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Abstract—This paper gives necessary and sufficient conditions
for the Tanner graph of a quasi-cyclic (QC) low-density parity-
check (LDPC) code based on the all-one protograph to have girth
6, 8, 10, and 12, respectively, in the case of parity-check matrices
with column weight 4. These results are a natural extension of the
girth results of the already-studied cases of column weight 2 and
3, and it is based on the connection between the girth of a Tanner
graph given by a parity-check matrix and the properties of
powers of the product between the matrix and its transpose. The
girth conditions can be easily incorporated into fast algorithms
that construct codes of desired girth between 6 and 12; our
own algorithms are presented for each girth, together with
constructions obtained from them and corresponding computer
simulations. More importantly, this paper emphasizes how the
girth conditions of the Tanner graph corresponding to a parity-
check matrix composed of circulants relate to the matrix obtained
by adding (over the integers) the circulant columns of the
parity-check matrix. In particular, we show that imposing girth
conditions on a parity-check matrix is equivalent to imposing
conditions on a square circulant submatrix of size 4 obtained
from it.

I. INTRODUCTION

Optimized irregular quasi-cyclic (QC) low-density parity-

check (LDPC) codes are attractive for implementation pur-

poses due to their algebraic structure that allows for low

complexity encoding [1] and leads to efficiencies in decoder

design [2]. The performance of an LDPC code with parity-

check matrix H depends on cycles in the associated Tanner

graph, since cycles in the graph cause correlation during

iterations of belief propagation decoding. Moreover, these

cycles form substructures found in the undesirable trapping

and absorbing sets that create the error floor. Cycles have also

been shown to decrease the upper bound on the minimum

distance (see, e.g., [3]). Therefore, codes with large girth are

desirable for good performance (large minimum distance and

low error floor). Although significant effort has been made to

design QC-LDPC code matrices with large minimum distance

and girth, e.g., [4]–[9], this can be particularly challenging

for optimized protographs that contain dense subgraphs, such

as those of the AR4JA codes [10] and 5G new radio LDPC

codes [11], which contain a significant number of variable

nodes with degree larger than 3.

In [12], we have used some previous results by McGowan

and Williamson [13] and the terminology introduced in Wu et

al. [14] that elegantly relate the girth of H with the girth of

Bn(H) ,
(

HHT
)⌊n/2⌋

H(n mod 2), n ≥ 1, to highlight the

role that certain submatrices of HHT play in the construction

of codes of desired girth. In particular, we showed that the

cycles in the Tanner graph of a 2N × nvN parity-check

matrix H based on the (2, nv)-regular fully connected (all-one)

protograph, with lifting factor N , correspond one-to-one to the

cycles in the Tanner graph of a N × N matrix, that we call

C12, obtained from H . Similarly, we show that imposing girth

conditions on a 3N×nvN parity-check matrix is equivalent to

imposing girth conditions on a 3N × 3N submatrix of HHT,

which we call CH .

In order to investigate large girth constructions from dense

protographs, this paper extends the results of [12] to the

case nc = 4 and shows how the girth conditions of a

4N×nvN parity-check matrix are reflected in the correspond-

ing 4N × 4N submatrix CH of HHT, and in particular, in

a column of CH given by the sum (over the integers) of the

circulant columns of the parity-check matrix. Although we

mostly assume the case of an (4, nv)-regular fully connected

protograph, the results can be used to analyze the girth

of the Tanner graph of a parity-check matrix of zeros and

ones. Throughout, we exemplify the techniques and related

algorithms by constructing the Tanner graphs of (4, 6)-regular

QC-LDPC codes with girths of 6, 8, 10, and 12, and we

conclude the paper with computer simulations of some of

the constructed codes with varying block lengths and girths,

confirming the expected robust error control performance.

We note that the motivation of the paper is not only to

construct good (4, nv)-regular QC-LDPC codes, rather we aim

to demonstrate that the approach from [12] can be extended to

higher column weights and that similar efficient algorithms can

be used to construct denser graphs (or sub-graphs) with large

girth. As mentioned above, this is particularly important since

capacity approaching LDPC codes with irregular protographs

often have dense sub-graphs [10]. The necessary and sufficient

girth conditions we present here provide a unifying framework

for a given girth to be achieved in which all constructions must

fit. The proposed algorithms to choose lifting exponents are

extremely fast, in fact they can be evaluated by hand, and

can be used to obtain codes of a given girth for the smallest

graph lifting factor N . We remark that the technique can

be incorporated with other complementary design approaches,

such as pre-lifting [9] and masking [4] to construct irregular

LDPC codes that have low error floors from the (nc, nv)-
regular protographs. Finally, note that the technique can also

be modified to increase the minimum distance and/or mini-
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mum trapping/absorbing set size since cycles appear in the

composition of these structures.

