
Layered Decoding of Quantum LDPC Codes

Julien Du Crest∗, Francisco Garcia-Herrero†, Mehdi Mhalla‡,
Valentin Savin §and Javier Valls ¶

August 28, 2023

Abstract

We address the problem of doing message passing based decoding of quan-
tum LDPC codes under hardware latency limitations. We propose a novel way
to do layered decoding that suits quantum constraints and outperforms flooded
scheduling, the usual scheduling on parallel architectures. A generic construc-
tion is given to construct layers of hypergraph product codes. In the process,
we introduce two new notions, t-covering layers which is a generalization of
the usual layer decomposition, and a modified scheduling called random order
scheduling. Numerical simulations show that the random ordering is of indepen-
dent interest as it helps relieve the high error floor typical of message passing
decoders on quantum codes for both layered and serial decoding without the
need of post-processing.

1 Introduction

A lot of work has been done in order to improve the decoding of quantum low-density
parity-check (qLDPC) codes using message-passing (MP) decoders. Most of these
works rely on the use of post-processing techniques [1–3], whose feasibility is still
to be demonstrated on actual hardware, due to the stringent latency, power and
scalability requirements of the quantum system. A key attribute of MP decoding
is the underlying scheduling, indicating the order in which variable and check node
messages are updated. This has been subject to extensive research in the classical
LDPC decoding literature, and it has been shown that the MP scheduling may signif-
icantly impact the convergence speed [4], the decoding performance (e.g., in case of
adaptive scheduling strategies [5–7]), or the performance (e.g., latency, area, power-
consumption) of the hardware design [8]. The vast majority of hardware designs are

∗Univ. Grenoble Alpes, Grenoble INP, LIG, F-38000 Grenoble, France (julien.du-crest@univ-
grenoble-alpes.fr)

†Department of Computer Architecture and Automatics (DACYA), Complutense University of
Madrid, Spain (francg18@ucm.es)

‡Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
(mehdi.mhalla@univ-grenoble-alpes.fr)

§Univ. Grenoble Alpes, CEA-Léti, F-38054 Grenoble, France (valentin.savin@cea.fr)
¶Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Politecnica de Valencia,

46022 Valencia, Spain (jvalls@upv.es)

1

ar
X

iv
:2

30
8.

13
37

7v
1

 [
qu

an
t-

ph
]

 2
5

A
ug

 2
02

3

based on partly-parallel architectures, implementing a layered decoding scheduling,
which can be considered as a de facto standard solution, able to provide relevant
complexity and performance advantages in most applications [8].

For qLDPC codes, the MP decoding performance may depend even more on the
underlying scheduling, which can be most likely attributed to the code degeneracy [2].
Moreover, some post-processing techniques may be highly dependent on the MP de-
coding scheduling. For instance, the order statistics decoding post-processing has
been shown to provide very good performance when a layered scheduling is used,
but its performance may be drastically degraded using a flooded (i.e., fully parallel)
scheduling [2].

To design an efficient partly parallel architecture implementing a layered schedul-
ing, one needs a layer decomposition of the parity check matrix. For qLDPC codes
this may be tricky, as they do not have an innate decomposition into horizontal lay-
ers (as for instance in the case of classical quasi-cyclic LDPC codes). To ensure a
high degree of parallelism, it is also desirable to have a decomposition into a minimal
number of layers. In this paper, we first give a generic construction of a minimal
layer decomposition for hypergraph product codes. Moreover, in an attempt to start
bridging the gap between hardware limitations and state of the art MP decoders, we
propose two new tools to implement layered decoding of qLDPC codes. The first
is a generalization of the notion of layer decomposition, consisting of a family of
t-covering layers, which can be seen as a layer decomposition of t decoding itera-
tions, and is aimed at increasing the parallelism degree of the layered architecture.
The second is a new scheduling called random order scheduling, and is shown to
significantly improve the decoding performance. Our numerical simulations provide
evidence that both could be used in the future to meet hardware needs as they offer
a good compromise of speed and performance.

2 Preliminaries

2.1 Quantum Codes

Calderbank-Shor-Steane (CSS) codes are defined by two classical (mX/mZ , n)-parity
check matrices HX , HZ satisfying HXH

⊥
Z = 0. The dimension of the quantum code is

n−rank(HX)−rank(HZ) and its minimum distance d = {min |v|, v ∈ kerHX\ imH t
Z∪

kerHZ\ imH t
X}. One such class of CSS codes are the hypergraph product codes

(HPC), which given two classical codes A and B give the quantum code HX =
[A⊗ I, I ⊗Bt] and HZ = [I ⊗B,At ⊗ I] (see [9] for the construction and parameters
of the code).

