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Abstract—This paper is dedicated to channel modeling and
error-correction coding for DNA data storage with nanopore
sequencing. We first propose a novel statistical model for DNA
storage, which takes into account the memory within DNA
storage error events, and follows the way nanopore sequencing
works. Compared to existing channel models, the proposed model
represents more accurate experimental datasets. We also propose
a full error-correction scheme for DNA storage, based on a
consensus algorithm and non-binary LDPC codes. Especially,
we introduce a novel synchronization method which allows to
eliminate remaining deletion errors after the consensus, before
applying a belief-propagation LDPC decoding algorithm to cor-
rect substitution errors. This method exploits the LDPC code
structure to correct deletions, and does not require adding any
extra redundancy.

I. INTRODUCTION

Over the last decade, the amount of generated data has

been growing up exponentially, and [1] predicted that data

storage needs would grow from 45 zetabytes in 2019 to

175 zetabytes by 2025. For this reason, it is necessary to

find alternatives to classical storage methods (tapes, HDD,

SSD, etc.). Among these, DNA data storage [2] appears as a

promising solution that benefits from highly increased density

and durability compared to existing storage solutions. Over

the last years, improvements in DNA synthesis and sequencing

techniques have made this technology more affordable, and an

automated end-to-end DNA data storage device demonstrator

was reported in [3]. This demonstrator includes the MinION,

i.e., third-generation single molecule sequencing from Oxford

Nanopore Technologies (ONT). This device offers a portable,

real time, low-cost, and long-reads sequencing [4].

However, up-to-date DNA data storage systems remain very

sensitive to errors introduced during synthesis and sequencing

[5]. These two operations introduce not only substitution

errors, like conventional memory storage systems, but also

insertions and deletions at a non-negligible rate. Conventional

decoding algorithms of existing error-correction solutions such

as Turbo codes or Low Density Parity Check (LDPC) codes

are not sufficient for DNA storage, because initially designed

to efficiently protect sequences against substitution errors only.

In order to design efficient error-correction solutions for

DNA storage, we first need to develop accurate statistical
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channel models that allow for error-correction code design and

simulation, without having to use very costly experimental

processes. DNA storage channel models currently used for

error-correction performance evaluation either assume non-

realistic independent and identically distributed (i.i.d.) er-

rors [6], or rely on Deep-Learning approaches [7], which

makes them difficult to interpret.

This paper introduces on a novel statistical DNA data stor-

age channel model, based on a Markov chain with memory of

order k, that models the MinION sequencing technology. Since

this model consists of explicit probability terms, its assump-

tions (memory length, dependency to input sequence, etc.) are

explicit as well. Further, once inferred on experimental data,

this model can be easily interpreted (for instance, to identify

which patterns in the input sequence are the most sensitive

to specific types of errors). We show from numerical results

that our model represents more accurately the experimental

channel compared to the state of the art [6], [7].

The paper also addresses the design of efficient error-

correction solutions for DNA storage. Apart from substitu-

tions, most existing practical error-correction codes can correct

only insertions [8], or only deletions [8], [9]. Existing solutions

[10] which can efficiently correct the three types of errors

have a very high complexity, except for the i.i.d. channel

model which is not realistic in the DNA storage application. To

fully reconstruct the original sequence, a commonly employed

solution consists in a consensus/trace-reconstruction algorithm

followed by standard channel decoding to correct remaining

residual errors [11]–[13]. However, because a few amount of

insertions and deletion are likely to remain after the consensus,

the reconstruction process may fail. In order to correct the

remaining errors, it was proposed in [12] to augment a

conventional channel coding solution with periodical markers.

These markers allow to correct insertions and deletions by re-

synchronizing the output sequence with the original one, while

the channel code takes in charge the substitution errors.

In this work, we consider a consensus algorithm together

with Non-Binary (NB) LDPC codes that fit the quaternary

DNA alphabet. As an alternative to [12] in order to handle

the few remaining insertions and deletions, we propose a

novel intermediate step between the consensus and the channel

decoding. This intermediate step consists in re-synchronizing

the sequence at the output of the consensus, by relying on the

LDPC code structure rather than on additional markers. This



represents an interesting gain in terms of coding redundancy,

which may allow to reduce the expensive synthesis costs.

