
ar
X

iv
:2

30
8.

08
32

6v
1

 [
cs

.I
T

]
 1

6
A

ug
 2

02
3

Soft-Information Post-Processing for

Chase-Pyndiah Decoding Based on

Generalized Mutual Information

Andreas Straßhofer∗ , Diego Lentner∗ , Gianluigi Liva† , and Alexandre Graell i Amat‡

∗Institute for Communications Engineering, Technical University of Munich, Munich, Germany
†Institute of Communications and Navigation German Aerospace Center (DLR), Wessling, Germany

‡Chalmers University of Technology, Gothenburg, Sweden

Abstract—Chase-Pyndiah decoding is widely used for decoding
product codes. However, this method is suboptimal and requires
scaling the soft information exchanged during the iterative
processing. In this paper, we propose a framework for obtaining
the scaling coefficients based on maximizing the generalized
mutual information. Our approach yields gains up to 0.11 dB
for product codes with two-error correcting extended BCH
component codes over the binary-input additive white Gaussian
noise channel compared to the original Chase-Pyndiah decoder
with heuristically obtained coefficients. We also introduce an

extrinsic version of the Chase-Pyndiah decoder and associate
product codes with a turbo-like code ensemble to derive a Monte
Carlo-based density evolution analysis. The resulting iterative
decoding thresholds accurately predict the onset of the waterfall
region.

Index Terms—Density evolution, forward error correction,
generalized mutual information, mismatched decoding.

I. INTRODUCTION

Product codes [1] when combined with Chase-Pyndiah

decoding [2] feature an attractive performance-complexity

tradeoff and are therefore widely used for applications with

very high throughput requirements (e.g., [3]). Chase-Pyndiah

decoding is an efficient iterative soft-decision decoding al-

gorithm that employs suboptimal Chase [4] decoding of the

component codes followed by an information combining step

to generate the soft messages exchanged. To improve the finite-

length performance, Pyndiah further proposed to scale the

soft outputs by heuristically-determined parameters [2]. To the

best of the authors’ knowledge, no information-theoretically

motivated method for optimizing these scaling coefficients has

been reported to date.

In this paper, we demonstrate that the generalized mutual

information (GMI) is a suitable metric to determine the

parameters to be used in the post-processing of the component

code soft-output. The underlying idea is closely related to

reconstructing soft information in min-sum decoding [5] and

coarsely quantized message passing [6], [7] for (generalized)

low-density parity-check (LDPC) codes. The authors of [8]

derive a post-processing for a bit-interleaved coded modulation

(BICM) system using a cost function based on the GMI.

Another related work [9] proposes to use the Kullback-Leibler

(KL) divergence to assess the difference between accurate and

mismatched reliability values. The use of the KL divergence as

optimization criterion showed promising results in the context

of max-log a posteriori probability (APP) decoding of turbo

codes.

The remainder of this paper is structured as follows. In

Section II, we review product codes and their decoding using

the Chase-Pyndiah decoder. Section III develops a method for

analyzing a modified Chase-Pyndiah decoder in the asymptotic

limit of large block lengths. In Section IV we propose soft-

information post-processing based on maximizing GMI. Fi-

nally, we provide simulation results in Section V and conclude

the paper with Section VI.

II. PRELIMINARIES

A. Channel Model

We assume transmission over the binary-input additive

white Gaussian noise (biAWGN) channel Y = X + Z, where

X ∈ {+1,−1} and Z ∼ N (0, σ2). The channel quality is given

as the signal-to-noise ratio (SNR) Eb/N0 =
(

2Rσ2
)−1

, where

R is the code rate. Given a channel output y, we compute the

channel log-likelihood ratio (LLR) as

lch = ln

(

pY|X(y|+ 1)

pY|X(y| − 1)

)

=
2

σ2
y . (1)

B. Product Codes

Product codes are serially concatenated codes, whose en-

coding is given by the following procedure. First, the message

bits are arranged into a k × k matrix. Then, each row is

encoded using a row component code. Finally, each column

of the resulting matrix is encoded by a column component

code. In this paper, we focus on the practical case of identical

row and column component codes. In particular, we consider

component codes with parameters (n, k, d), where n is the

block length, k the dimension, and d the minimum Hamming

distance of the code. Then, the parameters of the product code

are (n2, k2, d2) and its rate k2/n2.