In the following, we will only focus on decoding Z errors using HX . All proofs are
easily adapted to correcting X errors.

2.2 MP decoding

MP decoders work by exchanging soft information between check and variable nodes
on the Tanner graph representation of the code, trying to converge to a hard decision
on the variable nodes that satisfy the syndrome. One crucial factor is to decide in
which order messages are exchanged and soft information updated. There are three

2

main decoding scheduling used classically: flooded, in which messages are exchanged
simultaneously and soft information updated in parallel, serial, where the graph is
updated sequentially going through all the checks one by one, and layered, which lies
in between, taking advantage of checks that have a disjoint support to update them
in parallel, essentially doing a speed up of serial scheduling at no cost. For more
details on classical message passing, refer to [10].

2.3 Layered Scheduling

To avoid memory conflicts in a partly parallel architecture, implementing a layered
scheduling, the same memory slot should not be read/written to by two different
processing units at the same time. This motivates the following definitions.

Definition 1. A layer is a collection of check-nodes such that any two check-nodes
have no neighbouring variable-node in common.

Definition 2. A layer decomposition L0 ⊔ · · · ⊔ Lk−1 is a partition of the set of
check-nodes into k layers.

Definition 3. A decomposition is said to be minimal if it is impossible to find a
decomposition in less layers.

A simple density argument is enough to state the following fundamental inequality:

Lemma 1. Any k layers decomposition of a (, δ)-regular1 (m,n)-parity-check matrix
satisfies k ≥ δm

n
.

Definition 4. A decomposition is γ-balanced if

|Li|
|Lj|

≤ γ, ∀Li, Lj

A decomposition will be said to be balanced if it is 1-balanced. Balanced decomposi-
tions ensure an efficient use of hardware resources (check-node processing units).

3 Hardware Requirements

In contrast to classical LDPC decoders, which prioritize optimizing throughput,
qLDPC ones must satisfy highly constrained values of latency to avoid the backlog
problem [11], which would lead to an exponential slowdown of the quantum processor
making the QEC implementation impractical.

Table 1: Latency approximation for the different architectures

Parallel Serial Layered

T
(P)
min × 2× itmax T

(S)
min × (itmax/2)×m T

(L)
min × 2× (itmax/2)× k

To illustrate the behavior of the decoder, the B1 code from [1] is taken as an
example (defined in Section 4). An MP decoder for the B1 code can achieve with

1A matrix is said to be (c, d)-regular if every column is of weight c and every row of weight d.

3

this architecture2, a clock period between 8 and 10ns which derives a latency between
480ns and 600ns at 30 iterations, that is close to the most constrained technology.
Taking this into account, the clock period usually can be reduced to 70% and 80%
of the clock period obtained with the parallel version. The question is that with
this schedule and the derived architecture only one check node is updated in a clock
cycle, because of the sequential update of the messages. Due to this, at least m clock-
cycles are required 3 to complete just one iteration of the MP algorithm. Following
the example of code B1, the clock period should be between 5.6 and 7ns, but the
total latency at 30 iterations would be between 74.26µs and 92.82µs. Even assuming
a reduction of the number of iterations to get similar performance to the flooded
schedule, the range of latencies would be out of the time budget of supercomputing
qubits and transmons. To meet the timing requirements, the clock period should be
equal to 5.6

m/2
=0.025ns, which is a maximum clock frequency of 40GHz. This frequency

cannot be achieved by any FPGA or ASIC, and on the other hand, it would require a
large power consumption that will cause another problem with the power budget and
the refrigeration system [13]. With the previous examples, it is easy to conclude that
the implementation of serial scheduling, even if it has a better performance than the
flooded one, it is not a realistic solution when it comes to implementation. A trade-off
solution between both serial and flooded may be the layered schedule. If the number
of layers is small enough, the number of clock cycles per iteration will not grow too
much and the number of iterations will be usually reduced by two. Going back to the
B1 code example, assuming that in the worst case, the clock period will be similar to
the parallel architecture, and with a distribution of 3.5 layers4 the total latency for 30
iterations will be between 8x3.5x2x30=1.68µs and 10x3.5x2x30=2.10µs; and between
8x3.5x2x15=840ns and 10x3.5x2x15=1.05µs with 15 iterations, which is fairly close
to the constraints of superconducting qubits and meets the requirements of other
technologies.

