
ar
X

iv
:2

30
4.

14
37

9v
3

 [
cs

.I
T

]
 2

7
Ju

l 2
02

3

Generalized Automorphisms of Channel Codes:

Properties, Code Design, and a Decoder

Jonathan Mandelbaum, Holger Jäkel, and Laurent Schmalen

Communications Engineering Lab, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

jonathan.mandelbaum@kit.edu

Abstract—Low-density parity-check codes together with belief
propagation (BP) decoding are known to be well-performing for
large block lengths. However, for short block lengths there is
still a considerable gap between the performance of BP decoding
and maximum likelihood decoding. Different ensemble decoding
schemes such as, e.g., automorphism ensemble decoding (AED),
can reduce this gap in short block length regime. We propose
generalized AED (GAED) that uses automorphisms according
to the definition in linear algebra. Here, an automorphism of a
vector space is defined as a linear, bijective self-mapping, whereas
in coding theory self-mappings that are scaled permutations are
commonly used. We show that the more general definition leads
to an explicit joint construction of codes and automorphisms,
and significantly enlarges the search space for automorphisms
of existing linear codes. Furthermore, we prove the concept
that generalized automorphisms can indeed be used to improve
decoding. Additionally, we propose a code construction of linear
codes enabling the construction of codes with suitably designed
automorphisms. Finally, we analyze the decoding performances
of GAED for some of our constructed codes.

Index Terms—generalized automorphism groups; generalized
automorphism ensemble decoding; short block lengths codes

I. INTRODUCTION

Low-density parity-check (LDPC) codes are a prominent

example of error correcting codes that are used in a large

variety of applications. They were first proposed by Gallager

together with a low-complexity message passing decoding

algorithm [1], often called belief propagation (BP) decoding.

LDPC codes with large block lengths can achieve low error

rates and close-to-capacity performance [2]. Yet, many low-

latency communication systems, such as the internet of things,

autonomous driving, or communicating control commands,

require codes of short block lengths. For such codes, there

is still a considerable gap between the performance of BP

decoding and maximum likelihood (ML) decoding. This can

be attributed to the poor structural properties of the parity-

check matrix (PCM) of short codes for BP decoding, e.g., a

large number of short cycles and of non-zero entries, together

with the sub-optimality of the message passing decoding

algorithm.

For any binary-input memoryless symmetric output channel

(BMSC), such as the additive white Gaussian noise (AWGN)

channel, correctly decoding a received word with a symmetric

The author would like to thank Frank Herrlich for the inspiring discussions
in deriving Theorem 1.

This work has received funding from the German Federal Ministry of
Education and Research (BMBF) within the project Open6GHub (grant
agreement 16KISK010).

message passing decoding algorithm depends only on the noise

superimposed by the channel, not on the transmitted codeword

itself [2, Lemma 4.90]. Therefore, different variations of the

algorithm such as multiple bases belief propagation (MBBP)

[3] and automorphism ensemble decoding (AED) [4] were

proposed. Herein, an ensemble of noise representations or

decoding algorithms aims to improve decoding. Following the

latter statement, MBBP decoding performs ensemble decod-

ing, in which the received sequence is decoded by multiple

different BP decoders in parallel. Similarly, the idea of the

AED, as introduced in [5], is to use the automorphism group

defined in [6] to exploit different noise representations in

parallel paths which is discussed in more detail in Sec. II-B.

From a structural perspective, it is reasonable to restrict

the definition of the automorphism groups of linear codes to

consist solely of suitable scaled permutations (Sec. II-A) such

that, i.a., codewords of the same Hamming weight are mapped

onto each other. The (permutation) automorphism groups of

classical and modern codes are extensively discussed in the lit-

erature [4], [6], [7], [8]. To improve decoding, automorphisms

must be chosen carefully because the generated diversity might

be absorbed by the symmetry of the decoding algorithm [4],

[5], [9]. In linear algebra, the definition of automorphisms of

a vector space is broader and includes all linear, bijective self-

mappings, a fact that is going to be used and analyzed in this

paper.

We show that automorphisms according to this more general

definition can be beneficial for decoding. Thus, we signifi-

cantly enlarge the search space for suitable automorphisms.

To do so, we describe the (generalized) automorphism group

of linear codes defined by a PCM. Additionally, we propose

a generalized AED (GAED) algorithm such that generalized

automorphisms can be used for decoding. Furthermore, we

propose a code construction algorithm for linear codes together

with specific automorphisms which enables designing suitable

codes for GAED. Finally, we present and compare the perfor-

mance of GAED for some of our constructed codes.

