the number of

bit positions of x̃Ii and x̂Ii that agree at iteration I .

IV. ACURRACY VS COMPLEXITY

In this section, we quantify the accuracy of various detection
methods by plotting the missed-detection rate (MDR) as a
function of the number of candidates B passed to the second
stage, i.e., to an SCL decoder.

A. System Setup

Inspired by the LTE standard [22] and by the discussions
that took place at the 3GPP RAN1 meetings towards the cre-
ation of the next-generation mobile-communication standard
(5G), we examine the performance for control messages that
consist of a 16-bit identifier, an 8-bit payload, leading to a
total of K = 24 information bits, and a CRC of C = 16
bits. These control messages are encoded using a polar code
of rate R = K+C

N , where N = 256. The actual information
rate of this scheme is Rinf =

K
N and all Eb/N0 values in the

simulations are calculated using Rinf.
For reference, the block-error rate (BLER) for a polar code

with N = 256, K = 24, and C = 16 decoded with the
SC, SCL, and BP decoding algorithms is illustrated in Fig. 2.
All simulation results are given for random codewords, BPSK
modulation, and an AWGN channel. The 16-bit CRC used
has the generator polynomial z16 + z12 + z5 + 1. We use a
scaled-min-sum version of the BP decoding algorithm with a
flooding schedule and a scaling factor of 0.9375. Results are
for at least 50 000 blocks and until a minimum of 500 blocks in
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Fig. 2. Error-correction performance of a polar code with N = 256, K = 24,
and C = 16 under various decoding algorithms.

error were found for each Eb/N0 point. From Fig. 2, it can be
seen that the BLER after 15 iterations of scaled-min-sum BP
decoding is nearly identical to that of SC decoding. Increasing
the number iterations from 15 to 50 provides a coding gain
little under 0.25 dB at a BLER of 10−2. At a BLER of 10−3,
compared to the other simulated decoding algorithms, CRC-
aided SCL decoding provides coding gains of approximately
0.8 dB and 1.5 dB, with list sizes L ∈ {2, 4}, respectively.

The parameters mentioned above, used for the BLER sim-
ulations, also apply for the accuracy simulations, where the
accuracy is expressed in terms of the MDR as a function
of the number of retained candidates. Furthermore, a set of
M = 44 blocks are generated per trial among which only one
is encoded with the expected polar code while the remaining
ones contain random i.i.d. bit-sequences, and simulations are
for 100 000 trials. The results are for an Eb/N0 value that
corresponds to a BLER of 10−2 (i.e., the beginning of the
region of interest for wireless communications) under CRC-
aided SCL decoding with a maximum list size L = 2. We
define a missed detection as the event where a block has been
encoded with the expected polar code, its noisy realization is
decodable, and the detection method failed to rank it among
the B-best candidates (i.e., the candidates that would be passed
to the decoder).

B. BP-Based Detection

In Fig. 3, we show the MDR of the BP-based methods,
described Section III, as a function of the number of candidates
passed to the decoding stage for various number of iterations.
For these methods, the detection complexity of the first stage
increases as a function of the number of decoding iterations I .
It should be noted that method 1 is relying on the tracking of
decision-LLR signs in-between two iterations, meaning that at
least two decoding iterations are required.

In Fig. 3, we can observe that the number of performed BP
iterations greatly affects the number of candidates that need
to be passed to the second stage in order to achieve a given
MDR. For example, at a fixed MDR of 10−1, for method 1 the
required number of retained candidates B quickly drops from
40 to 20, from iterations I = 2 and I = 3, then to M = 6 at
iteration I = 4. Furthermore, although the difference in terms
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(a) Method 1: Tracking of Decision-LLR Signs
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(b) Method 2: Frozen-Bit Set Inspection
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(c) Method 3: Decision-Vector Re-Encoding

Fig. 3. BP-Based Detection: MDR as a function of the number of retained candidates B for a polar code with N = 256, K = 24, and C = 16.

of error-correction performance between 15 and 50 iterations
of BP decoding is small, as illustrated in Fig. 2, the effect
on detection accuracy is significant. The most extreme case
is with method 3, illustrated in Fig. 3c, where it can be seen
that for B = 4 retained candidates, increasing I from 15 to 50
reduces the MDR from little under 2×10−2 down to 4×10−3.