As we will see in the following sections, the layered schedule will also benefit
from some non-negligible performance improvements, apart from the reduction in the
number of iterations, compared to the flooded schedule.

In table 1, we can find a summary of the total latency for different architectures,
where T

(P)
min, T

(S)
min and T

(L)
min are the minimum clock periods achievable by the parallel,

serial and layered architectures respectively, and itmax is the maximum number of
iterations configured in the parallel decoder. Note that we assume that the number
of iterations of serial and layered is usually half the number of iterations of the parallel
architecture [4].

2All figures reported here come from our implementation of an either fully parallel [12] or serial
min-sum decoder architecture, with exchanged messages quantized on 6 bits, on a Xilinx FPGA
xcv095 board.

3Assuming that due to the reduced complexity of the units both the check node and the connected
variable nodes can be updated in parallel.

4See Section 4 for the formal definition of fractional layer number.

4

4 Generic Constructions

4.1 Layered Construction for Hypergraph Product Codes

Consider an hypergraph product code defined by two matrices A and B, such that
HX = [A⊗ I, I ⊗ Bt] and HZ = [I ⊗ B,At ⊗ I] [9]. There exist a layer construction
from a layer decomposition of A,B,At, Bt.

Theorem 1. Given minimal decompositions A = A0 ⊔ · · · ⊔ AkA−1, B = Bt
0 ⊔ · · · ⊔

Bt
kBt−1, one can construct a minimal decomposition of HX in k = max(kA, kBt) layers.

A similar theorem can be stated for At, B and HZ with the same proof techniques.

Construction If kA ̸= kB, without loss of generality, suppose kA < kB. The
first step is to add empty layers to A so that k′

A = k′
B = k. That is let A =

A0 ⊔ · · · ⊔ AkA−1 ⊔ AkA · · · ⊔ Ak where AkA = · · · = Ak = ∅. Let’s label each row of
HX as

a � b := [a⊗ eb, ea ⊗ b], a ∈ rows(A), b ∈ rows(Bt)

In the following we will denote by left the sub-matrix [A⊗I] and right the sub-matrix
[I ⊗Bt]. Create layers L0 . . . Lk−1 such that

(a � b) ∈ Li ⇔ ∃j a ∈ Aj, b ∈ Bt
j+i mod k (1)

By definition, all checks belong to some layer, we now have to check that any two
checks in a given layer have disjoint variable nodes support. Suppose that two checks
a � b, a′ � b′ belong to Li. Case A : a = a′. They do not touch on the left thanks
to the tensor product with the identity. Furthermore, it means that b ̸= b′ but then
both belong to Bt

l for some l, so they have disjoint support on the right. Case B,C :
a ̸= a′. They have disjoint support on the right because of the tensor product with
the identity. To show that they do not intersect on the left, there are two cases : If a
and a′ belong to some Al (case B), then by definition they have disjoint support on
the left. If a and a′ belong respectively to Al, Al′ with l ̸= l′ (case C), then it means
that b ∈ Bt

l+i mod k, b
′ ∈ Bt

l′+i mod k, two distinct classes. Hence even though a and a′

might share variable nodes in A, they do not intersect in the tensored version A⊗ I.
Fig. 1 depicts a simple example of the 3 cases.

Minimality The proof is by contradiction. Assume that there is a decomposition
in less than kBt layers, then one could recover a decomposition for Bt in less than kBt

from a restriction to the {a � b, ∀b} positions for any given a. Any decomposition
in less than kA layers would similarly give a decomposition for A from the restriction
of HX to any {a� b, ∀a} for a given b. Hence the decomposition in max(kA, k

t
B) is

minimal for HX .
Note that the construction is not unique, for example, Equation 1 can be replaced

by the following equation where σ is any k-permutation, although this is still not the
most generic formula:

(a � b) ∈ Li ⇔ ∃j, a ∈ Aσ(j), b ∈ Bt
j+i mod k (2)

5

1 1 1 1

1 1 1

1 1 1
1○ 1○ 1○

1 1
1 1

1○ 1○ 1○
1 1

1 1

Case A : a = a′ =⇒ b ̸= b′,∃l, b, b′ ∈ Bt
l

Case B○ : a ̸= a′, a, a′ ∈ Al

Case C : a ̸= a′, a ∈ Al, a
′ ∈ Al′

Figure 1: Small visualization example of proof cases where A = Bt

Theorem 2. Given k-layerings for A and Bt, respectively α and β-balanced. Then
HX is γ-balanced with :
(i) γ < min(α, β) if α, β > 1
(ii) γ = 1 otherwise.