C. Chase-Pyndiah Decoding

In this subsection we review Chase-Pyndiah decoding as

in [2]. The decoder iterates between decoding the row and

column component codes, where rows first or columns first

can be chosen arbitrarily. In each half iteration ℓ = 1, . . . , ℓmax,

i.e., either row or column decoding, each component decoder

http://arxiv.org/abs/2308.08326v1
https://orcid.org/0009-0000-3572-0436
https://orcid.org/0000-0001-6551-8925
https://orcid.org/0000-0001-8657-2963
https://orcid.org/0000-0002-5725-869X

processes an incoming message vector l
in

of length n as

follows.

First, apply Chase decoding to l
in. Herefore, obtain the hard-

decision vector r = (r1, . . . , rn), where

ri =

{

0 if lini ≥ 0

1 otherwise.
(2)

From l
in

, identify the p positions of lowest reliability |lini |.
From r generate a list of test words by the following bit flip

procedure. Flip any single bit among the p least reliable bits

(LRBs), giving p test words. Then, flip any two bits to get
(

p
2

)

more test words. Continue until the last test word, which is

found by flipping all p LRBs. Next, decode the 2p test words

(including r itself) using bounded distance decoding (BDD) to

form the candidate list L consisting of all unique codewords

resulting from successful BDD attempts.

Second, for i = 1, . . . , n, search for the following two

codewords in L: One with bit value zero at position i and

highest likelihood given l
in

, and another one with bit value

one at position i and highest likelihood given l
in. Clearly, one

of them is the maximum likelihood (ML) decision among the

codewords of the candidate list. The other codeword is referred

to as the alternative codeword. Generate the soft output as

wi =

1
2di

∑

k 6=i

(dk − x̄
(i)
k)link if x̄(i) exists

di otherwise
(3)

where d and x̄
(i) are the modulated ML codeword and the

modulated alternative codeword, respectively. In this work, we

only consider values for p that allow omitting the case of an

empty candidate list.

Third, collect the soft outputs of all component codes in

the matrix W . Let I be a set of index pairs (i, j) for which

a component decoder found an alternative codeword. Then,

Chase-Pyndiah decoding post-processes the soft output as

vi,j =

{

α · (avg(|W I |))−1 · wi,j if x̄(i,j) exists

α · (avg(|W I |))−1 · βwi,j otherwise
(4)

where |·| denotes the element-wise absolute value and avg(·) is

the arithmetic average over all entries of a matrix. α and β are

the half iteration-dependent, heuristic scaling factors provided

in [2]. The values of α and β in the first eight half iterations

are 0.1, 0.3, 0.5, 0.7, 0.9, 1, 1, 1 and 0.2, 0.4, 0.6, 0.8, 1,

1, 1, 1, respectively. In the subsequent half iterations, both α
and β are typically set to one as well.

Finally, let L
ch denote the channel LLR matrix whose

entries are computed according to (1). The matrix of outgoing

messages is then computed as (see [2])

L
out =

(

avg
(

|Lch|
))−1 · Lch + V (5)

where the entries of the matrix V are the post-processed

outputs obtained by (4). The output L
out of half iteration ℓ

forms then the input Lin for the following half iteration ℓ+1.

Note that in the first half iteration L
in is initialized with the

first term in (5), i.e., the normalized channel LLR matrix.

Decoding terminates after ℓmax half iterations. Then, use

the modulated ML codeword d of each component decoder

obtained in the last half iteration to estimate the transmitted

code matrix.

D. Generalized Mutual Information

Let pY|X be the transition probability function of a channel

from X to Y. Sometimes, e.g., due to complexity limitations,

the receiver relies on a mismatched channel model qY|X and

outputs the codeword that maximizes qY|X(x|y) for a given

channel output y. Using this decoder, an achievable rate is the

s-GMI [10]

Is(X;Y) = EpXY

log2

qY|X(Y|X)s
∑

x′∈X

pX(x′)qY|X(Y|x′)s

(6)

with s ≥ 0. We may simplify our considerations by setting

s = 1 since the s-GMI is an achievable rate for any parameter

s. An important upper bound to I1(X;Y) is the mutual

information (MI) I(X;Y), which is achieved if pY|X = qY|X.

In the following, we refer to the 1-GMI simply as GMI.

III. ASYMPTOTIC ANALYSIS

In this section, we provide a Monte-Carlo density evolution

(DE) of product codes under Chase-Pyndiah decoding. In

the following, we consider a product code as an instance of

a turbo-like code ensemble [11] and apply changes to the

original Chase-Pyndiah decoder as in Section II-C such that

the asymptotic analysis becomes applicable.

