
ar
X

iv
:2

00
4.

03
86

9v
1

 [
cs

.I
T

]
 8

 A
pr

 2
02

0

Fast-SCAN decoding of Polar Codes

Charles Pillet, Carlo Condo, Valerio Bioglio

Mathematical and Algorithmic Sciences Lab

Paris Research Center, Huawei Technologies Co. Ltd.

Email: {charles.pillet1,carlo.condo,valerio.bioglio}@huawei.com

Abstract—Polar codes are able to achieve the capacity of mem-
oryless channels under successive cancellation (SC) decoding. Soft
Cancellation (SCAN) is a soft-output decoder based on the SC
schedule, useful in iterative decoding and concatenation of polar
codes. However, the sequential nature of this decoder leads to high
decoding latency compared to state-of-the-art codes. To reduce
the latency of SCAN, in this paper we identify special nodes in
the decoding tree, corresponding to specific frozen-bit sequences,
and propose dedicated low-latency decoding approaches for each
of them. The resulting fast-SCAN decoder does not alter the
soft-output compared to the standard SCAN while dramatically
reducing the decoding latency and yielding the same error-
correction performance.

Index Terms—Polar Codes, Successive Cancellation decoding,
soft decoding, SCAN decoding.

I. INTRODUCTION

Polar codes are a class of linear block codes introduced

in [1]. They rely on the polarization effect to identify reli-

able and unreliable bit-channels, freezing the unreliable ones

and transmitting information through the reliable ones. Polar

codes can achieve capacity under successive cancellation (SC)

decoding for infinite code length. However, for finite block

length, SC yields poor error-correction performance and long

decoding latency, due to its serial nature. On one side, to

improve the performance of SC at minimal latency cost, SC

list (SCL), and its evolution aided by cyclic-redundancy-check

(CRC) have been proposed in [2] and [3], respectively. Con-

currently, to reduce the latency of SC without any performance

degradation, constituent codes that can be easily decoded

have been investigated [4]–[6]. In particular, [4] introduces a

simplified-SC (SSC) decoder that can efficiently decode rate-0

and rate-1 nodes. Fast-SSC [5] improves SSC by implementing

fast parallel decoders for single-parity-check nodes, repetition

nodes and their mergers. More recently, [6] identified 5 new

types of nodes, providing their efficient decoders.

SCAN decoding [7] is a low-complexity soft output decod-

ing algorithm based on the SC schedule, that can be effectively

used in concatenation schemes and iterative decoding. Conse-

quently, SCAN decoders suffer also from a poor latency due to

the serial nature of the SC schedule. Moreover, SCAN allows

iterative decoding, increasing its latency with the number of

iterations. In order to speed up the decoding process, [8]

introduces simplifications for rate-0 nodes (all frozen bits) and

rate-1 nodes (all information bits).

In this work, we detail fast decoders for several constituent

codes under SCAN decoding improving the latency of SCAN

without modifying its soft output, thus yielding the same

û0 û1 û2 û3 û4 û5 û6 û7

t = 3

t = 2

t = 1

t = 0

λ
β

λℓ

βℓ λr

βr

Fig. 1. SC decoder of an (8, 4) polar code, F = {0, 1, 2, 4}.

extrinsic values for iterative message passing. An analysis of

the decoding latency of the fast-SCAN decoder reveals up

to 94.5% reduction with respect to SCAN, while simulation

results show that both decoders have the same error-correction

performance.

II. PRELIMINARIES

In this section we introduce the basic concepts on polar

codes, together with the SC and SCAN decoding algorithms.

A. Polar codes

A polar code (N,K) of length N = 2n and dimension K
is a block code relying on the polarization effect of kernel

matrix G2 ,

[

1 0
1 1

]

. The polarization effect defined by

transformation matrix GN = G⊗n
2 creates N virtual bit-

channels, each one having a different reliability. The reliability

of each channel may be computed through Density Evolution

using Gaussian Approximation, the Bhattacharrya parameter

or through Monte Carlo simulation [9]. The K information

bits are assigned to the K most reliable bit-channels, while

the remaining N −K bit-channels are set to a known value,

usually 0, and represent the frozen set F of the code. The

N -bit codeword x is generated as x = uGN , where u is the

input vector of the code, with ui∈F = 0.