Proof. (i) Let a0...ak−1 be the sizes of layers A0...Ak−1, and b0...bk−1 the sizes of the
layers Bt

0...B
t
k−1. Then each layer Ll of HX has size

∑
aibi+l. We also suppose layers

of A and Bt are ordered from biggest to smallest hence a0 = αak−1 and b0 = βbk−1.
The layer L0 of size

∑
aibi is the biggest layer, a classical proof of that is by contra-

diction, using the fact that ∀a ≥ c, b ≥ d, ab+ cd ≥ ad+ bc. The ratio between any
other layer Lj and L0 is smaller than β since β

∑
aibi+j >

∑
aib0 >

∑
aibi using the

fact that ∀bj, βbj ≥ b0 (and similarly for α).

(ii) Suppose A is perfectly balanced. In that case, for any b ∈ Bt, it will appear
the same number of times in each layer Li since the a � b,∀a ∈ A will be equally
balanced in the layers. Hence the code will be balanced. The same argument holds
if Bt is perfectly balanced.

Corollary 2.1. Given a kA-layering or A, and a kB > kA layering for Bt β-balanced.
Then HX is γ-balanced with :

γ ≤ β

Proof. Same as above, considering a kB layering for A by adding empty layers. This
new layering is ∞-balanced.

4.2 Random Ordering

We introduce a decoding technique called random ordering. This technique consists
of applying a random order on the layers’ application at each decoding step. This is

6

also generalized to serial decoding by considering that each check belongs to its own
layer (i.e. k = m). This seemingly anodyne step helps to alleviate the error floor
quite dramatically. In addition, further simulations showed us that one does not
even have to use a “good” pseudo-random generator to generate the permutation,
and this can be done with virtually no cost using a simple congruent generator, a
solution that is hardware friendly.

4.3 t-Covering of Layers

For many codes, the theoretical bound on k given by a density argument is not tight.
However, since for the quantum codes the number of layers is fixed due to latency
constraints, it is important to stay as close as possible to the theoretical bound.
We introduce a generalization of the layer decomposition called a t-covering of (k)
layers. We drop the requirement that the layers should be disjoint, and only require
that their union taken with multiplicities should cover each check exactly t times.
In the following, the parameters of a t-covers will be specified as (t, k, γ), giving the
cover parameters and the balance of the layers. Note that when using t-covers, the
usual term of “iteration” becomes ambiguous because it might be the case that the
decoder stops while all the checks have not been seen the same number of times.
Since by pipelining the process, the syndrome satisfaction could be checked after
each layer application adding very low latency, in the following we will often refer
to the number of iterated layers (but always specify it when we do so). To quickly
compare a t-cover with another or with a layer decomposition, it is useful to introduce
the fractional layer number as k

t
, intuitively it captures the “average” number of

layers the decoder has to process to see each check once. Finally, by concatenating
t times the matrix H, it is clear that the density bound of lemma 1 applies to the
fractional layer number. As a simple application, for the code B1 given below, we
found a (2,7,1)-cover, k

t
= 3.5 . We could also find a (1,4,2) layer decomposition,

k
t
= 4, and the density bound gives us k

t
≥ 3, since no decomposition in 3 layers is

known for the B1 code, our 2-cover sets a new standard in decoding efficiency.

5 Applications on Particular Quantum Codes

5.1 C2 Code

The C2 code is a hypergraph product code generated from a single cyclic matrix
(A = B) of generator polynomial p(x) = 1 + x2 + x5 and length l = 31. Since
this cyclic matrix (and its transpose) accepts a decomposition in 5-layers, using the
technique from theorem 1, we can construct a 5 layer decomposition for the C2 code.
As said earlier about the balancing effect of the procedure, the decomposition used
for A,B,At, Bt is (1, 5, 2)-cover and it yields a (1, 5, 1.1)-cover for C2. This shows the
balancing effect of the procedure, as we go from γ = 2 to γ = 1.1. Here are the layers
used for the quasicyclic matrix:

7

A0 0 1 7 8 14 15 21 22
A1 2 3 9 10 16 17 23 24
A2 4 11 18 25 29
A3 5 12 19 26 30
A4 6 13 20 27 28

It should be noted that in order to improve the latency (at the cost of a more com-
plex construction), we were also able to create a (224, 961, 1)-cover of C2, achieving
a fractional layer number of 4.29 and giving close numerical results.