A. Turbo-like Code Ensemble

A product code with (n, k, d) component codes can be

represented by a bipartite graph. Each of the 2n constraint

nodes (CNs) corresponds to the code constraints imposed by

one component code. The edges are associated with the n2

code bits. Two CNs are connected by an edge if the associated

code bit is part of the code constraints of the corresponding

component codes. Finally, partitioning CNs into row CNs

and column CNs leads to a bipartite graph. The deterministic

product code structure defines a specific connection of row

and column CNs. The set of codes defined by all possibilities

to connect the row and column CNs gives the turbo-like code

ensemble of length n2. In Fig. 1, we use the edge interleaver

π to visualize the turbo-like code ensemble that contains the

(9, 4, 4) product code built upon (3, 2, 2) single parity check

(SPC) component codes as an instance. The design rate of the

code ensemble is given by

Rd =
n2 − 2n(n− k)

n2
= 2

√
R− 1 (7)

where R is the rate of the product code. We can now generate

a sequence of code ensembles with increasing length by

adding further CNs and edges. We remark that Chase-Pyndiah

decoding can be seen as a message passing over the edges

of the bipartite graph of the code. Then, each CN processes

incoming messages l
in into outgoing messages l

out.

Fig. 1. Turbo-like code ensemble for SPC component codes of length n = 3.

B. Extrinsic Chase-Pyndiah Decoding

DE analysis requires extrinsic message passing over the

edges of the bipartite graph [12], which is not the case for

Chase-Pyndiah decoding. We therefore apply the following

changes to the decoding process as described in Section II-C

to make it extrinsic [13].

1) Every component decoder computes each wi, i =
1, . . . , n, by replacing the i-th input message with the

channel LLR, i.e., we set lini = lch
i . Note that we may

obtain a different candidate list for each i.
2) We set vi = wi, i.e., we omit the post-processing in (4).

3) In (5), the matrix L
ch is not normalized.

4) We compute the a posteriori LLR as lAPP
i = vi + lch

i + lini
and obtain the final decision as

ĉi =

{

0 if lAPP
i ≥ 0

1 otherwise.
(8)

We refer to this modified algorithm as extrinsic Chase-Pyndiah
decoding. Note that due to the modification in Step 1, com-

puting the soft output w is n times more complex than

for original Chase-Pyndiah decoding. However, the extrinsic

Chase-Pyndiah decoder is only used as a proxy to enable

the DE analysis of the turbo-like code ensemble defined in

Section III-A under Chase-Pyndiah decoding.

C. Monte-Carlo Density Evolution

Assume the all-zero codeword is transmitted over the

biAWGN channel with SNR Eb/N0. Then, the channel LLRs

are Gaussian distributed with mean µch = 4Rd(Eb/N0) and

variance σ2
ch = 2µch. We want to track the distribution of the

post-processed output p
(ℓ)
V

and the distribution of the incoming

messages p
(ℓ)

Lin throughout the half iterations ℓ = 1, 2,
We do so using a Monte-Carlo simulation. The ensemble

iterative decoding threshold (Eb/N0)
⋆

is defined as the lowest

SNR for which the probability Pr
[

V
(ℓ) < 0

]

tends to zero

as the number of half iterations grows large. Note that a

Monte-Carlo simulation can only approximate the iterative

decoding threshold by processing a finite number of samples

with a finite number of half iterations ℓmax. We permute the

incoming messages before each half iteration to mitigate any

dependencies introduced in previous half iterations [14].

Fig. 2. Chase decoding and soft output generation followed by post-
processing and addition of the channel LLR.

IV. EXTRINSIC CHASE-PYNDIAH DECODING WITH

GMI-BASED SOFT-INFORMATION POST-PROCESSING

Belief propagation (BP) decoding of product codes employs

optimal APP decoding of the component codes at the CNs

and iteratively exchanges extrinsic LLRs between row and

column decoders. The outputs wi of (3), however, can only

be considered as approximate LLR values since they violate

the consistency condition [15]. Pyndiah therefore proposed to

post-process w as in (4) and (5) to improve the performance.

The post-processed output vi is then in general considered to

be closer to the true LLR values. Clearly, the same argument

applies also to extrinsic Chase-Pyndiah decoding as introduced

in Section III-B.