Section II describes the DNA data storage workflow. Sec-

tion III presents existing DNA storage channel models, and

Section IV introduces our channel model with memory. Sec-

tion V presents the proposed scheme for error-correction.

Section VI is dedicated to simulation results.

II. DNA DATA STORAGE WORKFLOW

A. Synthesis

As described in [14], DNA synthesis consists of transform-

ing digital data into experimental DNA strands, where each

DNA strand is formed by a series of nucleotides ’A’, ’C’,

’G’ and ’T’. Different synthesis techniques exist (Chemical,

Enzymatic, Bacteria-Based, etc.), each exhibiting different

constraints, in terms of e.g., sequences length, costs, etc.

Data sequences used in this work were synthesized using the

chemical technique, in which oligonucleotides (short DNA

molecules) are synthesized and then assembled to form the

ordered sequences of nucleotides. After the synthesis, we get

not one but thousands of copies of the synthesized sequence.

B. Nanopore sequencing

Sequencing is the physical process where DNA strands

are read. In this work, we consider the ONT MinION [4].

In this sequencing technique, strands go through a nanopore

nucleotide by nucleotide, and an electrical signal (current

intensity) is sequentially output for every group of k successive

nucleotides, called k-mers. Then, a utility software called the

basecaller translates the current signal at the output of the

sequencer into the k nucleotides corresponding to each k-

mer. Multiple basecallers exist (Guppy, Albacore, Flappie,..),

and they use either event segmentation or Deep-Learning

approaches [15]. We considered Guppy for this work as it

is the official basecaller provided by ONT. The basecaller

generates fastQ files that contain the read sequences as well

as related metadata.

III. EXISTING DNA DATA STORAGE CHANNEL MODELS

One major drawback of DNA data storage resides in the fact

that both synthesis and sequencing introduce errors (insertions,

deletions, substitutions) [5]. From an information-theoretic

perspective, all the previous steps (synthesis, sequencing,

basecalling) can be modeled as a channel, which takes as input

a sequence composed of bases ’A’, ’C’, ’G’, ’T’, and outputs

N edited replicas of the original sequence. In this section we

introduce some notation and describe state-of-the-art channel

models for DNA storage.

A. Notation

In what follows, we use Ins, Del, Sub, as abbreviations

for Insertion, Deletion, Substitution, respectively. In addition,

Match stands for “no error”. In our model, X is the channel

input sequence of length I , in which Xi ∈ {A,C,G, T} is

the base at position i. Then, kmeri = (Xi−k+1 . . . Xi−1Xi)
is the k−mer of length k at position i. And Y is a sequence of

length I of channel events, where Yi ∈ {Ins,Del,Sub,Match}
is the event at position i. We consider that a given DNA storage

channel model is defined by a set of probability distributions

for the successive Yi. For instance, P(Yi) is the marginal

probability of Yi, and P(Yi|kmeri, Yi−1) is the conditional

probability of Yi with respect to kmeri and the previous event

Yi−1. Finally, we use Z to denote edited sequences at the

output of the basecaller.

B. Independent and identically distributed channel model

In the literature, Y is often considered to be independent

and identically distributed (i.i.d). Events Yi are further as-

sumed to be independent from the Xi, and the probabilities

P(Yi) are either inferred from sets of experimental data,

or fixed arbitrarily for simulation purposes only [6], [12].

However, although it can simulate the correct amount of errors,

this model cannot represent bursts of errors, since it assumes

that Yi is independent from Yi−1. In addition, it does not take

into account the effect of kmeri onto error event Yi, and we

know from several other works [15] that a statistical relation

between those exists.

C. DeepSimulator

DeepSimulator is another popular tool to simulate the DNA

data storage system [7], [16]. DeepSimulator relies on a Deep-

Learning approach combined with a basecaller. In a first Deep-

Learning-based step, DeepSimulator takes as input a sequence

of bases, and outputs electrical current levels after the sequenc-

ing. In a second step, the current levels are sent to a basecaller

which transcripts the current levels into bases. Event sequences

Y generated by DeepSimulator contain some memory and are

statistically dependent from the input sequences X. However,

after having performed a significant amount of simulations

we could observe that DeepSimulator does not always reflect

well the physical DNA storage channel. For instance, as

shown in Figure 1, the same kind of error appears in most

of the simulated sequences in the same particular position,

which does not correspond to an experimental channel model.