II. DEFINITIONS, NOTATIONS AND BACKGROUND

For any positive integer L, let [L] = {1, 2, . . . , L}. An

LDPC code C can be described as the null space of a parity-

check matrix H , where C = {c | Hc⊤ = 0⊤}. We can

associate a Tanner graph [15] to this matrix H in the usual

way. Its girth, denoted gir(H), is defined as the length of a

shortest cycle in the graph.

A protograph [10], [16] is a small bipartite graph that can

be represented by an nc×nv parity-check or base biadjacency

matrix B = (bij), where bij > 0 is an integer for each pair

(i, j). The parity-check matrix H of a protograph-based LDPC

block code can be constructed from B in the following way:

each nonzero entry bij of B is replaced by a summation of

bij non-overlapping permutation matrices of size N ×N , and

each zero entry is replaced by the N × N all-zero matrix.

In this case we write H = B↑N and N is called the lifting

degree. Let xa (or Ia) denote the N×N circulant permutation

matrix obtained from the N ×N identity matrix I by shifting

all its entries a positions to the left.

In this paper we use the triangle operator △ introduced in

[14] defined as follows. For two nonnegative integers m and

n, define

m△n ,

{

1 if m ≥ 2, n = 0

0 otherwise
.

This definition can be extended to matrices. Let M = (mij)
and N = (nij) be two s×t matrices. Then we define the s×t
matrix P = (pij) , M△N entry-wise, where pij , mij△nij

for all pair (i, j) ∈ [s]× [t].
The following theorem found in [13] and [14] describes an

important connection between gir(H) and matrices Bn(H) ,
(

HHT
)⌊n/2⌋

H(n mod 2), n ≥ 1 and offers some insight

on the inner structure of the Tanner graph which simplifies

considerably the search for QC protograph-based codes with

large girth and minimum distance.

Theorem 1. ([13] and [14]) A Tanner graph of an LDPC

code with parity-check matrix H has gir(H) > 2g if and only

if Bt(H)△Bt−2(H) = 0, t = 2, 3, . . . , g.

III. CONSTRUCTING 4× nv PROTOGRAPH-BASED QC

CODES OF GIVEN GIRTH g ≤ 12

In this section, we will construct QC matrices by lifting a

4×nv protograph, give the conditions required to obtain girth

6 ≤ g ≤ 12, and provide some algorithms to generate these

conditions.

Let H be the parity-check matrix of an ncN × nvN , nc <
nv, protograph-based LDPC code given by

H =







I I · · · I
I P22 · · · P2nv

I P32 · · · P3nv

I P42 · · · P4nv






. (1)

For each i, j ∈ [4], let Pi1 = I for all i ∈ {2, 3, 4} and

Cij = C⊤
ji , Pi1P

⊤
j1 + Pi2P

⊤
j2 + · · ·+ Pinv

P⊤
jnv

(2)

and define

CH ,







0 C12 C13 C14

C21 0 C23 C24

C31 C32 0 C34

C41 C42 C43 0






. (3)

The following theorem characterizes the connection be-

tween the matrix CH and gir(H), derived from the relation

established in Theorem 1 between gir(H) and the matrices

Bn(H).

Theorem 2. Let H , Cij and CH be defined as in (1), (2)

and (3), respectively. Then

gir(H) > 4 ⇔ CH△0 = 0,

gir(H) > 6 ⇔ CH△0 = 0 & CHH△H = 0,

gir(H) > 8 ⇔ CH△0 = 0 & C2
H△(I + CH) = 0,

gir(H) > 10 ⇔ gir(H) > 8 & C2
HH△(H + CHH) = 0,

gir(H) > 12 ⇔ gir(H) > 10 & C3
H△(I + CH + C2

H) = 0.