B. SC-based decoding

SC has been proposed in [1] as the native polar code

decoding algorithm. As shown in Figure 1, it can be described

as a binary tree search, where the tree is traversed depth-first

starting from the left branch. We consider the soft information

received as input from the channel to be in the form of

logarithmic likelihood ratios (LLRs). A node stage t represents

a constituent code of length 2t, receiving from its parent

http://arxiv.org/abs/2004.03869v1

t+ 1

t

t− 1

λi
t βi

t

λ
2i
t−

1

β
2i
t−

1

β 2i+1t−1
λ 2i+1t−1

Fig. 2. Soft message exchange between decoding tree stages.

node the soft information vector λ of length 2t. This is used

to compute the 2t−1-element soft information vector λℓ for

its left child. The left child eventually returns its constituent

codeword βℓ, that is used to compute the soft information

λr to be sent to the right child. After receiving the second

constituent codeword βr from the right child, the node feeds

back the 2t-element estimated codeword β to its parent node.

In order to reduce the latency of SC-based decoders, the

SSC decoder [4] is able to decode sub-trees constituted of in-

formation bits (rate-1) or frozen bits (rate-0) without having to

explore them. Later, single-parity-check (SPC) and repetition

(REP) nodes have been decoded efficiently in [5] to further

speed up SC decoding. Finally, five new nodes were identified

in [6], while generalized and expanded versions have been

proposed in [10].

C. SCAN decoding

SCAN decoding [7] relies on the SC schedule to exchange

soft information through the decoding tree in both directions.

This allows to refine the soft information both at the root and

at the leaves of the tree by iterating the decoding process.

Compared to SC, SCAN returns soft values instead of hard

decisions, slightly increasing decoding complexity and latency.

Stage t of the decoding tree is constituted of 2n−t nodes

of size 2t, where 0 ≤ t ≤ n. The i-th node at stage t
receives vector λi

t including 2t LLRs from its parent node, and

performs update operations to feed back the 2t-element soft

vector βi
t. As with SC, the vector λ0

n is initialized with channel

LLRs. Moreover, the decoder can exploit a priori information

coming from the frozen set F ; the message βi
0 fed back from

the leaves, corresponding to the estimated vector û, is set to

βi
0 =

{

∞ if i ∈ F ,

0 otherwise.
(1)

The other messages are initialized to 0 since no further a priori

information is available. It is worth noting that message sets

βi
0 and λ0

n are not updated throughout the decoding and keep

their initial values.

Message passing through the decoding tree follows the SC

scheduling described in Section II-B. Figure 2 represents a

node at stage t, i.e. a constituent code of length 2t. First, the

soft message vector to be sent to the left child is computed as

λ2i
t−1[k] = f̃

(

λi
t[k], λ

i
t[k + 2t−1] + β2i+1

t−1 [k]
)

(2)

t = 8

t = 7

t = 6

t = 5

t = 4

t = 3

t = 2

Fig. 3. Decoding tree of fast-SCAN for (256,239) component codes; red
squares are SPC nodes, black circles are rate-1 nodes and light blue squares
are repetition nodes.

for k =
{

0, . . . , 2t−1 − 1
}

. Then, the node receives the soft

message vector β2i
t−1 from its left child and computes the

message λ2i+1
t−1 sent to its right child as

λ2i+1
t−1 [k] = f̃

(

λi
t[k], β

2i
t−1[k]

)

+ λi
t[k + 2t−1]. (3)

As soon as the soft message vector β2i+1
t−1 is received from

the right child node, the feedback soft message vector βi
t of

length 2t is calculated as

βi
t [k] = f̃(β2i

t−1[k], λ
i
t[k + 2t−1] + β2i+1

t−1 [k]) (4)

