
Gradient Descent Bit-Flipping Decoding with
Momentum

Valentin Savin, CEA-LETI, Université Grenoble Alpes, France (valentin.savin@cea.fr)

Abstract—In this paper, we propose a Gradient Descent Bit-
Flipping (GDBF) decoding with momentum, which considers past
updates to provide inertia to the decoding process. We show
that GDBF or randomized GDBF decoders with momentum may
closely approach the floating-point Belief-Propagation decoding
performance, and even outperform it in the error-floor region,
especially for graphs with high connectivity degree.

I. INTRODUCTION

Bit-Flipping (BF) is the simplest form of iterative decoding
for codes defined by bipartite graphs, requiring only one 1-
bit message per graph node, and per iteration. Compared
to message-passing (MP) decoders – exchanging multi-bit
extrinsic messages along the graph edges – BF yields a
significant reduction of the computational time and space
complexity. As one may expect, this complexity reduction
comes at the price of a significant degradation of the error
correction performance. BF decoding was already introduced
by Gallager in his seminal paper [1], as a very first example of
simple, but poor performance approach to iterative decoding.
Probabilistic decoding came then into play, latter reformulated
in terms of Belief-Propagation (BP), paving the way for
many MP decoders subsequently proposed in the literature.
In a sense, the original BF decoding has been relegated to a
secondary (and for many years almost inexistent) role.

However, the emergence of massive data rate communica-
tions over the last few years, has motivated a renew of interest
for BF or BF-based decoding, seen as a possible approach
towards meeting the very stringent requirements in terms of
throughput/latency and energy efficiency. It is worth men-
tioning here the reformulation of BF decoding as a gradient
descent solution to an optimization problem, proposed in [2].
The corresponding decoding algorithm, referred to as Gradient
Descent Bit-Flipping (GDBF), is appealing in practice due to
its simplicity, and since it answers an optimization problem
that may, in principle, yield a solution to the ML decoding
problem (see Section II). However, its main drawback is that
it suffers from many local optimum traps, due to the high non-
linearity of the objective function. Therefore, even if GDBF
performs significantly better than the original BF decoding
proposed by Gallager, or other variants of the BF decoding
proposed in the literature, its performance is still behind that
of more powerful MP decoders, such as BP or Min-Sum (MS).

The current solution to further improving the GDBF de-
coding performance relies on randomization. To some extent,

This work was partially supported by the French Agence Nationale de la
Recherche (ANR), under grant number ANR-15-CE25-0006 (NAND project),
and by the IPCEI programme of the European Commission, and the French
Minister of Finance through DGE organization.

the approach is reminiscent of noisy decoders, intensively
investigated in the literature over the last years [3]–[6]. The
difference between noisy and randomized decoders is that in
the former case, noise is an external aggression that perturbs
the decoding operations, while in the latter case, noise (or
strictly speaking, randomness) has desired statistical properties
and is an integral part of decoding operations. Moreover, it has
been recently shown in the literature that randomness allows
GDBF decoders to escape from local optima, thus improving
their error correction performance. Randomized versions of the
GDBF decoder – e.g., Probabilistic GDBF (PGDBF) [7] and
Noisy GDBF (NGDBF) [8] – have been shown to considerably
narrow the gap to more powerful MP decoders. It is worth
noting that both PGDBF and NGDBF introduce randomness
in the bit flipping rule, and they carry strong similarities to
each other. The PGDBF is however a hard-decision decoding
algorithm, thus it mainly applies to the binary symmetric
channel (BSC) model, while NGDBF applies to more general
soft-output channels.

In this paper, we investigate alternative approaches to fur-
ther improve the GDBF decoding performance, inspired by
techniques used in gradient descent optimization. We propose
a GDBF decoding with momentum, which considers past up-
dates to provide inertia to the decoding process. We show that
GDBF or randomized GDBF decoders with momentum may
closely approach the floating-point BP decoding performance,
and even outperform it in the error-floor region, especially for
graphs with high degree of connectivity.