Proof: Note that

B2(H) = HHT = nvI + CH , B3(H) = nvH + CHH,

B4(H) = (nvI + CH)2, B5(H) = (nvI + CH)2H,

B6(H) = (nvI + CH)3, etc..

We obtain the following equivalences, completing the proof:

B2(H)△I = 0 ⇔ CH△0 = 0;

B3(H)△B1(H) = 0 ⇔ CHH△H = 0;

B4(H)△B2(H) = 0 ⇔ (nvI + CH)2△(nvI + CH) = 0
⇔ C2

H△(I + CH) = 0;
B5(H)△B3(H) = 0 ⇔ (nvI + CH)2H△(nvI + CH)H = 0

⇔ C2
HH△(H + CHH) = 0;

B6(H)△B4(H) = 0 ⇔ (nvI + CH)3△(nvI + CH)2 = 0
⇔ C3

H△(I + CH + C2
H) = 0.

Remark 3. Note that, for practical implementation, it is

desirable to take each Pij to be a circulant xl, for some l, or

a permutation matrix lifted to some circulants, for example,

H = (xl)↑N . In the remainder of the paper, we consider the

first case. The second case was investigated in the case of

nc = 3 in [9], [12] and is left to future work for nc > 3. �

Suppose that each matrix Pij is a circulant permutation

matrix, that is P2l = xil , P3l = xjl , P4l = xkl , for all l ∈ [nv],
with i1 = j1 = k1 = 0. The associated polynomial matrix

H(x) is then

H(x) =









1 1 · · · 1
1 xi2 · · · xinv

1 xj2 · · · xjnv

1 xk2 · · · xknv









. (4)

Consider the polynomial matrices Cij(x) and CH(x) associ-

ated with the QC-scalar matrices Cij and CH , then Cij(x) =



CT

ji(x) for all i, j ∈ [nc], where























C21 =

nv
∑

l=1

xil , C31 =

nv
∑

l=1

xjl , C41 =

nv
∑

l=1

xkl ,

C31 =

nv
∑

l=1

xjl−il , C42 =

nv
∑

l=1

xkl−il , C43 =

nv
∑

l=1

xkl−jl .

(5)

Remark 4. Note that the transpose of the matrix

[

nvI C12 C13 C14

]

is equal to the sum of the nv circulant columns of H and has

an important role in the girth, as we see in Theorem 2. �

Theorem 5. Let H(x) and CH(x) be defined as in (4) and (3),

respectively. Then gir(H(x)) > 4 if and only if each one of the

six sets {i1, i2, . . . , inv
}, {j1, j2, . . . , jnv

}, {k1, k2, . . . , knv
},

{i1−j1, i2−j2, . . . , inv
−jnv

}, {i1−k1, i2−k2, . . . , inv
−knv

}
and {j1 − k1, j2 − k2, . . . , jnv

− knv
} contains exactly nv

distinct elements.

Proof: By Theorem 2, gir(H) > 4 if and only if

CH△0 = 0. This is equivalent to Cij(x)△0 = 0 for all

1 ≤ i < j ≤ 4. Expanding each of these equations, we obtain

nv
∑

l=1

xil△0 = 0,

nv
∑

l=1

xjl△0 = 0,

nv
∑

l=1

xkl△0 = 0,

nv
∑

l=1

xil−jl△0 = 0,

nv
∑

l=1

xil−kl△0 = 0,

nv
∑

l=1

xjl−kl△0 = 0.

By using the definition of the triangle operator △, we conclude

that, for each equation, the exponents should be distinct and

the claim follows.

To choose the exponents il, jl, and kl satisfying the conditions

in Theorem 5, we provide the following algorithm to construct

a (4, nv)-regular graph with g > 4. In this algorithm, we

first choose i1, j1, k1 such that they are not in the specified

forbidden sets, i.e., sets of values that would create a cycle of

size below the desired girth, then we choose i2, j2, k2, then

we choose i3, j3, k3, and so on.

Algorithm 6. (Construct (4, nv)-regular graph with g > 4)

Step 1: Set i1 = 0, j1 = 0 and k1 = 0. Set l = 1.

Step 2: Let l := l+ 1. Choose

il /∈ {im | 1 ≤ m ≤ l − 1}
jl /∈ {jm, il + (jm − im) | 1 ≤ m ≤ l − 1}
kl /∈ {km, il+(km−im), jl+(km−jm) | 1 ≤ m ≤ l−1}

Step 3: If l = nv stop; otherwise go to Step 2.