βi
t [k + 2t−1] = β2i+1

t−1 [k] + f̃(λi
t[k], β

2i
t−1[k]) (5)

and sent to the parent node. Function f̃ : R
2 → R is the

box-plus operator

f̃(a, b) = a⊞ b , log

(

1 + ea+b

ea + eb

)

(6)

whose hardware-friendly implementation is given by

f̃(a, b) ≃ min (|a| , |b|) sign(a)sign(b). (7)

III. FAST-SCAN DECODING

In this section we introduce SCAN message update rules

for several special nodes used in fast SC decoders. Fast-SCAN

can provide the same soft output of SCAN while considerably

reducing the decoding latency. Figure 3 depicts the pruned

decoding tree as explored by fast-SCAN decoding for the

(256, 239) polar code designed according to the 5G standard

[11]. The full tree would be composed by 511 nodes, that are

reduced to 17 through constituent code fast decoding.

Simplified SCAN (SSCAN) decoding has been proposed in

[8], where decoders for rate-0 and rate-1 nodes are examined.

A rate-0 node always returns βi
t = [∞,∞, . . . ,∞] regardless

of the input LLRs. Instead, for rate-1 nodes, the SCAN

decoder returns the all-zero vector βi
t = [0, 0, . . . , 0].

A. SPC nodes

In an SPC node the first leaf is frozen while all the

other leaves represent information bits. SPC nodes are more

likely to occur in high-rate polar codes [5], that are used in

constructions such as product polar codes [12]. The SPC node

imposes an even parity constraint on its bits; the Fast-SSC

[5] algorithm decodes SPC nodes with Wagner decoding [13],

i.e. by flipping the least reliable bit if the overall parity is not

satisfied.

When we decode an SPC node with SCAN, the β term in

(2) is equal to 0 until t ≥ 2, hence, entry k of λ2i
t−1 is the

box-plus operation of λi
t[k] and λi

t[k + 2t−1]. By induction

at stage 1, λ2t−1i
1 [0] and λ2t−1i+1

1 [1] are respectively the box-

plus operation of all even-indexed and odd-indexed λi
t values.

The frozen set imposes β2ti
0 = {∞} and β2ti+1

0 = {0} and by

using (4)-(5), β2t−1i
1 =

{

λ2t−1i
1 [1], λ2t−1i

1 [0]
}

. The structure

of SPC nodes guarantees that the feedback from the right sub-

tree is always the all-zero vector; given (4)-(5), entry k of βi
t

is the result of the box-plus operation of all entries of λi
t

excluding λi
t[k]:

βi
t [k] =

2t−1

⊞
j=0,j 6=k

λi
t[j] = (8)

≃ min
0≤j<2t,j 6=k

(∣

∣λi
t[j]

∣

∣

)

2t−1
∏

j=0,j 6=k

sign(λi
t[j]) .

We can thus decode SPC nodes without traversing the tree.

We can rewrite (8) as

βi
t [k] =

{

(−1)
P⊕h[k0]

∣

∣λi
t[k1]

∣

∣ if k = k0 ,

(−1)
P⊕h[k] ∣

∣λi
t[k0]

∣

∣ otherwise ,
(9)

where P is the overall parity

P =

2t−1
⊕

j=0

h[j] , (10)

h is the hard decision taken on the LLRs in λi
t, and k1,2 are

the indices of the the least and second least reliable values of

λi
t. It is worth noticing that (9) does not change the parity of

the input LLRs, while on the contrary Wagner decoding forces

the even parity constraint. When an SPC node feeds back a

vector having a wrong parity, SCAN decoding may fail due to

the extrinsic nature of its output. In order to force the parity

condition while keeping the expected LLRs distribution (9)

can be modified as

βi
t [k] =

{

(−1)
P⊕h[k0]

∣

∣λi
t[k1]

∣

∣ if k = k0 ,
sign

(

λi
t[k]

)

·
∣

∣λi
t[k0]

∣

∣ otherwise .
(11)

However, the output will be no longer extrinsic, and will differ

from that of SCAN. In the following, we propose to use (9)

considering that a key application of fast-SCAN is the speed-

up of iterative decoding of polar-based code constructions.