II. RANDOMIZED GDBF DECODERS

We consider an LDPC code defined by a bipartite (Tanner)
graph H , with N variable-nodes (corresponding to coded bits)
and M check-nodes (corresponding to parity-check equations).
We denote by H(n) the set of check-nodes connected to a
variable-node n = 1, . . . , N , and by H(m) the set of variable-
nodes connected to a check-node m = 1, . . . ,M . We assume
either a binary symmetric channel (BSC), or a binary-input
additive white Gaussian noise (AWGN) channel. For simplic-
ity with shall assume that in both cases the input alphabet
of the channel is {−1,+1}, thus transmitted codewords take
values in {−1,+1}N rather than {0, 1}N . The maximum
likelihood (ML) decoding is equivalent to finding a codeword
x = (x1, . . . , xN), having the maximum correlation with the
received word y = (y1, . . . , yN). Let E(x) be the objective
function, also referred to as energy function, defined by:

E(x)
∆
= α

N∑
n=1

xnyn+

M∑
m=1

∏
n∈H(m)

xn, ∀x ∈ {−1,+1}N (1)

ar
X

iv
:2

20
4.

02
35

9v
2

 [
cs

.I
T

]
 2

 M
ay

 2
02

2

The first term of the objective function is the correlation
between x and y (omitting the multiplicative coefficient α),
while the second term is the sum of the (bipolar) syndromes
of x. The multiplicative coefficient α > 0 controls the
contribution of the correlation term to the objective function.
Clearly, the second term is maximized (equal to M) for any
codeword x. Hence, if the vector x maximizing E(x) is a
codeword, it is necessarily the ML decoding solution.

The approach in [2] is to maximize E(x) (or minimize
−E(x)) by using a variant of the gradient descent method,
known as coordinate descent: an iterative algorithm that suc-
cessively minimizes along coordinate directions (xn). It turns
out that the corresponding decoding algorithm is a variant of
the BF decoding, referred to as Gradient Descent BF (GDBF).
It consists of flipping the bits with lowest local energy values,
where the local energy of a bit xn, denoted by En(x), is
defined as:

En(x)
∆
= αxnyn +

∑
m∈H(n)

∏
n′∈H(m)

x′n (2)

We shall simply denote En
∆
= En(x), when no confusion is

possible. Thus, at each decoding iteration, the set of bit-flips
is given by

F ∆
= {xν | Eν ≤ Eth}, (3)

where Eth is a threshold value, referred to as inversion
threshold. For the BSC model, it has been proposed in [7]
to use Eth = Emin

∆
= minn=1,...,N En, meaning that the

set F contains the bits minimizing the local energy value
(at each iteration). In this work, we use Eth = Emin + δ,
where δ is a predetermined value. We shall use δ = 0 for
the BSC (or discrete-output channels), but δ > 0 for the
AWGN channel (or continuous-output channels). According
to the above description, GDBF is a multi-bit flip decoder, as
multiple bits can be flipped at each iteration.

To escape from local minima, the PGDBF decoder [7]
integrates a random perturbation of the bit-flip rule, consisting
of flipping each bit xν ∈ F with some probability p < 1 (the
value of p is determined empirically). The PGDBF decoder has
been initially proposed and investigated for the BSC, but in
this work we extend its use to both BSC and AWGN channels.

We note that for the AWGN channel, an alternative approach
is based on the NGDBF decoder [8], which uses additive white
Gaussian noise to perturb the local energy values (prior to
determining the bit-flip set F).

III. RANDOMIZED GDBF DECODERS WITH MOMENTUM

Gradient descent with momentum has first been introduced
in [9], as a method to accelerate the convergence rate of the
gradient descent algorithm, and several extensions have been
subsequently proposed in the literature, with different choices
for the momentum parameter (see [10] and references therein).
Momentum is also used for stochastic gradient descent, where
the objective function is learned through samples in a training
data set. It is one of the simplest extensions to gradient descent

that has been successfully used for decades in the training of
artificial neural networks [11].

Gradient descent with momentum remembers the update
∆x

(`)
n

∆
= x

(`)
n − x(`−1)

n at each iteration `, and determines the
next update as a linear combination of the gradient and the
previous update. This pushes the next update into the same
direction as the previous update. Due to the discrete nature of
our optimization problem (since x(`)

n ∈ {±1}), pushing in the
same direction amounts to reducing the chances of a bit xn
being flipped back again, after a bit-flip occurred. To do so,
we add a momentum term to the local energy value of a bit
xn, as follows.

