
Neural-Network-Optimized Degree-Specific Weights
for LDPC MinSum Decoding

Linfang Wang*, Sean Chen*, Jonathan Nguyen*, Divsalar Dariush†, Richard Wesel*
*Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095

†Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
Email: {lfwang, nguyen.j,wesel}@ucla.edu, mistystory@g.ucla.edu, Dariush.Divsalar@jpl.nasa.gov

Abstract—Neural Normalized MinSum (N-NMS) decoding de-
livers better frame error rate (FER) performance on linear block
codes than conventional normalized MinSum (NMS) by assigning
dynamic multiplicative weights to each check-to-variable mes-
sage in each iteration. Previous N-NMS efforts have primarily
investigated short-length block codes (N < 1000), because the
number of N-NMS parameters to be trained is proportional to
the number of edges in the parity check matrix and the number of
iterations, which imposes am impractical memory requirement
when Pytorch or Tensorflow is used for training. This paper
provides efficient approaches to training parameters of N-NMS
that support N-NMS for longer block lengths. Specifically, this
paper introduces a family of neural 2-dimensional normalized (N-
2D-NMS) decoders with with various reduced parameter sets and
shows how performance varies with the parameter set selected.
The N-2D-NMS decoders share weights with respect to check
node and/or variable node degree. Simulation results justify this
approach, showing that the trained weights of N-NMS have
a strong correlation to the check node degree, variable node
degree, and iteration number. Further simulation results on the
(3096,1032) protograph-based raptor-like (PBRL) code show that
N-2D-NMS decoder can achieve the same FER as N-NMS with
significantly fewer parameters required. The N-2D-NMS decoder
for a (16200,7200) DVBS-2 standard LDPC code shows a lower
error floor than belief propagation. Finally, a hybrid decoding
structure combining a feedforward structure with a recurrent
structure is proposed in this paper. The hybrid structure shows
similar decoding performance to full feedforward structure, but
requires significantly fewer parameters.

I. INTRODUCTION

Message passing decoders are often used for linear block
code decoding. Typical message passing decoders utilize belief
propagation (BP), MinSum, and its variations such as normal-
ized MinSum (NMS) and offset MinSum (OMS). However,
message passing decoders are sub-optimal because of the
existence of cycles in the parity check matrix.

Recently, numerous works have focused on enhancing the
performance of message passing decoders with the help of
neural networks [1]–[14]. The neural network is created by
unfolding the message passing operations of each decoding

This research is supported by Physical Optics Corporation (POC), SA
Photonics, and National Science Foundation (NSF) grant CCF-1911166. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect views of
POC, SA or NSF. Research was carried out in part at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with NASA.
©2021. All rights reserved.

iteration [1]. Nachmani et al. in [1] proposed improving
BP decoding by assigning unique multiplicative weights to
check-to-variable messages and the channel log-likelihood
(LLR) of variables in each iteration. The so-called "Neural BP
(NBP)" has shown better performance than BP. The authors
further proposed a recurrent neural network BP (RNN-BP)
[3] decoder, which set the edge-specific weight to be equal in
each iteration. Nachmani et al. and Lugosch et al. in [1], [2],
[4] proposed a Neural Normalized MinSum (N-NMS) decoder
and Neural Offset MinSum (N-OMS) decoder to improve the
performance of the NMS and OMS decoder.

As the code length gets longer, these edge-specific neural
decoders become impractical because the number of edges
scales quickly. One solution is to share one parameter with
edges that have same properties, such as in the same iteration,
or connecting same check/variable node. For an example,
Wang et al. proposed to assign parameters for each check-to-
variable layer and variable-to-check layer [13], respectively.
M. Lian et. al. in [14] considered assigning same weight to
all messages in one iteration.

Besides, most previous work has focused on codes with
short block lengths (N < 1000). The focus on short codes
may result from the fact that popular deep learning research
platforms, such as Pytorch and Tensorflow, require large
amounts of memory to calculate the gradient when the block
length is long. However, as pointed in [11], it is possible to
train the parameters for longer block lengths if resources are
handled more efficiently. Abotabl et al. provided an efficient
computation framework for optimizing the offset values in the
N-OMS algorithm [11], and trained an OMS neural network
with edge-specific weights, iteration-specific weights, and a
single weight.