B. REP nodes

A REP node occurs when all the leaves of a node are frozen

except the rightmost one. As a result, the value of the 2t bits

at the root of the REP node is equal to the information bit.

Fast-SSC decodes REP nodes through hard decision on the

sum of all the elements in λi
t. The result is then replicated

2t times in the feedback. Concerning the SCAN decoder, the

β term in (3) representing the feedback from the left sub-

tree is always a vector of infinitives for t ≥ 2, leading to

λ2i+1
t−1 [k] = λi

t[k] + λi
t[k + 2t−1]. At stage 1, λ

2t−1(i+1)−1
1 [0]

and λ
2t−1(i+1)−1
1 [1] are respectively the sum of all even-

indexed and odd-indexed λi
t values. Similarly to the SPC

case, β
2t(i+1)−2
0 = {∞} and β

2t(i+1)−1
0 = {0}, and thus

β
2t−1(i+1)−1
1 =

{

λ
2t−1(i+1)−1
1 [1], λ

2t−1(i+1)−1
1 [0]

}

. Finally,

each entry k of βi
t can be computed without traversing the

tree as the sum all the entries of λi
t excluding k:

βi
t [k] =

2t−1
∑

j=0

λi
t[j]− λi

t[k]. (12)

C. Type-X nodes

In [6], the authors provide 5 new nodes, named Type-I

to Type-V. A type-I node, also known as REP-II node, has

all leaves frozen except the last two. They can be decoded

as separate REP nodes identified by even-indexed and odd-

indexed bits. Consequently fast-SCAN computes element k of

βi
t , with k = 0, . . . , 2t−1 − 1, as

βi
t [2k] =

2t−1−1
∑

j=0,j 6=k

λi
t[2j] , (13)

βi
t [2k + 1] =

2t−1−1
∑

j=0,j 6=k

λi
t[2j + 1] , (14)

without traversing the type-I tree.

Type-III nodes have 2 frozen bits located on the first two bit-

channels, while the other bit-channels are unfrozen . They may

be decoded as two separate SPC nodes composed by the even-

indexed and odd-indexed values. We denote k0,e and k0,o the

least reliable indices corresponding to the set of even-indexed

and odd-indexed bits, with k1,e and k1,o being the second least

reliable index of each set. The overall parities Pe and Po are

computed in order to calculate the soft message feedback as

in (9):

βi
t [2k] =

{

(−1)
Pe⊕h[k0,e]

∣

∣λi
t[k1,e]

∣

∣ if 2k = k0,e
(−1)

Pe⊕h[2k] ∣
∣λi

t[k0,e]
∣

∣ otherwise.

βi
t [2k + 1] =

{

(−1)
Po⊕h[k0,o]

∣

∣λi
t[k1,o]

∣

∣ if 2k + 1 = k0,o
(−1)

Po⊕h[2k+1] ∣
∣λi

t[k0,o]
∣

∣ otherwise.

The other type-X nodes presented in [6] can be decoded
without traversing the tree as well. For Type-II and Type-IV
nodes, entry k of βi

t is computed as:

β
i
t[k] =

3

⊞
j=0,j 6=k[4]

2t−2−1∑

m=0

λ
i
t[4m+ j] +

2t−2−1∑

m=0,4m+k[4] 6=k

λ
i
t[4m + k[4]] ,

β
i
t[k] =

3∑

j=0,j 6=k[4]

2t−2−1

⊞
m=0

λ
i
t[4m + j] ⊞

2t−2−1

⊞
m=0,4m+k[4] 6=k

λ
i
t[4m + k[4]] ,

i.e. a combination of sum and box-plus operations among

values of λi
t selected with modulo-4 indexing. While these

equations do not alter the soft output of SCAN, their com-

putational complexity is substantially higher than the other

identified nodes, and they will not be considered in the

following Sections. Finally, the structure of Type-V nodes

implies a frozen bit embedded in a series of information

t = 3

t = 2

t = 1

t = 0

2 2 2

2222

22 22 22 22

2 2 2 2 2 2 2 2

22 00

0022

00

Fig. 4. SCAN, Simplified SCAN and Fast-SCAN decoding tree of the SPC
node, with relative latencies.

bits. As a consequence, aside from its high complexity, the

mathematical expression for the computation of βi
t at the root

is only valid for the first iteration. Thus, Type-V nodes are not

considered in the remainder of the paper either.