5.2 B1 Code

10 2 10 1

Physical error rate

10 6

10 5

10 4

10 3

10 2

10 1

100

Lo
gi

ca
l X

 e
rro

r r
at

e

flooded
layered
serial
layered+ro
serial+ro

(a) B1[[882, 24]] SP

10 2 10 1

Physical error rate

10 6

10 5

10 4

10 3

10 2

10 1

100

Lo
gi

ca
l X

 e
rro

r r
at

e

flooded
layered
serial
layered+ro
serial+ro

(b) C2[[1922, 50, 16]] SP

10 2 10 1

Physical error rate

10 6

10 5

10 4

10 3

10 2

10 1

100

Lo
gi

ca
l X

 e
rro

r r
at

e

flood
lay+ro
lay
ser+ro
ser

(c) B1[[882, 24]] NMS

10 2 10 1

Physical error rate

10 6

10 5

10 4

10 3

10 2

10 1

100

Lo
gi

ca
l X

 e
rro

r r
at

e

flood
lay+ro
lay
ser+ro
ser

(d) C2[[1922, 50, 16]] NMS

Figure 2: Comparison of different decoders and scheduling on B1 and C2 codes
under Z-noise. In the simulations, we use a perturbated NMS, where each check
node message is multiplied by a normalization factor uniformly chosen at random in
{0.875,0.9275} at each iteration. This perturbation is important to avoid an error-
floor degradation.

The B1 code is a Generalized Hypergraph Product code (construction given in
[1], Appendix) : As such it shares similarities with the Hypergraph Product Codes.

8

Although we do not have a generic decomposition for this family of codes, some ideas
from the hypergraph product theorem apply when creating a cover for the B1 code.
The B1 code accepts a 2-cover in 7 layers, hence giving a fractional layer number of
3.5. The layers are as follows :

Li = {i+ 7j ∀j} ∪ {3 + i+ 7j ∀j}

This 2-cover comes from a decomposition of the quasi-cyclic matrix defined by
polynomial p(x) = 1 + x+ x6 in 7 layers S0 . . . S6 such that Si = {i+ 7j ∀j} which
is an obvious decomposition (albeit not minimal) given the generating polynomial.
Those layers have the property that the union of any two layers Si, Si+3 mod 7 is still
a valid layer which gives the basis for the layers of the code B1. In fact, those layers
are extended to the matrices of HX , HZ much in the fashion of what is done with
the hypergraph product but with a “twist” as the blocks are quasi-cyclic shifts of
identities instead of all identities so one has to be more careful and cannot use the
generic formula.

6 Numerical Results

Fig. 2 compares the different decoding techniques proposed on an HGP and Hy-
perbicycle Codes under Z-noise. We consider Sum-Product (SP) and Normalized
Min-Sum (NMS) decoders, with serial, layered and flooded scheduling [10]. When
decoding classical codes, using serial scheduling yields a factor two improvement in
convergence speed over flooded scheduling. This is not the case in our numerics on
quantum codes, as the serial scheduling suffers from a high error floor. This error floor
can be virtually eliminated by using a random ordering scheduling. For the flooded
scheduling, the number of iterations used is i = 128, for serial i = 64. For the layered
scheduling of a (t, k,)-cover, the layer iteration number ilay = ⌊64 × k

t
⌋. Although

we argued before that checking the syndrome after each layer is essentially costless,
to do a “fairer” comparison with serial scheduling under random order scheduling we
also tried checking the syndrome only after ⌈k

t
⌉ layer iterations. We did not include

the numerics as the two curves match almost perfectly, making it a non-issue.
On the B1 code, because it is a t-cover and not a layer decomposition, we alter the

random ordering scheduling a little bit to boost the performances by requiring that
the permutation is not chosen uniformly at random, and must satisfy the additional
constraint that two successive layers should not share any check. These additional
constraints help the decoder to converge faster as processing the same check twice in
a row in different layers would not change its soft information.