Example 7. In this example, we construct a 4×6 protograph-

based matrix using Algorithm 6. In each iteration l, 2 ≤ l ≤
nv, we choose the smallest positive value for each of il, jl,
and kl. We obtain

H(x) =







1 1 1 1 1 1
1 x x2 x3 x4 x5

1 x2 x x5 x7 x3

1 x3 x5 x x9 x2






.

If we choose lifting degree N =

(

max
1≤l≤6

{il, jl, kl}

)

+1 = 10,

then H(x) has girth 6. �

Example 8. Using Algorithm 6, we construct a protograph-

based matrix as in Example 7. In each iteration l, 2 ≤ l ≤ nv,

however, we choose each of il, jl, and kl to be one more than

the maximum value in their corresponding forbidden sets. We

obtain

H(x) =







1 1 1 1 1 1
1 x x2 x3 x4 x5

1 x2 x4 x6 x8 x10

1 x3 x6 x9 x12 x15






. (6)

If we let N =

(

max
1≤l≤6

{il, jl, kl}

)

+ 1 = 16, then the girth

of H(x) is 6. Notice that N = 16 is not the smallest positive

value for which gir(H(x)) > 4. If we choose N = 7, then

gir(H(x)) = 6. We note that (6) is a shortened version of

Fan’s array construction [17] that gives g = 6 for N = 7. �

Theorem 9. Let H(x) and CH(x) be defined as in equations

(4) and (3), respectively. Then gir(H(x)) > 6 if and only if,

for any m ∈ [nv], each one of these four sets contains distinct

elements:

{im − in, jm − jn, km − kn | n ∈ [nv], n 6= m},

{in, in−jn+jm, in−kn+km, ip+(jn−jm)+(km−kp) |
n, p ∈ [nv], p 6= m,n 6= m},

{jn, jn−in+im, jn−kn+km, jp+(in−im)+(km−kp) |
n, p ∈ [nv], p 6= m,n 6= m},

{kn, kn−in+im, kn−jn+jm, kp+(in−im)+(jm−jp) |
n, p ∈ [nv], p 6= m,n 6= m}.

Algorithm 10. (Construct (4, nv)-regular graph with g > 6)

Step 1: Set i1 = 0, j1 = 0 and k1 = 0. Set l = 1.

Step 2: Let l := l + 1. Choose

il /∈ {im, (im − jm) + jn, (jm − km) + (kn − jn) + ip, (im −
km) + kn, (km − jm) + (jn − kn) + ip | 1 ≤ m,n, p ≤ l− 1}
jl /∈ {jm, il+jm− in, im+(jn− in), (im−km)+(kn− in)+
jp, il+(km−im)+(jn−kn), (jm−km)+kn, il+(jm−km)+
kn−ip, 2il+(km−im)+(jn−kn)−ip | 1 ≤ m,n, p ≤ l−1}
kl /∈ {km, jl + km − jn, il + km − in, jl + (im − jm) + (in −
kn), im+(kn− in), jl+ im− jn+(kp− ip), 2jl+(im− jm)+
(kn− in)−jp, (km−jm)+jn, il+(jm− im)+(kn−jn), il+
(km − jm) + jn − ip, 2il + (jm − im) + (kn − jn)− ip | 1 ≤
m,n, p ≤ l − 1}
Step 3: If l = nv stop; otherwise go to Step 2.

Example 11. In this example, we construct a 4×6 protograph-

based matrix using Algorithm 10. In each iteration l, 2 ≤ l ≤
nv, we choose the smallest positive value for each of il, jl,
and kl as we did in Example 7. We obtain

H(x) =







1 1 1 1 1 1
1 x x5 x8 x10 x25

1 x3 x14 x29 x49 x96

1 x4 x2 x36 x55 x108






. (7)



If we choose lifting degree N =

(

max
1≤l≤6

{il, jl, kl}

)

+ 1 =

109, then H(x) has girth 8. The smallest positive integer N
required to obtain gir(H(x)) > 6 is N = 85. Simulation

results are provided for codes obtained from (7) with N = 85
and N = 347 in Section IV. �

Example 12. If we choose values of il, jl, and kl one more

than the maximum value in their corresponding forbidden sets

(instead of choosing the smallest positive value for each of

il, jl, and kl, as in Example 11) we obtain the following matrix

H(x) =







1 1 1 1 1 1
1 x x8 x54 x355 x2324

1 x3 x23 x154 x1011 x6617

1 x7 x53 x354 x2323 x15203






.