We propose to substitute this heuristic post-processing by

a post-processing function vi = fpp(wi; θ) based on the GMI

and parametrized by θ = (γ, δ). Fig. 2 depicts the model

under investigation, consisting of Chase decoding and soft

output generation followed by the post-processing function and

addition of the channel LLR.

For simplicity, we focus on functions of the form

fpp(wi; θ) =

{

γwi if x̄(i) exists

δwi otherwise.
(9)

Similar to α and β in (4), γ and δ are ℓ-dependent parameters

that can be precomputed offline.

Under a mismatched-decoding perspective, we can rephrase

the problem as follows. Consider an arbitrary outgoing mes-

sage lout after ℓ half iterations. The decoder in the ℓ+1-th half

iteration wrongly interprets this continuous value as an actual

LLR, i.e., it imposes a mismatched model qLout|X that satisfies

lout = ln

(

qLout|X(l
out|+ 1)

qLout|X(lout| − 1)

)

(10)

for any realization lout. An achievable rate for this mismatched

setup is then the GMI (see Section II-D)

I1
(

X; Lout
)

= Ep
LoutX

log2

qLout|X(L
out|X)

∑

x′∈X

pX(x′)qLout|X(Lout|x′)

.

(11)

The following proposition shows that I1(X; L
out) remarkably

does not depend on the actual choice of qLout|X as long as it

satisfies (10).

1.5 2 2.5 3 3.5 4

10−5

10−4

10−3

10−2

Eb/N0 [dB]

B
E

R

Fig. 3. BER performance of the (642, 512, 62) (), (1282, 1132, 62)
() and (2562, 2392, 62) () product codes under MCPD-GMI with
p = 5 after 20 half iterations. Results for original Chase-Pyndiah decoding
(, ,) are provided for comparison.

Proposition. The GMI I1(X; L
out) is given by

I1
(

X; Lout
)

= 1− E
{

log2
[

1 + exp
(

−fpp(W; θ)− L
ch
)]}

,
(12)

where the expectation is with respect to pWLch|X=+1.

Proof. We have

I1
(

X; Lout
) (a)
= 1 + Ep

LoutX

log2

qLout|X(L
out|X)

∑

x′∈X

qLout|X(Lout|x′)

(b)
= 1− Ep

LoutX

{

log2

(

1 +

(

qLout|X(L
out|+ 1)

qLout|X(Lout| − 1)

)−X
)}

(c)
= 1− Ep

LoutX

{

log2
(

1 + exp
(

−L
out
X
))}

(d)
= 1− Ep

Lout|X=+1

{

log2
(

1 + exp
(

−L
out
))}

(13)

where (a) and (b) follow from X ∈ {−1,+1} being uni-

formly distributed; (c) exploits that qLout|X must satisfy (10)

and (d) uses the symmetry condition pLout|X(l
out| − x) =

pLout|X(−lout|x). Resolving the output LLR as given by our

model as L
out = fpp(W; θ) + L

ch completes the proof.

Our key idea is to optimize the parameters θ
⋆ = (γ⋆, δ⋆)

of the post-processing function (9) so that the GMI (12) is

maximized, i.e.,

θ
⋆ = argmax

θ

I1
(

X; Lout
)

. (14)

We refer to the extrinsic Chase-Pyndiah decoding where

the output w is post-processed by a function with parameters

defined by (14) as extrinsic Chase-Pyndiah decoding with

GMI-based soft-information post-processing (ECPD-GMI).

V. NUMERICAL RESULTS

Recall that ECPD-GMI is n times more complex than the

original Chase-Pyndiah decoding due to the decoding rule in

3.5 3.6 3.7 3.8 3.9 4 4.1 4.2

10−5

10−4

10−3

10−2

Eb/N0 [dB]

B
E

R

Fig. 4. BER performance of the (2562, 2392, 62) product code under MCPD-
GMI with p = 5 (), p = 4 () and p = 3 (). Results
for original Chase-Pyndiah decoding (, ,) are provided for
comparison. Vertical lines indicate iterative decoding thresholds computed
using ECPD-GMI.

Step 1 in Section III-B. To allow fair comparisons with Chase-

Pyndiah decoding, we adapt ECPD-GMI as follows. We define

ECPD-GMI without the decoding rule in Step 1 as modified

Chase-Pyndiah decoding with GMI-based soft-information

post-processing (MCPD-GMI). We will use MCPD-GMI to

obtain finite-length performance curves in a two-step process.