A primary contribution of this paper is a family of neu-
ral 2-dimensional normalized MinSum (N-2D-NMS) decoder
whose weights are optimized by a neural network based on
node degree. This simplification over previous approaches that
separately optimize the weight for each edge leads to a much
simpler optimization that provides excellent FER performance
while still accommodating large block lengths of practical
importance. The main contributions in this paper are:
• An efficient implementation of the N-NMS architecture

based on the gradients in backpropagation. This part is
related to the framework in [11]. We show that back-
propagation can be conducted in an iterative way, and

ar
X

iv
:2

10
7.

04
22

1v
1

 [
cs

.I
T

]
 9

 J
ul

 2
02

1

the parameters used to implement backpropagation can
be stored efficiently. This approach solves the memory
issue faced by Tensorflow [15] and facilitates an efficient
C++ implementation simple enough to train without a
GPU.

• Empirical N-NMS results demonstrating that dynamic
weights show a strong correlation with check node de-
gree, variable node degree, and iteration.

• A family of N-2D-NMS decoders with various reduced
parameter sets showing how performance varies with
the parameter set selected. The N-2D-NMS decoding
structure is a generalization of [16] to allow variation with
iteration. Simulation results on the (3096,1032) PBRL
code show that N-2D-NMS decoder can achieve the same
FER as N-NMS with significantly fewer parameters. The
N-2D-NMS decoder for a (16200,7200) DVBS-2 LDPC
code achieves a lower error floor than belief propagation.

• A hybrid decoding structure that combines a feedforwad
structure with a recurrent structure that shows similar
decoding performance as a full feedforward structure, but
requires significantly fewer parameters.

The remainder of the paper is organized as follows: Sec. II
derives the gradients of the loss function with respect to
learnable parameters and neurons of a N-NMS neural network
and proposes an efficient learning representation. Statistics of
learned weights are studied in this section. Sec. III introduces
a family of N-2D-NMS decoders. Sec. IV presents and dis-
cusses our simulation results and explores a hybrid decoding
structure. Sec. V concludes our work.

II. EFFICIENT IMPLEMENTATION OF N-NMS

A. Forward Propagation

Let H be the parity check matrix of a (n, k) LDPC code.
We use vi and cj to denote the ith variable node and jth check
node, respectively. N-NMS resembles NMS except assigning
multiplicative parameters for each check-to-variable message
in each iteration. In the tth decoding iteration, N-NMS updates
the check-to-variable node message, u(t)cj→vi , the variable-to-
check node message, l(t)vi→cj , and posterior of each variable
node, l(t)vi , by:

u(t)ci→vj = β
(t)
(ci,vj)

×
∏

vj′∈N(ci)/{vj}

sgn(l(t−1)vj′→ci)

× min
vj′∈N(ci)/{vj}

∣∣∣(l(t−1)vj′→ci)
∣∣∣ , (1)

l(t)vj→ci = lchvi +
∑

ci′∈N(vj)/{ci}

u(t)ci′→vj , (2)

l(t)vj = lchvi +
∑

ci′∈N(vj)

u(t)ci′→vj . (3)

N(ci) (N(vj)) represents the set of the variable nodes (check
nodes) that are connected to ci(vj). lchvj is the LLR of channel
observation of vj . β

(t)
(ci,vj)

are multiplicative weights to be
trained. The decoding process stops when all parity checks
are satisfied or maximum iteration IT is reached.

B. Backward Propagation

In this subsection, we derive the gradient of J with respect
to the learnable weights, ∂J

∂β
(t)

(vi,cj)

, the check-to-variable mes-

sage, ∂J

∂u
(t)
ci→vj

, and variable-to-check message, ∂J

∂l
(t)
vj→ui

. Just

like forward propagation, ∂J

∂u
(t)
ci→vj

and ∂J

∂l
(t)
vj→ui

are traced back

iteratively. We show that in order to get desired gradients, it is
sufficient only to store, l(t)vi ,sgn(l(t)vj→ci), sgn(u(t)ci→vj), min1tci ,
min2tci , pos1

t
ci and pos1tci when performing forward prop-

agation, where

min1tci = min
vj′∈N(ci)

|l(t)vj′→ci |, (4)

pos1tci = argmin
vj′∈N(ci)

|l(t)vj′→ci |, (5)

min2tci = min
vj′∈N(ci)/{pos1t

ci
}
|l(t)vj′→ci |, (6)

pos2tci = argmin
vj′∈N(ci)/{pos1t

ci
}
|l(t)vj′→ci |. (7)

In this paper, multi-loss cross entropy [1] is used as loss
function. Denote loss by J and assume all-zero codewords
are transmitted, it is straightforward to calculate ∂J

∂l
(t)
vi

:

∂J

∂l
(t)
vi

= − 1

nIT
σ(−l(t)vi). (8)

We initialize ∂J

∂l
(IT)

vi→cj

= 0 for (ci, vj) pairs whose H(i, j) = 1.