For these circulants, N = 111 is the smallest value that can

obtain this girth.
Reducing the exponents modulo 111, we obtain

H(x) =







1 1 1 1 1 1
1 x x8 x54 x22 x104

1 x3 x23 x43 x12 x68

1 x7 x53 x21 x103 x107






, (8)

which also has girth 8 for N = 111. Note that the smallest

positive integer to obtain girth 8 in (8) is now N = 105.

Simulation results are provided for codes obtained from (8)

with N = 111 and N = 347 in Section IV. �

Theorem 13. Let H(x) and CH(x) be defined as in (4)

and (3), respectively. Then gir(H(x)) > 8 if and only if

gir(H(x)) > 4 and each one of these sixteen sets contains

distinct elements, for all u,w ∈ [nv], u 6= w:

{(iu−ju)+jw, (iu−ku)+kw}, {(ju−iu)+iw, (ju−ku)+kw},

{(ku−iu)+iw, (ku−ju)+jw}, {(ju−iu)−jw, (ku−iu)−kw},

{ju−iw, (ju−ku)−(iw−kw)}, {ku−iw, (ku−ju)−(iw−jw)},

{(iu−ju)−iw, (ku−ju)−kw}, {iu−jw, (iu−ku)−(jw−kw)},
{ku−jw, (ku−iu)−(jw−iw)}, {(iu−ku)−iw, (ju−ku)−jw},
{iu−kw, (iu− ju)− (kw − jw)}, {iu− iw, ju− jw, ku−kw},
{ju − jw, (iu − ju)− (iw − jw), (ju − ku)− (jw − kw)},

{ku − kw, (iu − ku)− (iw − kw), (ju − ku)− (jw − kw)},

{iu − iw, (iu − ju) − (iw − jw), (iu − ku) − (iw − kw)},
{ju − kw, (ju − iu)− (kw − iw)}.

Example 14. We construct a 4 × 6 matrix H using an

algorithm derived from Theorem 13, where, at each iteration

l, l ∈ [nv], we choose the smallest possible positive value for

each of il, jl, kl, as we did in Examples 7 and 11.1 We obtain

H(x) =







1 1 1 1 1 1
1 x x9 x28 x41 x75

1 x3 x21 x54 x98 x180

1 x7 x38 x93 x162 x297






.

If we choose N = 2

(

max
1≤l≤6

{il, jl, kl}

)

+1 = 595, then H(x)

has girth 10. The smallest N required to obtain gir(H(x)) > 8
is N = 347. The resulting code is simulated in Section IV.�

1Due to space constraints, we omit algorithms corresponding to Theorems
13 and 15; they can be written in the same way as Algorithms 6 and 10.

Theorem 15. Let H(x) and CH(x) be defined as in equations

(4) and (3), respectively. Then gir(H(x)) > 10 if and only if

gir(H(x)) > 8 and, for any l ∈ [nv], each one of these four

sets contains distinct elements:

{iu − iw, ju − jw, ku − kw, il + (ju − iu) − jw, il +
(ku − iu)− kw, jl + (iu − ju)− iw, jl + (ku − ju)− kw, kl +
(iu−ku)−iw, kl+(ju−ku)−jw | u,w ∈ [nv], u 6= w, u 6= l},

{(iu − ju) + jw, (iu − ku) + kw, il + iu − iw, il + (iu − ju)−
(iw − jw), il + (iu − ku)− (iw − kw), jl + iu − jw, jl + (iu −
ku) − (jw − kw), kl + iu − kw, kl + (iu − ju) − (kw − jw) |
u,w ∈ [nv], u 6= w,w 6= l},

{(ju − iu)+ iw, (ju − ku)+ kw, il + ju − iw, il +(ju − ku)−
(iw − kw), jl + ju − jw, jl + (iw − jw)− (iu − ju), jl + (ju −
ku) − (jw − kw), kl + ju − kw, kl + (ju − iu) − (kw − iw) |
u,w ∈ [nv], u 6= w,w 6= l},

{(ku − iu)+ iw, (ku − ju)+ jw, il + ku− iw, il+(ku − ju)−
(iw − jw), jl + ku − jw, jl + (ku − iu)− (jw − iw), kl + ku −
kw, kl + (iw − kw)− (iu − ku), kl + (jw − kw)− (ju − ku) |
u,w ∈ [nv], u 6= w,w 6= l}.