En
∆
= αxnyn +

∑
m∈H(n)

∏
n′∈H(m)

x′n + ρ(ln), (4)

where ln ≥ 1 is equal to the number of iterations since the
last flip of xn (ln = 1 if xn has been flipped at the previous
iteration, ln = 2 if xn has been flipped two iterations ago,
and so on). We shall assume that the momentum lasts for L
iterations, meaning that ρ(ln) = 0 if ln > L. Hence, we define
ρ as a vector of L non-increasing positive values:

ρ
∆
= [ρ(1) ≥ ρ(2) ≥ · · · ≥ ρ(L) > 0] (5)

and shall further set ρ(L+1)
∆
= 0. Since there is no momentum

when the decoding starts, ln values are initialized to L + 1.
The ln value is incremented by 1 at each iteration (without
exceeding the maximum L+ 1 value), and set to 0 each time
the bit xn is flipped (such that it is incremented to 1 the next
iteration).

The PGDBF decoding with momentum is described in
Algorithm 1 (according to our assumption, the BSC has in-

Algorithm 1 PGDBF decoding with momentum (w/M)

Input: y = (y1, . . . , yN) ∈ RN . received word
Output: x = (x1, . . . , xN) ∈ {−1,+1}N . estimated codeword
Parameters: α > 0 (correlation coef.), p ∈]0, 1] (bit-flip probability)

δ ≥ 0 (defines inversion threshold), ρ (momentum)

1: for all n = 1, . . . , N do . initialization
2: xn = sign(yn);
3: ln = L+ 1;
4: end for

5: for all Iter = 1, . . . , Itermax do . iteration loop
6: for all m = 1, . . . ,M do cm =

∏
n∈H(m) xn; . syndrome

7: if cm = 1, ∀m = 1, . . . ,M then exit the iteration loop;

8: for all n = 1, . . . , N do . local energy computation
9: ln = min(ln, L) + 1;

10: En = αxnyn +
∑

m∈H(n) cm + ρ(ln);
11: end for
12: Eth = minn=1,...,N En + δ; . inversion threshold
13: for all n = 1, . . . , N do . bit-flipping
14: if En ≤ Eth and rand() < p then
15: xn = −xn;
16: ln = 0;
17: end if
18: end for
19: end for

(a) ` = 1, GDBF and GDBF-w/M (b) ` = 2, GDBF (c) ` = 2, GDBF-w/M (d) ` = 3, GDBF-w/M

Figure 1. Trajectories of GDBF and GDBF-w/M decoders, for an error pattern corresponding to a (5,5) trapping set

0.010.020.030.040.050.060.070.080.090.1

BSC crossover probability

0

20

40

60

80

Ite
ra

tio
n

nu
m

be
r

 8.2

 7.8
 7.9

 7.1

 5.9

 5.0

 4.0
 3.6

 3.1
 3.0

average loop start iter
average loop length

(a) (3, 6)-regular LDPC

0.020.030.040.050.060.070.080.090.1

BSC crossover probability

5

10

15

20

25

30
Ite

ra
tio

n
nu

m
be

r
 2.3 2.4 2.3 2.3

 2.3

 2.2
 2.3

 2.1
 2.1

 2.1
 2.1

 2.2

average loop start iter
average loop length

(b) (4, 8)-regular LDPC

0.0040.0060.0080.010.0120.0140.0160.0180.02

BSC crossover probability

15

20

25

30

35

40

45

Ite
ra

tio
n

nu
m

be
r

 4.1
 4.0

 4.0
 4.1

 4.2
 4.5

 4.0

 4.3

average loop start iter
average loop length

(c) (6, 32)-regular LDPC

Figure 2. Average loop starting iteration and average loop length (regular LDPC codes, BSC)

put/output alphabet {−1,+1}). The parameters of the decoder
are α > 0 (the correlation coefficient), p ∈]0, 1] (the bit-flip
probability), δ ≥ 0 (used to define the inversion threshold,
which is set to 0 for the BSC), and ρ (the momentum). GDBF
with momentum can be seen as a particular case, by taking
the bit-flip probability parameter p = 1.