IV. DECODING LATENCY ANALYSIS

In this Section we evaluate the decoding latency of the

proposed Fast-SCAN decoder and compare it to the latency of

the standard SCAN decoder. Similarly to [4], [6], we suppose

that hard decisions on LLRs and bit operations are executed

instantaneously, while operations involving real numbers (ad-

ditions, comparisons) and Wagner decoding require one clock

cycle. With this assumption, one SCAN update rule consumes

2 clock cycles, since it is composed of a box-plus operation

followed by an addition, as discussed in Section II-C.

Figure 4 depicts the decoding trees of the three decoders

for a constituent code of length Nv = 8. Nv − 2 edges have a

latency of 4 clock cycles, i.e. 2 for the computation of vector

λ (2)-(3) and 2 for vector β (4)-(5). At the same time, Nv

edges at stage 0 have a latency of 2 clock cycles, since βi
0

are not updated through the decoding. Finally, the root has a

latency of 2 corresponding to the computation of the vector

βi
n. The overall SCAN latency for a node at stage t is then

L = 4 ∗ (Nv − 2) + 2 ∗Nv + 2 = 6 · (2t − 1).
As seen in Figure 4, the latency of SSCAN to decode

an SPC node of size 2t is L = 4 ∗ (t − 1) + 2, since the

constant values of βi
t allow for instantaneous decoding of rate-

0 and rate-1 nodes. For fast-SCAN, hard decisions and (10)

are executed instantaneously as well, hence only (9) with the

search of the two least reliable LLRs is taken into account. As

in [6], we assume that the minimum search operations need

one clock cycle; thus, the decoding latency of an SPC node

requires L = 2 clock cycles.

The latency computation for SSCAN in case of REP nodes

is symmetrical to that of SPC nodes, leading to the same

latency L = 4 ∗ (t− 1)+ 2. For fast-SCAN, the sum of LLRs

in (12) takes 1 cycle [6], while removing one LLR value takes

an additional clock cycle, resulting in L = 2 clock cycles.

Type-I nodes have only 2 information bits in the last

channels; a node of size 2t is mostly composed of zero-latency

rate-0 nodes. Hence, type-I is very similar to the REP node

also in terms of latency, the only difference being the edge

connecting the size-2 rate-1 node to its parent node. Conse-

quently, SSCAN requires L = 4∗(t−1)−4+2 = 4∗(t−2)+2

4 8 16 32 64 128 256

2

4

6
(1024,128)

4 8 16 32 64 128 256

4

8

12
(1024,512)

4 8 16 32 64 128 256

3

6

9

(1024,768)

4 8 16 32 64 128 256

Size of nodes

2

4

6

(1024,896)

N
um

be
r

of
 n

od
es

Fig. 5. Number and size of each node type for N = 1024 and K =
128, 512, 768, 896. Dark blue, red, light blue, green, orange and yellow are
respectively corresponding to rate-0, rate-1, SPC, REP, type-I and type-III
nodes.

clock cycles. In fast-SCAN, the even-indexed and odd-indexed

bits are interpreted as two independent REP nodes that can be

decoded in parallel, reducing the latency to L = 2.

Similarly, a type-III node of size 2t can be seen as the

juxtaposition of two SPC nodes, one involving the even-

indexed LLRs, the other involving the odd-indexed LLRs. For

SSCAN, the latency is reduced to L = 4 ∗ (t − 2) + 2 as

for Type-I, while fast-SCAN decodes the two SPC nodes in

parallel, reducing the latency to L = 2 clock cycles.