Example 16. In this example, we construct a 4×6 protograph-

based matrix using an algorithm derived from Theorem 15. In

each iteration l, 2 ≤ l ≤ nv , we choose the smallest positive

value for each of il, jl and kl. We obtain

H(x) =







1 1 1 1 1 1
1 x x12 x45 x147 x445

1 x3 x31 x126 x320 x980

1 x7 x67 x231 x636 x1626






.

If we choose N = 2

(

max
1≤l≤6

{il, jl, kl}

)

+ 1 = 3253, then

H(x) has girth 12, however, the smallest N required to obtain

gir(H(x)) > 10 is N = 1881. The resulting code is simulated

in Section IV. �

Remark 17. We note that we could also use a computer to

search for the possible values in the same way, one by one,

with techniques such as progressive edge growth (PEG) [18],

but the last values in the matrix are hard to obtain, particularly

as the density of the protograph increases. However, the

proposed algorithms immediately give the next possible value

and can be modified to return the size N needed in a similar

way to the formulation in [12]. The algorithms can also be

modified so that a random value among the possible is chosen

at each time in order to optimize the performance. Or it can

be chosen such that the smallest possible value can be taken

at each point so that the smallest N is obtained. If a choice

is not possible at some point for a desired N , backtracking

can be added to pick a different value at a previous step, until

a value is available at the current step. Finally, we note that

the algorithm can also be modified to increase the minimum

distance and/or minimum trapping/absorbing set size since

cycles appear in the composition of these structures. �
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Fig. 1. Simulated decoding performance in terms of BER for the R ≈ 1/3,
(4, 6)-regular QC-LDPC codes from Examples 11-16.

IV. SIMULATION RESULTS

To verify the performance of the constructed codes, com-

puter simulations were performed assuming binary phase shift

keyed (BPSK) modulation and an additive white Gaussian

noise (AWGN) channel. The sum-product message passing de-

coder was allowed a maximum of 100 iterations and employed

a syndrome-check based stopping rule.

In Fig. 1, we plot the bit error rate (BER) for several

R ≈ 1/3 (4, 6)-regular QC-LDPC codes from Examples 11-

16 with varying code lengths and girth. For comparison, we

selected a larger lifting factor than the minimum for the codes

from Examples 11 and 12 with (N = 347 corresponding to

block length n = 2082, both codes retain g = 8) to match

the block length of the g = 10 code from Example 14. We

note that the girth g = 8 codes have similar performance, and

a slightly better waterfall, than the girth 10 code, but they

also display the beginning of an error floor at 3.25dB. The

Example 14 and 16 codes with girth g = 10 and g = 12,

respectively, display no indication of an error-floor, at least

down to respective BERs of 10−8 and 10−7. The Example

16 code with g = 12 has a larger lifting factor N = 1881
and the resulting code with block length n = 11286 shows

a waterfall approximately 0.58dB from the iterative decoding

threshold (1.67dB) for (4, 6)-regular LDPC codes [19] at a

BER of 10−7.

V. CONCLUDING REMARKS

In this paper we gave necessary and sufficient conditions

for the Tanner graph of a protograph-based QC-LDPC code

with column weight 4 to have girth 6 ≤ g ≤ 12, successfully

extending the approach of [12] to denser protographs. The

girth conditions were used to write fast algorithms which

were exemplified by constructing the Tanner graphs of (4, 6)-
regular QC-LDPC codes with girths of 6, 8, 10, and 12.

The necessary and sufficient girth conditions we presented

provide a unifying framework for a given girth to be achieved

in which all constructions must fit. Obtaining large girth

for relatively dense graphs is a challenging and important

topic since capacity approaching irregular LDPC codes often

have such sub-graphs in the protograph. Future work involves

extending the techniques in this paper to optimized irregular

protographs to achieve large girth and low error floors.
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