Escaping attractors: To illustrate the inertial effect of the
GDBF-w/M decoder, we consider in Fig. 1 the decoding of an
error pattern corresponding to a (5, 5) trapping set of an LDPC
code with variable-nodes of degree 3 (for a comparison with
the PGDBF decoder, see the similar analysis in [7, Fig. 4]).
Fig. 1(a) illustrates the error pattern, where variable-nodes
are depicted as circles and check-nodes as squares, with full
markers corresponding to a binary one (or bipolar −1, using
our previous convention), and empty markers to binary zero
(or bipolar +1). The iteration number is denoted as `. In the
first iteration, variable-nodes x1, · · · , x4 have minimum local
energy En = 0, ∀n = 1, . . . , 4. Therefore, these nodes are
flipped in both GDBF and GDBF-w/M decoders, which is
indicated in the figure by the surrounding dashed red circles.
In the second iteration, shown in Fig 1(b) for the GDBF
decoder, the minimum local energy is obtained again for
the same variable-nodes, since En = −4, ∀n = 1, . . . , 4.
Hence, these nodes are flipped back, and the GDBF decoder
cannot converge, as it will repeat again and again the same
operations. Fig 1(c) shows the second iteration for the GDBF-
w/M decoder. In this case a momentum term is added to the
local energy value of the bits that have been flipped in the first
iteration. We will assume here that the momentum lasts only
one iteration, and ρ(1) = 3. We get En = −1, ∀n = 1, . . . , 4,

and the minimum local energy is obtained for E5 = −2. Thus,
the momentum term prevented the variable-nodes x1, . . . , x4

being flipped back again, and a new variable-node, namely
x5 is flipped in the second iteration. In the third iteration,
shown in Fig 1(d), we get E1 = E3 = −4, E2 = E4 = −2,
and E5 = 3 (where we took into account the momentum term
added to variable-node x5). Variable-nodes x1 and x3 are then
flipped, leading to successful decoding.

Momentum optimization: To determine the length (L) of
the momentum, we start by investigating the behavior of the
conventional GDBF decoder. Let us assume for the moment
that the decoder is run for a possibly infinite number of
iterations, and it only stops if the syndrome check condition
is satisfied, meaning that the estimated x is a codeword. We
shall refer to the x vector as the state of the decoder. Clearly,
the GDBF decoder is completely deterministic, and its state
at some iteration only depends on its state at the previous
iteration. Hence, assuming an infinite number of decoding
iterations, the decoder will eventually reach either a codeword
state, or a state that has been visited before, in which case
it gets caught in a loop, due to its deterministic behavior.
If one keeps a history of the visited states, it is possible to
detect when the decoder gets caught in a loop, i.e., when
x(`1) = x(`2) for some iterations `1 < `2. We shall refer
to `1 as the loop starting iteration and to `2 − `1 as the loop
length. Fig. 2 shows the average loop starting iteration and the
average loop length, for three regular LDPC codes, over the
BSC:
(a) (3, 6)-regular LDPC code (rate = 0.5), length 1296 bits,
(b) (4, 8)-regular LDPC code (rate = 0.5), length 1296 bits,

(c) (6, 32)-regular LDPC code (rate = 0.84), of length 2048
bits, from the IEEE 802.3an standard.

In all cases, the average loop starting iteration decreases with
decreasing crossover probability of the BSC, meaning that the
decoder gets caught in a loop earlier, as the channel gets better.
The average loop length (indicated by the height of vertical
bars) varies much less with the channel, especially for the
higher degree codes: from 2.3 to 2.1 for the (4, 8)-regular
code, and from 4.08 to 4.01 for the (6, 32)-regular code.

Since the momentum is aimed at preventing the decoder
getting caught in a loop, we use momentum of length L equal
(or close) to the average loop length of the GDBF decoder, as
determined by simulation. Then, for a given moment length
L, we search for momentum values ρmax ≥ ρ(1) ≥ ρ(2) ≥
· · · ≥ ρ(L) > 0, that yield the best decoding performance.
To do this, we consider ρ(`) in a discrete set of values,
using some quantization step (to reduce the search space, we
have used a quantization step to 0.5). Although the above
optimization process may be long and laborious, it is an offline
optimization process, that needs to be performed only once,
then the optimized momentum is integrated to the decoding
algorithm. In order to avoid exhaustive search of all possible
solutions, it might be advantageously combined with search
heuristics based for instance on genetic algorithms.

IV. NUMERICAL RESULTS

In this section, the decoding performance of BF-based
decoders (BF, GDBF/PGDBF, and GDBF/PGDBF with mo-
mentum (w/M)) is assessed against that of more powerful

MP decoders (BP and MS). Table I summarizes the various
parameters used by the GDBF/PGDBF (w/M) decoders. The
list of parameters used by each decoder is also indicated in the
table. In our simulations, MP decoders perform 50 decoding
iterations, with flooded scheduling, while BF-based decoders
perform 300 decoding iterations.