Moreover, we could also observe an inaccurate predominance

of substitutions and insertions over deletions. This shows the

need to develop more accurate channel models for code design

and performance evaluation.

IV. CHANNEL MODEL WITH MEMORY FOR DNA DATA

STORAGE

We now introduce a novel statistical channel model for DNA

data storage, that aims at solving the drawbacks just described

of the existing models. The proposed model takes into account

the statistical dependencies between the event sequence Y and

the input sequence X. It also considers that event Yi depends

on kmeri, which allows to model editions due to successive

k−mer reads, according to the way the MinION sequencer

works. Our model also assumes some internal memory in Y,

by considering that previous event Yi−1 can affect current

event Yi. This allows to take burst errors into account.



A. Probability terms

In this section, we use B ∈ {A,C,G, T} to denote the

obtained base after a substitution. Our model is then described

by the following conditional probability distribution:
• P(Yi|kmeri, Yi−1) characterizes the dependency between

the current event Yi, the currently read kmeri, and the

previous event Yi−1. This captures the probability of

different types of events Yi ∈ {Ins,Del,Sub,Match}
depending on kmeri, and allows to consider bursts of

errors through the dependency to Yi−1.

• P(L|kmeri, Yi = Ins) characterizes the insertion length

L depending on the currently read kmeri. Since only

insertions can be of length L > 1, the probability of L is

conditioned to event Yi = Ins.

• P(B|kmeri, Yi = Sub) characterizes the probability to

substitute the last base Xi of kmeri by the base B, given

that Yi = Sub.

We assume that the probabilities P(Yi|kmeri, Yi−1) and

P(L|kmeri, Yi = Ins) do not vary with k < i < I . On

the contrary, we observed from experimental data that the

probability to get an error is higher at the first position

i = 1 and at the last one i = I , compared with middle

positions 1 < i < I . Therefore, we allow for different

probability distributions P(Y1), P(L|Y1 = Ins) and P(YI),
P(L|YI = Ins) to be used when i = 1 and i = I . Finally, for

1 < i ≤ k, since no complete k-mer was observed already,

we consider probabilities P (Yi|Xi), P (B|Xi, Yi = Sub) and

P (L|Xi, Yi = Ins) that only depend on the base value of Xi.

B. Training

To train our model, i.e, to estimate all the considered prob-

ability terms, we used V = 9 sets of experimental data which

went through the whole DNA data storage process, as de-

scribed in Section II. Each of these sets provided one reference

sequence taken as channel input X, and N sequences obtained

after sequencing, taken as channel outputs Z. Then, the con-

ditional probabilities P(Yi = D|kmeri, Yi−1 = E) were esti-

mated by counting over the NV pairs (X,Y) the number of

outcomes of each event D ∈ {Ins,Del,Sub,Match}, divided

by the number of outcomes of the considered (kmeri, Yi−1 =
E). The other probability terms were estimated following the

same approach. Obtaining experimental data is very costly,

while there are 4k+1 different combinations (kmeri, E), which

grows fastly with k. In our case, when a given combination

(kmeri, Yi−1 = E) was left unobserved, we estimated the

corresponding probabilities by averaging over all observed

combinations. At the end, note that the considered training

is not only specific to a given value k, but also to a particular

DNA data storage process, with fixed synthesis and sequencing

techniques. In particular, considering updated or other synthe-

sis and sequencing techniques requires to retrain the model

from new sets of experimental data.

C. Channel simulator

Once we get all the probabilities from training, we can build

a simulator that takes as input a given sequence and generates

outputs according to the channel model. This model simulates

the whole DNA data storage process and has three main

advantages. First, in case of technology evolution (synthesis,

sequencing, basecalling,..), the model can be retrained with

new sets of experimental data (adaptability). Second, since our

model also takes into account the basecaller, it is faster than

DeepSimulator which requires to run the basecaller during

simulations (faster simulations). Third, as opposed to a black-

box approach, all our probabilities terms are explicit. The

values of these probabilities can then be used, either to better

understand how errors are introduced during the DNA storage

process, or to incorporate them to any source and channel

coding methods which would be considered in the workflow

(explainability).