First, for a given SNR, we decode a sufficiently large number

of product code frames in parallel. In each half-iteration we

use (14) to obtain the optimal parameters θ
⋆ for the post-

processing function. Second, we estimate the bit error rate

(BER) by applying those optimal parameters. Despite their

differences, we hope that iterative decoding thresholds under

ECPD-GMI accurately predict the finite-length performance

under MCPD-GMI.

First, we simulate the performance of product codes based

on (64, 51, 6), (128, 113, 6), and (256, 239, 6) extended Bose-

Chaudhuri-Hocquenghem (eBCH) component codes. The rates

of the product codes are 0.635, 0.779 and 0.872, respectively.

We choose the number of LRB positions for the Chase decoder

to be p = 5 for all codes. Fig. 3 shows the BER after 20 half

iterations, i.e., 10 row and column decoding runs. Solid curves

correspond to MCPD-GMI, while dashed curves correspond to

the original Chase-Pyndiah decoder. For the longest code we

observe an increased coding gain of approximately 0.11 dB at

a BER of 10−4.

In Fig. 4, we show BER results a product code with

(256, 239, 6) eBCH component codes for different numbers of

LRB positions p. Recall that the complexity of original Chase-

Pyndiah decoding as well as MCPD-GMI scale exponentially

in p, since the Chase decoder applies BDD to 2p words.

Vertical lines show estimated iterative decoding thresholds of

corresponding infinite length turbo-like code ensembles under

the ECPD-GMI obtained via Monte-Carlo DE. We use 106

samples and 50 half iterations. The onset of the waterfall

region is in good agreement with the results from the Monte-

TABLE I
OPTIMAL PARAMETERS (γ⋆, δ⋆) FOR THE (2562, 2392, 62) PRODUCT CODE DECODED WITH p = 5 AT AN SNR OF 3.7 DB.

ℓ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
γ⋆ 0.16 0.20 0.21 0.22 0.24 0.25 0.27 0.28 0.30 0.33 0.35 0.37 0.39 0.42 0.43 0.43 0.43 0.42 0.41 0.39
δ⋆ 0.15 0.10 0.21 0.20 0.28 0.30 0.37 0.42 0.51 0.60 0.73 0.90 1.10 1.34 1.62 1.91 2.18 2.46 2.67 2.91

TABLE II
ITERATIVE DECODING THRESHOLDS FOR THE TURBO-LIKE CODE ENSEMBLE WITH (32, 26, 4) HAMMING COMPONENT CODES. ALL ALGORITHMS

EMPLOY GMI-BASED POST-PROCESSING.

Algorithm BP Iterative max-log APP p = 8 p = 7 p = 6 p = 5 p = 4 p = 3 p = 2
(Eb/N0)

⋆ 1.47 1.54 1.54 1.55 1.58 1.66 1.72 1.87 2.14

Carlo DE. The performance gap between p = 3 and p = 5 at

a BER of 10−4 is around 0.32 dB, which is within 0.02 dB to

the 0.34 dB gap predicted by the corresponding thresholds.

Remarkably, the performance of MCPD-GMI with p = 4
approaches original Chase-Pyndiah decoding with p = 5
for low BERs. Thus, the new GMI-based post-processing

can cut complexity of Chase-Pyndiah decoding in half while

maintaining performance.

Recall that (γ⋆, δ⋆) are derived for each SNR. Table I shows

the optimal parameters for the (2562, 2392, 62) product code

with p = 5 at an SNR of 3.7 dB. The values of γ⋆ are

between zero and one, which suggests that we overestimate

reliability if an alternative codeword exists. This observation

is in agreement with the fact that the corresponding formula

in (3) stems from max-log APP decoding, a decoder known

for overestimating reliability [9]. Contrary, we have wi = di
if there is no alternative codeword for some position i. Since

di ∈ {−1,+1}, δ⋆ acts itself as reliability value.

Finally, we provide in Table II iterative decoding thresholds

for various decoders with GMI-based post-processing. BP cor-

responds to a decoder, which decodes the (32, 26, 4) Hamming

component codes with an optimal APP decoder. Recall that

in the asymptotic setting BP computes optimal marginals.