BSC channel: Simulation results for the BSC are shown in
Fig. 3. Regarding MP decoders, we consider the floating point
BP decoder, and the finite-precision MS decoder, with 4-bit
messages. For the (3,6)-regular code, momentum significantly
improves the performance of both GDBF and PGDF decoders.
It is worth noticing that GDBF-w/M decoder significantly
outperforms PGDBF, although the former does not make
use of randomness. The PGDBF-w/M decoder makes use
of both randomness and momentum, closely approaching the
performance of the floating-point BP and finite-precision MS
decoders, especially in the error floor region. For the (4,8)-
regular code, the GDBF-w/M decoder performs slightly better
than PGDF, but they both exhibit an error floor at word error
rate WER ≈ 10−4. The PGDBF-w/M decoder does not show
any error floor down to WER = 10−7, and exhibits virtually
the same decoding performance as the finite-precision MS
decoder. Finally, for the (6,32)-regular code, it can be seen that
both GDBF-w/M and PGDBF-w/M decoders exhibit virtually
the same decoding performance, closely approaching and even
outperforming the floating-point BP decoding in the error floor
region.

AWGN channel: Simulation results for the AWGN channel
(with bipolar ±1 inputs) are shown in Fig. 4. Both BP and MS

Table I
PARAMETERS USED BY GDBF/PGDBF (W/M) DECODERS

Channel LDPC Code correlation coef. α inversion thresh. δ bit-flip proba. p momentum ρ

BSC
(3, 6)-regular 0.5 0 0.9 [2, 2, 2, 1]
(4, 8)-regular 1.0 0 0.9 [4, 2, 1]
(6, 32)-regular 2.0 0 0.8 [4, 3, 2, 1]

AWGN (4, 8)-regular 1.8 1.1 0.9 [2, 2, 2, 2, 2, 1, 1]
(6, 32)-regular 4.5 1.2 0.8 [3, 3, 2, 1]

Parameters used by each decoder: GDBF(α, δ), PGDBF(α, δ, p), GDBF-w/M(α, δ, ρ), PGDBF-w/M(α, δ, p, ρ)

0.010.020.030.040.050.060.07

BSC crossover probability

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e
(W

E
R

)

BF
GDBF
PGDBF
GDBF-w/M
PGDBF-w/M
MS, quant(4,6)
BP, float-point

(a) (3,6)-regular LDPC

0.010.020.030.040.050.060.07

BSC crossover probability

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e
(W

E
R

)

BF
GDBF
PGDBF
GDBF-w/M
PGDBF-w/M
MS, quant(4,6)
BP, float-point

(b) (4,8)-regular LDPC

0.0020.0050.010.02

BSC crossover probability

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e
(W

E
R

)

BF
GDBF
PGDBF
GDBF-w/M
PGDBF-w/M
BP, float-point

(c) (6,32)-regular LDPC

Figure 3. Decoding performance for the BSC

decoders are implemented in floating-point precision. GDBF-
w/M and PGDBF-w/M decoders show virtually the same
decoding performance in the waterfall region, outperforming
the floating-point MS decoder, but the GDBF-w/M decoder
exhibits a higher error floor. The PGDBF-w/M decoder closely
approaches (within less than 0.2 dB for the (4,8)-regular code)
or achieves virtually the same performance (for the (6,32)-
regular code) as the floating-point BP decoder. This is all the
more remarkable for soft-output channels, and demonstrates
the effectiveness of the momentum technique for avoiding
local minima in gradient descent based decoding.

V. CONCLUSION AND PERSPECTIVES

This paper reported on a new approach aimed at improving
the decoding performance of randomized GDBF decoders,
inspired by the momentum technique used in gradient descent
optimization. We showed that GDBF or randomized GDBF
decoders with momentum may closely approach the floating-
point BP decoding performance, and may even outperform
it in the error-floor region, especially for graphs with high
connectivity degree. This makes the proposed technique par-
ticularly relevant to low error-floor applications, since LDPC
codes designed for such applications are usually defined by
bipartite graphs with higher degree of connectivity.