V. FULL RECONSTRUCTION SOLUTION

We now propose an error-correction scheme to correct

insertion, deletion and substitution errors after the sequencing

step. This scheme relies on three components: a consensus

algorithm, a resynchronization step, and a NB-LDPC decoder.

The first one aims to provide a good quality sequence based

on the sequencing data redundancy, while the last two ones

aim to correct residual errors. The consensus algorithm relies

on the fact that known primers (short sequence of about 40

nucleotides) are added at the beginning and at the end of the

sequence X. These primers consist of sequences of known

bases which are mainly used to select sequences of interest

through biotechnology manipulations.

A. Consensus algorithm

The consensus algorithm we consider, called CCSA, has

been specifically designed for the DNA data storage system

introduced in Section II. CCSA takes as input m sequences

(Z1, · · · ,Zm) selected randomly from the set of N sequences

output by the basecaller. Then, for given parameters T and

L, it forms a directed graph whose nodes are given by the

subsequences of length L that appear at least T times among

the m input sequences. There is an edge between two nodes

of the graph if the corresponding two subsequences overlap

by at least d bases. Finally, a Viterbi-like algorithm is applied

over the directed graph in order to select path between the start

primer (p1) and the end primer (p2) with the highest score.

Note that CCSA may output either one or several sequences

of equal (highest) score of different lengths J close to I .

The score is calculated from the nodes weights (number of

occurrence of the subsequence over the m sequences) and

edges weights (L minus overlap length between the two sub-

sequences) over the path. A detailed description of the CCSA

algorithm can be found in [17]. CCSA results reported in [17],

as well as our own simulations, show that this algorithm is

able to correct most of the errors introduced by the DNA

storage process, although a few residual insertions, deletions,

and substitutions remain. This is why an additional correction

step based on NB-LDPC decoders is needed.



B. NB-LDPC Codes and decoders

LDPC codes are linear capacity-approaching blocks codes

commonly used in communication systems to correct substitu-

tion errors from the channel. NB-LDPC codes are defined over

Galois fields GF(q) of length q ≥ 2 [18]. In this work, we use

NB-LDPC codes in GF(4) for consistency with the quaternary

bases alphabet. The parity check matrix H of the code is

sparse, and its non-zero elements take values in GF(q). Then,

any codeword X of the code verifies HX = 0. The standard

Belief-Propagation (BP) LDPC decoder [19] takes as input

the consensus sequence X̃ and seeks to outputs a sequence

X̂ close to X̃ and that verifies the condition HX̂ = 0.

However, the standard BP decoder as well as most existing

LDPC decoders can only correct substitution errors. This is

why we now propose a synchronization method to also correct

a few amount of deletions. We only apply this synchronization

step if the consensus does not output a sequence of length

J = I , and by assuming that output sequences of length J < I
only result from deletions.

C. NB-LDPC codes synchronization

In this part, we define the score of a given sequence X̃

as the number of unsatisfied parity check equations (that is

the number of non-zero components in the vector HX̃). We

now describe the synchronization process when the consensus

outputs a sequence X̃ of length I − 1. In this process, for

a given segment length ls, we try to insert a base with

arbitrary value ’A’ at position 1, then at position ls + 1, then

2ls +1, and so on. For each considered position, we compute

the corresponding score. At the end, we definitively add a

base at the position kls + 1 that gives the lowest score, thus

creating a new vector X̃s. Even if the base value is incorrect

and the base position not entirely correct either, adding this

base close to the correct position should greatly reduce the

score by re-synchronizing the output sequence X̃s with the

original codeword X. Now, if the sequence X̃ is of lower

length I − v, v bases are inserted one after each other in a

greedy maneer: the first base is inserted at the position which

gives the lowest score, then the process is repeated so as to

insert the second base, and so on. This process allows to

replace deletion errors by substitution errors which can then be

corrected by the LDPC BP decoder. If after synchronization,

the decoder fails (unsatisfied parity check equations remain), a

new consensus will be restarted. Note that the segment length

ls plays a crucial role as it addresses a tradeoff between

algorithm complexity and amount of substitution errors in

the resulting sequence. Finally, this synchronization technique

only relies on the LDPC code structure, and does not require

any additional redundancy, unlike in a solution with periodical

markers [12].