V. RESULTS

In this Section, we consider polar codes defined in the 5G

standard [11]; we analyze the frequency of occurrence of the

identified special nodes, and provide the consequent speedup

with respect to standard SCAN decoding.

Figure 5 shows the number and the size of the identified

nodes for a given polar code of length N = 1024 and

dimensions K = 128, 512, 768, 896. The nodes are counted

considering the maximum size possible. For instance, an SPC

node of length 128 followed by a rate-1 node of length 128 is

counted as an SPC node of length 256. Low-rate polar codes

are more likely to have long rate-0, REP, and Type-I nodes.

For example, the (1024,128) polar code has a REP node of

length 128 and a rate-0 node of length 256. Around rate 1/2

the nodes are more evenly distributed, with many nodes having

size ≤ 16. In high-rate polar codes, the longer nodes are rate-1,

SPC and Type-III nodes. According to the four rates depicted

in Figure 5, type-I and type-III are the least likely to occur.

TABLE I
LATENCY AND GAIN OF FAST-SCAN AGAINST SCAN FOR VARIOUS

CODE LENGTHS AND RATES

Polar Latency Latency Gain Polar Latency Latecny Gain

code SCAN fast-SCAN (%) code SCAN fast-SCAN (%)

(128,16) 762 50 93.4 (256,32) 1530 142 90.7

(128,64) 762 146 80.8 (256,128) 1530 258 83.1

(128,96) 762 142 81.4 (256,192) 1530 194 87.3

(128,112) 762 50 93.4 (256,224) 1530 186 87.9

(512,64) 3066 270 91.2 (1024,128) 6138 406 93.4

(512,256) 3066 442 85.6 (1024,512) 6138 738 88.0

(512,384) 3066 354 88.5 (1024,768) 6138 694 88.7

(512,448) 3066 302 90.2 (1024,896) 6138 338 94.5

The decoding latency of a sample of 5G-NR polar codes

under SCAN and fast-SCAN is presented in Table I. It can

be seen that fast-SCAN can reduce the latency of SCAN of

more than 80% at code rate 1/2, regardless of the code length;

moreover, at high and low code rates, where special nodes of

larger sizes are present, the gain can surpass 94%.

In Figure 6, we consider an additive white Gaussian noise

channel with binary phase-shift keying modulation and provide

simulation results for an N = 2562, K = 2392 polar code un-

der SC, SCL (with and without CRC), SCAN and fast-SCAN.

We also provide simulation results of the product polar code

scheme presented in [12], where the component codes of the

product codes are polar codes. Being an iterative concatenated

scheme, this scenario can benefit from the soft-in soft-out

capabilities of SCAN-based decoding algorithms. Simulations

decode the component polar codes with SCL, fast-SCAN and

SCAN decoders; these decoders exchange soft information

between iterations, following the scheme detailed in [12] in

case of SCL. SCAN and fast-SCAN consider one internal

iteration. The component code is the N = 256, K = 239 code

shown on Figure 3. We can see that SCAN and fast-SCAN

yield the same BLER for both standard and product polar

codes, showing that the proposed fast decoding techniques are

exact and do not incur any performance degradation. SCAN

and fast-SCAN slightly improve on the performance of SC

for standard polar codes: this is because the hard decision

is taken on the a-posteriori information, i.e. the combination

of the soft output and the channel LLRs, as would a turbo

decoder. Fast-SCAN outperforms SCL decoding of product

polar codes, yielding a gain of almost 1.5dB at BLER=10−3.

It also outperforms standard polar decoding using SC and non-

CRC aided SCL, while it approaches the BLER of CRC-aided

SCL.