In iteration t, ∂J

∂l
(t)
vj→ui

is updated based on "back propagation

through time" [17]:

∂J

∂u
(t)
vj→ci

=
∂J

∂l
(t)
vj

+
∑

ci′∈N(vj)/{ci}

∂J

∂l
(t)
ci′→vj

. (9)

∂L

∂β
(t)
ci→vj

is calculated by:

∂J

∂β
(t)
ci→vj

= u(t)∗ci→vj
∂J

∂u
(t)
ci→vj

, (10)

where

u(t)∗ci→vj = sgn(u(t)∗ci→vj)× |u(t)∗ci→vj |, (11)

sgn(u(t)∗ci→vj) =
∏

vj′∈N(ci)/{vj}

sgn(l(t−1)vj′→ci), (12)

|u(t)∗ci→vj | =
{

min2tci , if vj = pos1tci
min1tci , otherwise . (13)

With chain rule, we can get ∂J

∂|u(t)∗
ci→vj

|
:

∂J

∂|u(t)∗ci→vj |
= sgn(u(t)∗ci→vj)

∂J

∂u
(t)∗
ci→vj

, (14)

= sgn(u(t)∗ci→vj)β
(t)
(ci,vj)

∂J

∂u
(t)
ci→vj

. (15)

For all variable nodes connected to check node ci, only
pos1(t)

ci and pos2(t)
ci receive backward information, therefore,

∂J

∂l
(t−1)
vj→ci

can be computed as follows:
sgn(l

(t−1)
vj→ci)

∑
vj′∈N(ci)/{vj}

∂J

∂|u(t)∗
ci→v

j′
|

, if vj = pos1(t)
ci

sgn(l
(t−1)
vj→ci)

∂J

∂

∣∣∣∣u(t)∗

ci→pos1
(t)
ci

∣∣∣∣ , if vj = pos2(t)
ci

0 , otherwise.
(16)

Eq.(9)-(16) indicate that ∂J

∂u
(t)
ci→vj

and ∂J

∂l
(t)
vj→ci

are calculated

in a message passing manner. As a result, the full N-NMS neu-
ral network is not necessarily to be built. Besides, the neuron
values in each hidden layer can be stored efficiently using
Eq.(4)-(7). Both solves memory issue faced by Tensorflow, as
pointed in [15]. The training work in this paper is done by C++
with only CPU computation nodes. Finally, we use stochastic
gradient decent method with Adam optimizer to update β(t)

(ci,vj)

in each training iteration.

C. Simulation Results

In this subsection, we use the efficient implementation de-
scribed above to train the weights of N-NMS for a (3096,1032)
protograph-based raptor-like (PBRL) LDPC code. The code
we use is taken from [18] (in [19]). Encoded bits x are
modulated by BPSK and transmitted through additive white
Gaussian noise channel (AWGNC). The N-NMS decoder is
flooding scheduled and maximum decoding iteration is 10.

Define β(t,dc) = {β(t)
(ci,vj)

|deg(ci) = dc} and β̄(t,dc) as the
mean value of β(t,dc). Fig.1a gives β̄(t,dc) versus decoding
iteration t with all possible check node degrees. Note that
iteration number starts from 2 because most of edges have 0
messages in the first iteration, which is a result of puncturing.
The simulation shows a clear relationship between check node
degree and β̄, i.e. the larger check node degree corresponds
to a smaller β̄, this difference is significant in the first
few iterations. Also, for each possible dc, β̄(t,dc) changes
significantly in first few iterations. In short conclusion, Fig. 1a
shows that β(t)

(ci,vj)
has a strong correlation with check node

degree and iteration.
In order to investigate the relationship between weights and

variable node degree given a check node degree and iteration
number, we further define β(t,dc,dv) = {β(t)

(ci,vj)
|deg(ci) =

dc, deg(vi) = dv}. We denote β̄(t,dc,dv) by the average value
of β(t,dc,dv). Fig.1b gives the average of weights correspond-
ing to different check node degree and variable node degree
in iteration 4. Simulation result shows that given a specific
iteration t′ and check node degree d′c, the larger d′v corresponds
to a smaller β̄(t′,d′c,d

′
v).