Experimental results show that γ⋆ ≈ 1 for GMI-based post-

processing of BP. When employing a suboptimal max-log APP

component decoder instead, the threshold degrades by only

0.07 dB to 1.54 dB. We remark that the threshold of the same

algorithm without GMI-based post-processing increases by

approximately 0.5 dB. The thresholds for ECPD-GMI increase

as we decrease the parameter p. However, p = 8 and the

iterative max-log APP algorithm yield identical values for the

threshold, up to the second decimal digit. The obtained thresh-

olds are in good agreement with finite-length simulations.

VI. CONCLUSION

We proposed a framework for optimizing the scaling coeffi-

cients for Chase-Pyndiah decoding based on maximizing GMI.

The parameters found improve upon original Chase-Pyndiah

decoding with comparable decoding complexity. Iterative de-

coding thresholds for an extrinsic version of the algorithm

accurately predict the BER of the modified decoder.

ACKNOWLEDGMENT

The authors thank Gerhard Kramer for helpful comments.

REFERENCES

[1] P. Elias, “Error-free coding,” Trans. IRE Prof. Group Inf. Theory, vol. 4,
no. 4, pp. 29–37, Sep. 1954.

[2] R. M. Pyndiah, “Near-optimum decoding of product codes: block turbo
codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, Aug.
1998.

[3] A. Graell i Amat and L. Schmalen, “Forward error correction for optical
transponders,” in Springer Handbook of Optical Networks, B. Mukher-
jee, I. Tomkos, M. Tornatore, P. Winzer, and Y. Zhao, Eds. Cham,
Switzerland: Springer International Publishing, 2020, pp. 177–257.

[4] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp.
170–182, Jan. 1972.

[5] G. Lechner and J. Sayir, “Improved sum-min decoding for irregular ldpc
codes,” in Int. Symp. Turbo Codes, Apr. 2006, pp. 1–6.

[6] G. Lechner, T. Pedersen, and G. Kramer, “Analysis and design of binary
message passing decoders,” IEEE Trans. Commun., vol. 60, no. 3, pp.
601–607, Mar. 2012.

[7] E. B. Yacoub and G. Liva, “Analysis of binary and ternary message
passing decoding for generalized LDPC codes,” in Proc. Int. Symp.
Probl. Redundancy Inf. Contr. Syst. (REDUNDANCY), Moscow, Russian
Federation, Oct. 2021, pp. 137–142.

[8] A. Alvarado, L. Szczecinski, T. Fehenberger, M. Paskov, and P. Bayvel,
“Improved soft-decision forward error correction via post-processing of
mismatched log-likelihood ratios,” in Proc. Eur. Conf. Optical Commun.
(ECOC), Düsseldorf, Germany, Sep. 2016, pp. 1–3.

[9] I. Land, “Reliability information in channel decoding – practical aspects
and information theoretical bounds,” Ph.D. dissertation, Kiel University,
Kiel, Germany, 2005.

[10] G. Kaplan and S. Shamai, “Information rates and error exponents of
compound channels with application to antipodal signaling in a fading
environment,” AEU. Archiv für Elektronik und Übertragungstechnik,
vol. 47, no. 4, pp. 228–239, 1993.

[11] S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Spatially coupled
turbo-like codes,” IEEE Trans. Inf. Theory, vol. 63, no. 10, pp. 6199–
6215, Oct. 2017.

[12] Y.-Y. Jian, H. D. Pfister, and K. R. Narayanan, “Approaching capacity
at high-rates with iterative hard-decision decoding,” IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5752–5773, Sep. 2017.

[13] A. Sheikh, A. Graell i Amat, G. Liva, and A. Alvarado, “Refined
reliability combining for binary message passing decoding of product
codes,” J. Lightw. Technol., vol. 39, no. 15, pp. 4958–4973, Aug. 2021.

[14] D. MacKay, “Good error-correcting codes based on very sparse matri-
ces,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[15] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of provably
good low-density parity check codes,” in Proc. Int. Symp. Inf. Theory
(ISIT), Sorrento, Italy, Jun. 2000, p. 199.

	Introduction
	Preliminaries
	Channel Model
	Product Codes
	Chase-Pyndiah Decoding
	Generalized Mutual Information

	Asymptotic Analysis
	Turbo-like Code Ensemble
	Extrinsic Chase-Pyndiah Decoding
	Monte-Carlo Density Evolution

	Extrinsic Chase-Pyndiah Decoding with GMI-based Soft-Information Post-Processing
	Numerical Results
	Conclusion
	References