For a single internal iteration, SCAN decodes the compo-

nent code in 6 · (28 − 1) = 1530 clock cycles, while fast-

SCAN needs 58 clock cycles. The latency of the product

polar codes multiplies the latency of the component decoders

by the number of row/column half-iterations, since row and

column decoding cannot be run in parallel to enable the

exchange of information [12]. Hence, the maximum latency

results in 8 ∗ (58 + 58) = 928 clock cycles with fast-SCAN

and (1530 + 1530) ∗ 8 = 24480 clock cycles for SCAN. The

standard polar code is decoded in 2N − 2 = 131070 clock

cycles with SC and 2N − 2 +K = 188191 with SCL, while

fast-SCAN requires 12190 clock cycles.

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

 E
b
/N

0
 (dB)

10-3

10-2

10-1

100

B
LE

R

SC Standard Polar Code
SCL-8 CRC-0 Standard Polar Code
SCL-8 CRC-24 Standard Polar Code
SCAN Product Polar Code
Fast-SCAN Product Polar Code
SCL-2 Product Polar Code
SCL-8 Product Polar Code
Fast-SCAN Standard Polar Code
SCAN Standard Polar Code

Fig. 6. BLER of product and standard polar code with N = 2562 and
K = 2392 .

VI. CONCLUSIONS

In this paper, we have proposed fast-SCAN, a reduced

latency decoder based on the SCAN decoding algorithm. Fast-

SCAN decodes constituent nodes exactly without the need to

explore the decoding tree, and thus has no impact on the error-

correction performance of SCAN. At the same time, it can

reduce the decoding latency of SCAN of up to 94.5%.

REFERENCES

[1] E. Arikan, “Channel polarization: a method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–
3073, July 2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions

on Information Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.
[3] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE

Communications Letters, vol. 16, no. 10, pp. 1668–1671, Oct. 2012.
[4] A. Yazdi and F. Kschischang, “A simplified successive-cancellation

decoder for polar codes,” IEEE Communications Letters, vol. 15, no.
12, pp. 1378–1380, Dec. 2011.

[5] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar
decoders: algorithm and implementation,” IEEE Journal on Selected

Areas in Communications, vol. 32, no. 5, pp. 946–957, May 2014.
[6] M. Hanif and M. Ardakani, “Fast successive-cancellation decoding

of polar codes: identification and decoding of new nodes,” IEEE

Communications Letters, vol. 21, no. 11, pp. 2360–2363, Nov 2017.
[7] U. U. Fayyaz and J. R. Barry, “Low-complexity soft-output decoding

of polar codes,” IEEE Journal on Selected Areas in Communications,
vol. 32, no. 5, pp. 958–966, May 2014.

[8] J. Lin, C. Xiong, and Z. Yan, “Reduced complexity belief propagation
decoders for polar codes,” in IEEE Workshop on Signal Processing

Systems (SiPS), Hangzhou, China, Oct 2015.
[9] H. Vangala, E. Viterbo, and Y. Hong, “A comparative study of polar code

constructions for the AWGN channel,” arXiv preprint arXiv:1501.02473,
Jan. 2015.

[10] C. Condo, V. Bioglio, and I. Land, “Generalized fast decoding of polar
codes,” in IEEE Global Communications Conference (GLOBECOM),
Abu Dhabi, UAE, Dec. 2018.

[11] V. Bioglio, C. Condo, and I. Land, “Design of polar codes in 5G new
radio,” IEEE Communications Surveys & Tutorials., vol. to appear, 2020.

[12] C. Condo, V. Bioglio, H. Hafermann, and I. Land, “Practical product
code construction of polar codes,” IEEE Transactions on Signal

Processing, vol. to appear, 2020.
[13] R. Silverman and M. Balser, “Coding for constant-data-rate systems,”

Transactions of the IRE Professional Group on Information Theory, vol.
4, no. 4, pp. 50–63, Sept. 1954.

	I Introduction
	II Preliminaries
	II-A Polar codes
	II-B SC-based decoding
	II-C SCAN decoding

	III Fast-SCAN decoding
	III-A SPC nodes
	III-B REP nodes
	III-C Type-X nodes

	IV Decoding Latency Analysis
	V Results
	VI Conclusions
	References