The results presented in this paper open a number of
perspectives, regarding the optimization of the momentum
parameters, for a given bipartite graph (or the optimization
of both randomization and momentum parameters, in case
of randomized GDBF decoders). To optimize the decoding
performance in the error floor region, an analytical model
based on absorbing Markov chains could be used to quantify
the contribution of dominant trapping/absorbing sets to the
word error rate [12]. A different approach is to learn optimal
decoding parameters, by using deep reinforcement learning
techniques. BF decoding de facto behaves as a deep neural
network (DNN), with input/output layers corresponding to the
input/output of the decoder, and hidden layers corresponding
to the decoding iterations. We believe that DNN models for
GDBF-based decoders may be used to learn decoding parame-
ters (e.g., randomization and momentum parameters), but also
to learn weights and bias to improve decoding performance,
while taking into account the specific code structure (short
cycles, trapping/absorbing sets, etc.).

REFERENCES

[1] R. G. Gallager, “Low density parity check codes,” MIT Press, Cam-
bridge, 1963, research Monograph series.

[2] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi, “Gradient descent bit flipping algorithms for decoding LDPC
codes,” in IEEE International Symposium on Information Theory and Its
Applications (ISITA), 2008, pp. 1–6.

[3] L. R. Varshney, “Performance of LDPC codes under faulty iterative
decoding,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4427–4444, 2011.

[4] S. Yazdi, H. Cho, and L. Dolecek, “Gallager-B decoder on noisy
hardware,” IEEE Transactions on Commmunications, vol. 66, no. 5, pp.
1660–1673, 2013.

[5] C. Kameni Ngassa, V. Savin, E. Dupraz, and D. Declercq, “Density
evolution and functional threshold for the noisy min-sum decoder,” IEEE
Transactions on Communications, vol. 63, no. 5, pp. 1497–1509, 2015.

2 2.5 3 3.5 4 4.5 5

SNR (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e
(W

E
R

)

GDBF
PGDBF
GDBF-w/M
PGDBF-w/M
MS, float-point
BP, float-point

(a) (4,8)-regular LDPC

5.5 6 6.5 7 7.5 8

SNR (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

W
or

d
E

rr
or

 R
at

e
(W

E
R

)

GDBF
PGDBF
GDBF-w/M
PGDBF-w/M
MS, float-point
BP, float-point

(b) (6,32)-regular LDPC

Figure 4. Decoding performance for the AWGN channel

[6] E. Dupraz, D. Declercq, B. Vasic, and V. Savin, “Analysis and design
of finite alphabet iterative decoders robust to faulty hardware,” IEEE
Transactions on Communications, vol. 63, no. 8, pp. 2797–2809, 2015.

[7] O. Al Rasheed, P. Ivaniš, and B. Vasić, “Fault-tolerant probabilistic
gradient-descent bit flipping decoder,” IEEE Communications Letters,
vol. 18, no. 9, pp. 1487–1490, 2014.

[8] G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient descent
bit-flip decoding for LDPC codes,” IEEE Transactions on Communica-
tions, vol. 62, no. 10, pp. 3385–3400, 2014.

[9] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate o(1/k2),” Soviet Mathematics Doklady, vol. 27, no. 2,
pp. 372–376, 1983.

[10] V. Apidopoulos, J.-F. Aujol, C. Dossal, and A. Rondepierre, “Conver-
gence rates of an inertial gradient descent algorithm under growth and
flatness conditions,” 2018, hAL Preprint, https://hal.archives-ouvertes.fr/
hal-01965095.

[11] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” 2012,
arXiv preprint arXiv:1212.5701.

[12] P. Ivaniš and B. Vasić, “Error errore eicitur: A stochastic resonance
paradigm for reliable storage of information on unreliable media,” IEEE
Transactions on Communications, vol. 64, no. 9, pp. 3596–3608, 2016.

https://hal.archives-ouvertes.fr/hal-01965095
https://hal.archives-ouvertes.fr/hal-01965095

APPENDIX A
ADDITIONAL DATA

The (3, 6)-regular and (4, 8)-regular LDPC codes used for the simulations in this paper are quasi-cyclic LDPC codes, with
base matrix of size 12×24 and expansion factor z = 54. Hence, both codes have length 24×54 = 1296 bits. The base matrices
of the two codes are given below. The parity check matrix of a code is obtained by replacing each non-zero entry b ≥ 0 in the
base matrix by a square matrix of size z × z, defined as the circular right-shift of the identity matrix by b positions. Entries
b = −1 in the base matrix are replaced by all-zero square matrices of size z × z.