In conclusion, the weights of N-NMS are correlated with
check node degree, variable node degree and iteration. Thus,
node degrees should affect the weighting of messages on
their incident edges when decoding of irregular LDPC code.

(a)

A
v
er

ag
e

o
f

W
ei

g
h
ts

(b)

Fig. 1. Mean values of messages of FNNMS for a (3096,1032) PBRL code
in each iteration show strong correlations to check and variable node degree.

Inspired by recent neural network decoders, we propose a
family of N-2D-NMS decoders in this paper.

III. NEURAL 2D NORMALIZED MINSUM DECODERS

Based on the previous discussion, it is intuitive to consider
assigning same weights to messages with same check node
degree and/or variable node degree. In this section, we pro-
pose neural 2-dimensional normalized MimSum (N-2D-NMS)
decoders which has the following form:

u(t)ci→vj = β
(t)
∗ ×

∏
vj′∈N(ci)/{vj}

sgn(l(t−1)vj′→ci)

× min
vj′∈N(ci)/{vj}

|(l(t−1)vj′→ci)|
, (17)

l(t)vj→ci = lchvi + α
(t)
∗

∑
ci′∈N(vj)/{ci}

u(t)ci′→vj . (18)

The β(t)
∗ and α(t)

∗ are the multiplicative weights assigned to
check and variable node messages, respectively. The subscripts
indicate weight sharing metric. Table. I lists different types of
N-2D-NMS decoders. As a special case, we denote NNMS as
type-0.

Type-1 to type-4 assign the same weights based on node
degree. Type-1 N-2D-NMS assigns same weights to the edges
that have same check node and variable node degree. Type-
2 considers the check node degree and variable node degree
separately. As a simplification, type-3 and type-4 only consider
variable node degree and check node degree, respectively.

Dai. et. al in [20] studied weight sharing based on edge
type of MET-LDPC code, or protograph-based code. We also
consider this metric in paper, which is given by type-5, 6
and 7. Type-5 assigns same weights to the edges with same
edge-type, i.e. the edges belonged to the same position in
protomatrix. f is lifting factor. In this paper, we further
consider its simplifications, type-6 and-type 7, which assign
parameters only based on horizontal layers and vertical layers,
respectively. Finally, type 8 decoder assigns iteration-distinct
parameters, this simple weight sharing schemes have been
considered for previous literature [11], [14].

Table.I gives the number of parameters per iteration required
for various N-2D-NMS decoders. The (3096,1032) PBRL code

TABLE I
VARIOUS N-2D-NSM DECODERS AND

REQUIRED NUMBER OF PARAMETERS PER ITERATION

type β
(t)
∗ α

(t)
∗

(16200,7200)
DVBS-2 code

(3096,1032)
PBRL code

0[1] β
(t)

(ci,vj)
1 4.8 ∗ 105 1.60 ∗ 104

Weight Sharing Based on Node Degree

1 β
(t)

(d.(ci),d.(vj))
1 13 41

2 β
(t)

(deg(ci))
α
(t)

(deg(vj))
8 15

3 β
(t)

(deg(ci))
1 4 8

4 1 α
(t)

(deg(vj))
4 7

Weight Sharing Based on Protomatrix

5[20] β
(t)(⌊

i
f

⌋
,
⌊

j
f

⌋) 1 − 101

6 β
(t)(⌊

i
f

⌋) 1 − 17

7 1 β
(t)(⌊

j
f

⌋) − 25

Weight sharing based on Iteration [11], [14]

8 β(t) 1 1 1

and (16200,7200) DVBS-2 [21] standard LDPC code are con-
sidered in this paper. It is shown that the number of parameters
required by node-degree based weight sharing is less than that
required by protomatrix based weight sharing. Based on the
simulation results given in Sec. IV, the two weight sharing
schemes deliver same error correction performance.

IV. SIMULATION RESULT

In this section, we investigate the decoding performance
of N-2D-NMS decoders for the LDPC codes with different
block length. All encoded bits are modulated by BPSK and
transmitted through AWGNC. The LDPC codes and optimized
weights in this paper can be found and downloaded in [18].