7 Conclusion

We showed how to implement a layered scheduling for qLDPC codes to meet with the
hardware latency limitations. In our numerics, this decoder was more efficient than
what could be achieved using similar resources in flooded scheduling which might
make it the go to hardware option in the future. We also show that the random
order scheduling is a result interesting on its own, as it can be applied to both serial
and layered scheduling to alleviate the high error floor of some codes without the

9

need of a post-processing. It should be noted that presently, the best decoders for
those codes use some kind of post-processing after message passing, something that
was not studied in this paper, as none of the known post-processings can meet the
hardware latency considerations. Knowing that our serial scheduling with random
ordering already achieves the performances of the Ordered Statistic Decoding (OSD)
post-processing on those codes5. Finding such hardware friendly post-processing to
use with our layered scheduling would be another step in the direction we are aiming
for.

Acknowledgement

This work was supported by the QuantERA grant EQUIP (French ANR-22-QUA2-
0005-01, and Spain MCIN/AEI/10.13039/501100011033, grant PCI2022-132922), and
the Plan France 2030 (ANR-22-PETQ-0006) and by the European Union “NextGen-
erationEU/PRTR”.

References

[1] P. Panteleev and G. Kalachev, “Degenerate quantum LDPC codes with good
finite length performance,” Quantum, vol. 5, p. 585, 2021, arXiv:1904.02703.

[2] J. Du Crest, M. Mhalla, and V. Savin, “Stabilizer inactivation for message-
passing decoding of quantum LDPC codes,” in IEEE Information Theory Work-
shop (ITW). IEEE, 2022, pp. 488–493.

[3] N. Raveendran and B. Vasić, “Trapping sets of quantum LDPC codes,” Quan-
tum, vol. 5, p. 562, Oct. 2021.

[4] J. Zhang, Y. Wang, M. P. C. Fossorier, and J. S. Yedidia, “Iterative decoding
with replicas,” IEEE Transactions on Information Theory, vol. 53, no. 5, pp.
1644–1663, 2007.

[5] Y. Mao and A. H. Banihashemi, “Decoding low-density parity-check codes with
probabilistic scheduling,” IEEE Communications Letters, vol. 5, no. 10, pp. 414–
416, 2001.

[6] V. Savin, “Iterative LDPC decoding using neighborhood reliabilities,” in IEEE
Int. Symp. on Inf. Theory (ISIT), 2007, pp. 221–225.

[7] A. I. Vila Casado, M. Griot, and R. D. Wesel, “LDPC decoders with informed
dynamic scheduling,” IEEE Trans. on Communications, vol. 58, no. 12, pp.
3470–3479, 2010.

[8] E. Boutillon and G. Masera, “Hardware design and realization for iteratively de-
codable codes,” in Channel coding: Theory, algorithms, and applications, D. De-
clercq, M. Fossorier, and E. Biglieri, Eds. Elsevier, 2014, pp. 583–642.

5See [2][Sec 4, Fig. 2], error probability should be multiplied by 2/3 to compare the two since
the error model is depolarizing noise there.

10

[9] J.-P. Tillich and G. Zémor, “Quantum ldpc codes with positive rate and min-
imum distance proportional to the square root of the blocklength,” IEEE
Transactions on Information Theory, vol. 60, no. 2, pp. 1193–1202, 2013,
arXiv:0903.0566.

[10] V. Savin, “LDPC decoders,” in Channel coding: Theory, algorithms, and ap-
plications, D. Declercq, M. Fossorier, and E. Biglieri, Eds. Elsevier, 2014, pp.
211–260.

[11] A. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and F. T. Chong,
“NISQ+: Boosting Quantum Computing Power by Approximating Quantum
Error Correction,” in Proceedings of the ACM/IEEE 47th Annual International
Symposium on Computer Architecture, ser. ISCA ’20. IEEE Press, 2020, p.
556–569.

[12] J. Valls, F. Garcia-Herrero, N. Raveendran, and B. Vasić, “Syndrome-based min-
sum vs OSD-0 decoders: FPGA implementation and analysis for quantum LDPC
codes,” IEEE Access, vol. 9, pp. 138 734–138 743, 2021.

[13] Y. Ueno, M. Kondo, M. Tanaka, Y. Suzuki, and Y. Tabuchi, “QECOOL: On-line
quantum error correction with a superconducting decoder for surface code,” in
2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, dec 2021.

11

	Introduction
	Preliminaries
	Quantum Codes
	MP decoding
	Layered Scheduling

	Hardware Requirements
	Generic Constructions
	Layered Construction for Hypergraph Product Codes
	Random Ordering
	t-Covering of Layers

	Applications on Particular Quantum Codes
	C2 Code
	B1 Code

	Numerical Results
	Conclusion