(a) (3, 6)-regular LDPC code (rate = 0.5), length 1296 bits

49 −1 −1 −1 −1 43 −1 −1 −1 −1 50 −1 −1 −1 −1 2 −1 27 −1 −1 −1 −1 −1 49
−1 −1 −1 10 41 −1 −1 −1 −1 52 −1 −1 32 −1 −1 −1 −1 −1 50 −1 50 −1 −1 −1
−1 −1 20 −1 −1 −1 −1 20 −1 −1 −1 51 −1 10 −1 −1 47 −1 −1 −1 −1 −1 33 −1
−1 24 −1 −1 −1 −1 22 −1 53 −1 −1 −1 −1 −1 31 −1 −1 −1 −1 18 −1 47 −1 −1
10 −1 −1 −1 15 −1 −1 −1 −1 −1 2 −1 −1 −1 −1 50 −1 13 −1 −1 −1 −1 −1 53
−1 −1 44 −1 −1 6 −1 −1 −1 −1 −1 29 −1 40 −1 −1 16 −1 −1 −1 13 −1 −1 −1
−1 2 −1 −1 −1 −1 −1 13 41 −1 −1 −1 −1 −1 42 −1 −1 −1 −1 48 −1 49 −1 −1
−1 −1 −1 36 −1 −1 24 −1 −1 50 −1 −1 12 −1 −1 −1 −1 −1 10 −1 −1 −1 48 −1
−1 −1 47 −1 50 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 9 −1 7 −1 −1 −1 −1 −1 28
−1 24 −1 −1 −1 −1 −1 51 −1 38 −1 −1 −1 −1 6 −1 −1 −1 −1 23 −1 16 −1 −1
6 −1 −1 −1 −1 −1 5 −1 −1 −1 −1 13 −1 3 −1 −1 29 −1 −1 −1 16 −1 −1 −1
−1 −1 −1 35 −1 16 −1 −1 37 −1 −1 −1 4 −1 −1 −1 −1 −1 24 −1 −1 −1 29 −1


(b) (4, 8)-regular LDPC code (rate = 0.5), length 1296 bits

11 −1 −1 −1 27 −1 −1 −1 33 16 −1 −1 −1 44 −1 −1 44 −1 8 −1 −1 −1 −1 0
−1 25 −1 −1 −1 31 29 −1 −1 −1 29 −1 −1 −1 36 −1 −1 34 −1 15 −1 −1 17 −1
−1 −1 44 4 −1 −1 −1 11 −1 −1 −1 2 50 −1 −1 52 −1 −1 −1 −1 30 33 −1 −1
27 −1 −1 −1 34 −1 20 −1 −1 20 −1 −1 −1 13 −1 −1 27 −1 4 −1 −1 −1 −1 27
−1 42 −1 22 −1 −1 −1 11 −1 −1 −1 44 −1 −1 4 14 −1 −1 −1 −1 45 17 −1 −1
−1 −1 24 −1 −1 10 −1 −1 10 −1 18 −1 2 −1 −1 −1 −1 19 −1 38 −1 −1 31 −1
−1 −1 40 −1 −1 35 −1 −1 31 19 −1 −1 3 −1 −1 42 −1 −1 −1 42 −1 −1 39 −1
−1 29 −1 0 −1 −1 −1 29 −1 −1 5 −1 −1 −1 47 −1 −1 28 −1 −1 28 41 −1 −1
9 −1 −1 −1 7 −1 20 −1 −1 −1 −1 1 −1 19 −1 −1 5 −1 25 −1 −1 −1 −1 41
−1 −1 53 −1 −1 3 −1 −1 26 −1 3 −1 −1 −1 30 −1 −1 5 −1 35 −1 −1 44 −1
−1 4 −1 −1 4 −1 −1 5 −1 −1 −1 13 42 −1 −1 50 −1 −1 −1 −1 36 38 −1 −1
39 −1 −1 17 −1 −1 36 −1 −1 34 −1 −1 −1 46 −1 −1 12 −1 8 −1 −1 −1 −1 15



	I Introduction
	II Randomized GDBF Decoders
	III Randomized GDBF Decoders with Momentum
	IV Numerical Results
	V Conclusion and Perspectives
	References
	Appendix A: Additional Data