A. (16200,7200) DVBS-2 LDPC code

Fig. 2 gives the FER performances of various LDPC decoder
for (16200,7200) DVBS-2 LDPC code. All the decoders
are implemented in a flooding way and maximum decoding
iteration is 50. It is shown that N-NMS decoder outperforms
BP at 1.3dB, with a lower error floor. Type-1 and type-2 N-
2D-NMS decoders have a slightly better performance than N-
NMS. As two simplifications of type-2 N-2D-NMS, type 4
decoder outperforms type 3, because the variable node weights
of investigated code have a larger dynamic range than check
node weights, as shown in Fig.3a.

Fig. 3a shows the β(t)
(deg(ci))

and α(t)
(deg(vj))

of type-2 decoder.
The trained values agree with our observation in the previous
section, i.e., in each decoding iteration, larger degree node
corresponds to a smaller value. Note that the parameters only
changes greatly in the first 20 iterations, and after that the

FE
R

Fig. 2. FER performance N-2D-NMS decoders for a (3096,1032) PBRL
LDPC code.

Decoding Iter. Decoding Iter.

deg.6

deg.1

deg.2deg.3

deg.8

deg.7

deg.4 deg.5

(a) β(t)

deg(ci)
and α(t)

deg(vj)
of type-2 N-2DNMS decoder.

Decoding Iter.

0.885

(b) β(t) of type-8 N-2D-NMS.

FE
R

(c) FER performance of hybrid type-2
N-2D-NMS decoder

Fig. 3. Trained weights of N-2D-NMS decoders for a (16200,7200) DVBS-2
code only changes in significantly in the first 20 iterations. The hybrid type-2
N-2D-NMS decoder with I′ = 20 shows a comparable decoding performance
to type-2 decoder, with 60% parameters reduction.

change is minor. It directly leads to a combination of a
feedforward neural network with a recurrent neural network,
meaning that parameters are updated in the first I ′ iterations
and the last IT −I ′ iterations reuse the parameters in iteration
I ′. We call this structure as hybrid N-2D-NMS decoder. Fig.
3c shows that hybrid type-2 N-2D-NMS wiht I ′T = 20
has comparable decoding performance with full feedforward
decoding structure, with 60% parameter reduction.

F
E

R

Fig. 4. FER performance N-2D-NMS decoders for a (3096,1032) PBRL
LDPC code.

Fig. 3b shows that the parameters of type-8 decoder con-
verge to 0.885, which is close to the single weight of NMS
decoder. As shown in Fig.2, by only assigning iteration-
specific parameters, type-8 decoder appears an early error floor
at 1.20dB.

B. (3096,1032) PBRL LDPC Code

Fig.4 gives the FER performance of N-2D-NMS decoders.
All the decoder are implemented in a layered way and max-
imum decoding iteration is 10. The simulation results show
that NNMS (i.e. type 0) has a more than 0.5dB improvement
than NMS decoder. Type 1-7 decoders are also simulated.
Note that type 1,2 and 5 have same performance with NNMS
decoder, with much smaller number of parameters required.
It is shown that weight sharing metrics based on check and
variable node degree, or based on horizontal and vertical layer
delivers lossless performance. Type-4 and 6 decoders have a
degradation around 0.05dB compared with type 0, type-5 and
7 have a degradation around 0.2dB compared type 0. It can be
seen that, for (3096,1032) PBRL code, assigning weights only
based on check nodes can gain more benefit than assigning
weights only based on variable node.

V. CONCLUSION

This paper presents MinSum LDPC decoders for which
the normalization weights are optimized by a neural network.
An initial neural network allows a different weight for every
edge. The statistics of the trained parameters show a strong
correlation with check node degree, variable node degree and
iteration. A family of neural 2D normized MinSum (N-2D-
NMS) decoders are introduced in this paper with different
parameter reductions and decoding performances. Simulation
results on a (16200,7200) DVBS-2 standard LDPC code and
(3096,1032) PBRL code show that N-2D-NMS decoder can
have same decoding performance as NNMS decoder and
achieves a lower error floor than BP. Finally, a hybrid decod-
ing structure combining feedforward structure with recurrent

structure is proposed in this paper. The hybrid structure shows
similar decoding performance to full feedforward structure,
with less parameters required.

REFERENCES

[1] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in 2016 54th Annual Allerton Conference
on Communication, Control, and Computing, Sep. 2016, pp. 341–346.

[2] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in 2017
IEEE International Symposium on Information Theory (ISIT), Jun. 2017,
pp. 1361–1365.

[3] E. Nachmani, E. Marciano, D. Burshtein, and Y. Be’ery, “RNN
decoding of linear block codes,” CoRR, vol. abs/1702.07560, 2017.
[Online]. Available: http://arxiv.org/abs/1702.07560

[4] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, “Deep learning methods for improved decoding of linear
codes,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 1, pp. 119–131,
Feb. 2018.