To keep the complexity of the first stage low while achieving
an MDR of 10−2, the BP-based methods were found to require
I = 5, I = 3, and I = 7 iterations for method 1, method 2,
and method 3, respectively, to pass no more than 3/4 of the
M = 44 candidates (i.e., 33 candidates) to the high-complexity
SCL decoder of the second stage. For the same MDR, all three
methods are shown to be capable of dismissing at least half
of the candidates within I = 15 iterations, where method 2
even manages to keep no more than 1/4 of the candidates. We
also observe that, for all BP-based methods, increasing the
number of iterations leads to diminishing returns. Comparing
the curves of methods 2 and 3, we note that their slopes greatly
differ. This hints that these methods may have different use
cases, e.g., for an MDR of 10−2 method 2 is quickly capable of
dismissing candidates whereas method 3 appears more suitable
to iteratively reduce the MDR at a fixed and small number of
retained candidates.

C. Fast-SSC-Based Detection

In Fig. 4, we show the MDR of the fast-SSC-based method,
described in Section II, as a function of the number of
candidates passed to the decoding stage for various number
visited leaf nodes. For that method, the detection complexity
of the first stage increases as a function of these visits. For
readability, the number of visited leaf nodes t in Fig. 4 is
only increased when a leaf node used in the detection-metric
calculations is visited, e.g., visiting a rate-1 node leaves the
detection metric unchanged and is thus not accounted for in
the value of t shown in the plots.

Two plots for the fast-SSC-based method are presented in
Fig. 4. The left-hand-side one, Fig. 4a, shows the accuracy

of the detection metric when all update rules proposed in our
previous work [13] are used, where the dashed curves are the
result of updates by a SPC node. The right-hand-side one,
Fig. 4b, shows the accuracy of the same method when SPC
nodes are excluded, i.e., when [13, Eq. (4)] is not applied.

Looking at Fig. 4a, a certain number of crossovers between
curves for different values of t can be observed, hinting that at
least one update rule may be detrimental to the accuracy. The
first such crossover occurs when t increases from 5 to 6. The
update applied at t = 6 corresponds to an SPC node. Fig. 4b
shows the accuracy of the same method where that update rule
is excluded. From that figure it can be seen that all curves
follow the same trajectory, there is no sudden change of slope
anymore. Under SC-based decoding, the BLER of that polar
code at the Eb/N0 of interest is approximately 5× 10−2. Our
hypothesis is that at such a high BLER, the SPC nodes are
too unreliable to be beneficial for detection.

For a MDR of 10−2, the fast-SSC-based method is able to
dismiss over a quarter of the M = 44 candidates with a t as
small as 3. Excluding the SPC metric updates and visiting at
least 12 of the 14 contributing nodes, 40 of the 44 candidates
can be dismissed while achieving the same MDR. Fig. 4b also
shows that a quarter of the candidates can be dismissed with
a 10−3 MDR by visiting at least 6 of the 14 the nodes that
update the detection metric.

D. Hardware Implementation Considerations
The hardware-implementation complexity of all proposed

methods is largely dominated by that of the underlying
decoder. Comparing the complexity of BP-based methods
against that of the fast-SSC one is challenging as the nature
of their respective decoders can significantly vary. However,
comparing the overhead of the BP-based methods against each
other, method 1 requires the storage of N decision-LLR signs,
and N comparisons. Method 2, on the other hand, is the least
complex, requiring only (N −k) comparisons. Lastly, method
3 requires N comparisons and additional circuitry to carry out
the hard re-encoding step.
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Fig. 4. Fast-SSC-Based Detection: MDR as a function of the number of retained candidates B for a polar code with N = 256, K = 24, and C = 16.

V. CONCLUSION

In this paper, we described a two-stage system tasked
with the location of control messages encoded with polar
codes, where the first stage calculates a detection metric and
selects a set of candidates to be passed to a second stage
consisting of a high-complexity decoder. The key to enable
complexity-performance tradeoffs is to have a first stage which
progressively computes and refines a metric which is then used
for pre-selecting a set of candidates that should be passed on
to the second stage. More steps in the first stage provide a
better metric that allows for reliably excluding more candidates
from the second stage, but they also add complexity to the
first stage. In this paper we presented multiple algorithms to
implement the first stage, three of them are based on belief-
propagation (BP) decoding, whereas the fourth is derived from
fast-SSC [13]. In the first three methods, each step involves a
refinement of the channel and codeword log-likelihood ratios
using the BP decoding algorithm followed by a simple metric
calculation derived from early-termination criteria. For the
fourth method, the metric itself is calculated and refined in
steps based on intermediate results of the decoding algorithm
presented in [13].
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