D. Full reconstruction solution

We now describe our full reconstruction solution. We first

provide to the consensus algorithm m sequences at random

among the M sequences Z that have correct primers p1 and

p2 and length greater than I . The consensus algorithm then

outputs several sequences X̃ of length J . If the consensus

outputs a sequence of length J = I , we set this sequence as

X̃s. Otherwise, we pick a sequence of length J < I as close as

possible to I , and we apply the synchronization step described

in Section V-C in order to get a sequence X̃s of the correct

length I . In both cases, the sequence X̃s is passed through

a BP decoder to correct residual substitution errors. If the

sequence X̂ is incorrect in the sense that HX̂ 6= 0, we restart

the full reconstruct process (consensus + synchronization + BP

decoder), from another set of m random sequences provided to

the consensus. This process allows to reconstruct the original

sequence X with a small number of restarts, as we now

evaluate through simulations.

VI. SIMULATION RESULTS

In this part, we first compare the numerical simulations

obtained with the proposed channel model to the existing

ones (i.i.d. and DeepSimulator), and with the experimental

data. Our channel model was trained as described in sec-

tion IV, using 9 experimental datasets called barcodes, each of

them containing multiple Fastq files related to one particular

reference sequence. Since the MinION sequencer reads k-

mers of length 6, we fixed the channel memory length to

k = 6, and we performed the training over 22182 output

sequences. Figure 1 shows for barcode03 four edit maps (i.i.d.

channel model, DeepSimulator, our model, experimental data)

containing positions of deletions, insertions, and substitutions

observed for 1000 output sequences after an alignment with

the reference sequence. We can observe that for the i.i.d

model, errors are incorrectly uniformly distributed over all

the sequence, while for DeepSimulator same errors of the

same type seem to always appearing at same positions. Finally,

the proposed channel model with memory seems to approach

the most the experimental data, although some long-run error

events are not properly taken into account.

We then evaluate the performance of our full sequence

reconstruction method, by using the proposed channel model

with memory. To do so, we considered barcodes 01 and 03
among the nine at our disposal, and encoded the corresponding

sequences with a regular (3, 6) LDPC code in GF(4) of size

(500, 1000) and code rate R = 1/2, constructed from a

PEG algorithm. We further set segment length to ls = 50
for our synchronization method. To evaluate the proposed

reconstruction method, we considered three setups: (i) con-

sensus alone, (i) consensus + NB-LDPC decoder without re-

synchronization, (iii) consensus + re-synchronization + NB-

LDPC decoder. For each of these setups, we applied the

successive reconstruction steps 900 times, and evaluated the

proportion of perfectly recovered sequences. This metric is

of interest in our setup, since the condition HX = 0 allows

to decide that the original sequence was correctly retrieved,

and therefore to stop the reconstruction loop. Figure 2 shows

the proportion of correctly retrieved sequences for the two

considered barcodes, with respect to the number m of input

sequences to the consensus. For both barcodes, as expected,

the success probability increases with m, before reaching a
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peak at around m = 100. The decrease in performance after

this peak probably comes from the fact that the consensus has

difficulties to handle too many sequences, due to the initial

majority voting operation. Then, we observe two different

configurations, depending on the considered barcode. For

barcode01, it seems that the resynchronization and NB-LDPC

decoder are not useful, in the sense that the sequences at the

output of the consensus are either correct, or very far from the

original data. On the opposite, for barcode03, we observe that

resynchronization greatly improves the reconstruction rate,

while NB-LDPC decoder alone after consensus does not help.

This is probably due to the fact that for this barcode, most

sequences at the output of the consensus contain a few amount

of deletions introduced by an homopolymer of length 6, which

are corrected by the synchronization method.

VII. CONCLUSION

In this work, we proposed a channel model with memory for

DNA storage. Compared to existing ones, our model represents

experimental data more accurately, and should allow for effi-

cient source/channel codes design. We then introduced a full

reconstruction scheme, based on a consensus algorithm and on

NB-LDPC codes, and proposed a synchronization method in

order to correct remaining deletions after the consensus. Future

work will include improving the channel model by considering

larger sets of experimental data and optimizing the proposed

error-correction scheme in terms of complexity, code rate, etc.
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