[5] F. Liang, C. Shen, and F. Wu, “An iterative BP-CNN architecture for
channel decoding,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 1, pp.
144–159, Feb. 2018.

[6] X. Wu, M. Jiang, and C. Zhao, “Decoding optimization for 5G LDPC
codes by machine learning,” IEEE Access, vol. 6, pp. 50 179–50 186,
2018.

[7] L. Lugosch and W. J. Gross, “Learning from the syndrome,” in 2018
52nd Asilomar Conf. on Signals, Systems, and Computers, Oct. 2018,
pp. 594–598.

[8] W. Lyu, Z. Zhang, C. Jiao, K. Qin, and H. Zhang, “Performance
evaluation of channel decoding with deep neural networks,” in 2018
IEEE International Conference on Communications (ICC), May 2018,
pp. 1–6.

[9] X. Xiao, B. Vasic, R. Tandon, and S. Lin, “Finite alphabet iterative
decoding of LDPC codes with coarsely quantized neural networks,” in
2019 IEEE Global Communications Conference (GLOBECOM), Dec.
2019, pp. 1–6.

[10] C. Deng and S. L. Bo Yuan, “Reduced-complexity deep neural network-
aided channel code decoder: A case study for BCH decoder,” in ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), May 2019, pp. 1468–1472.

[11] A. Abotabl, J. H. Bae, and K. Song, “Offset min-sum optimization for
general decoding scheduling: A deep learning approach,” in 2019 IEEE
90th Vehicular Tech. Conf. (VTC2019-Fall), Sep. 2019, pp. 1–5.

[12] A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. G. i Amat,
“Pruning and quantizing neural belief propagation decoders,” IEEE
Journal on Selected Areas in Communications, 2020.

[13] Q. Wang, S. Wang, H. Fang, L. Chen, L. Chen, and Y. Guo, “A Model-
Driven deep learning method for normalized Min-Sum LDPC decoding,”
in 2020 IEEE International Conference on Communications Workshops
(ICC Workshops), Jun. 2020, pp. 1–6.

[14] M. Lian, F. Carpi, C. Häger, and H. D. Pfister, “Learned Belief-
Propagation decoding with simple scaling and SNR adaptation,” in 2019
IEEE International Symposium on Information Theory (ISIT), Jul. 2019,
pp. 161–165.

[15] L. P. Lugosch, “Learning algorithms for error correctio,” 2018, master
thesis, McGill University.

[16] Juntan Zhang, M. Fossorier, Daqing Gu, and Jinyun Zhang, “Improved
min-sum decoding of ldpc codes using 2-dimensional normalization,” in
GLOBECOM ’05. IEEE Global Telecommunications Conference, 2005.,
vol. 3, 2005, pp. 1187–1192.

[17] P. J. Werbos, “Generalization of backpropagation with application to a
recurrent gas market model,” Neural Netw., vol. 1, no. 4, pp. 339–356,
Jan. 1988.

[18] “UCLA communications systems laboratory,” http://www.seas.ucla.edu/
csl/#/publications/published-codes-and-design-tools.

[19] T. Chen, K. Vakilinia, D. Divsalar, and R. D. Wesel, “Protograph-based
raptor-like ldpc codes,” IEEE Transactions on Communications, vol. 63,
no. 5, pp. 1522–1532, 2015.

[20] J. Dai, K. Tan, Z. Si, K. Niu, M. Chen, H. V. Poor, and S. Cui, “Learning
to decode protograph ldpc codes,” arXiv preprint arXiv:2102.03828,
2021.

[21] “Specifications,” https://dvb.org/specifications/, Sep. 2019, accessed:
2021-5-4.

http://arxiv.org/abs/1702.07560
http://www.seas.ucla.edu/csl/#/publications/published-codes-and-design-tools
http://www.seas.ucla.edu/csl/#/publications/published-codes-and-design-tools
https://dvb.org/specifications/

	I Introduction
	II Efficient implementation of N-NMS
	II-A Forward Propagation
	II-B Backward Propagation
	II-C Simulation Results

	III Neural 2D Normalized MinSum Decoders
	IV Simulation Result
	IV-A (16200,7200) DVBS-2 LDPC code
	IV-B (3096,1032) PBRL LDPC Code

	V Conclusion
	References