II. PRELIMINARIES

A linear block code C(n, k) over a field F forms a subspace

of the vector space F
n. It consists of |F|k distinct elements

from F
n, where the parameters n ∈ N and k ∈ N are

called block length and information length, respectively. A

linear code C(n, k) can be described as the row span of a

http://arxiv.org/abs/2304.14379v3

generator matrix G ∈ F
k×n or as the null space of its PCM

H ∈ F
(n−k)×n, which we assume to be of full rank [6]:

C (n, k) = {x ∈ F
n : Hx = 0} = Null(H).

Note that in contrast to most coding literature, we denote

vectors as column vectors in order to directly account for

matrix-vector operations common in linear algebra.

For the sake of simplicity, the parameters of the code will

be (n, k) and omitted if they are clear from the context.

BP decoding is an iterative message passing algorithm over

the Tanner graph of the code. Messages are log-likelihood

ratios (LLRs) that are iteratively propagated along the edges

and updated in the nodes of the graph [2]. Every linear code

can be represented by possibly different PCMs or, equivalently,

different Tanner graphs. Although the code is the same, BP

decoding behaves differently since the degrees of the nodes

and the short cycles within the Tanner graph mainly dominate

their performance. For more details on BP decoding, the

interested reader is referred to [2].

A. Automorphism Group

In this section, we discuss two different definitions of the

automorphism group of a code. To this end, let C ⊂ F
n be a

linear code defined over an arbitrary finite field F and Sn be

the symmetric group.

First, according to [6], the automorphism group is defined

as the set of mappings π(a) with

Aut(C) :=
{

π(a) : C→C,x 7→aπ(x) :π∈ Sn, a ∈ F\{0}
}

,

where aπ(x) =
(

axπ(1), · · · , axπ(n)

)T

can be interpreted

as a scaled permutation. Note that for binary codes, the scaling

factor a must be 1 and, hence, is omitted, i.e., π := π(1).

Second, in linear algebra another definition is standard.

Here, the automorphism group GAut(C) of a vector space

C is defined as all linear, bijective self-mappings [10], i.e.,

GAut(C) := {τ : C → C : τ linear, τ bijective} .

Since scaled permutations are linear, bijective mappings and,

thus, Aut(C) ⊆ GAut(C), the latter definition is more general.

B. Automorphism Ensemble Decoding

Fig. 1 shows the block diagram of AED as proposed in [5]

for binary codes. A codeword x ∈ C ⊂ F
n
2 is transmitted over

a BMSC yielding a received word y ∈ Yn, where Y denotes

the channel output alphabet, and resulting in the bit-wise LLR

vector L := (L(yj |xj))
n

j=1 ∈ R
n. Instead of decoding the

LLR vector L with only one decoder, it is propagated along K
different paths. In each path i ∈ {1, . . . ,K}, the LLR vector

L is preprocessed according to a permutation automorphism

πi ∈ Aut(C) as πi(L). Afterward, the permuted LLRs πi(L)
are decoded using an arbitrary decoding algorithm of the code

C. This yields several estimates of the permuted versions of the

codeword πi(x̂i). Hereby, every path might possess a distinct

decoder. In the next step, applying the inverse automorphisms

results in K estimates x̂i ∈ F
n
2 of the transmitted codeword

x ∈ F
n
2 . Finally, the best candidate is chosen according to an

ML-in-the-list rule [5].

y

π1

πK

Dec.

Dec.

π
−1

1

π
−1

K

M
L

-i
n
-t

h
e-

li
st

x̂
.
.
.

.

.

.
.
.
.

Fig. 1. Block diagram of an AED. K different automorphism πi ∈ Aut(C)
are chosen from the permutation automorphism group [5].

AED relies on the assumption that if decoding fails in one

path, it may succeed in another path. This is not always the

case. First, it depends on the interaction of the respective

automorphism and the decoder in a path. Second, the ensemble

of automorphisms for the different paths must be chosen

carefully to improve decoding performance [8].

We consider linear codes that are decoded with a BP

decoder using a flooding schedule. As discussed in [4] and

[9], the known automorphisms from the permutation automor-

phism group cannot be used to improve BP decoding for a

large variety of LDPC codes since their diversity is absorbed

by the symmetry of the PCM resulting from code construction.

Thus, either the PCM must be altered after construction as in

[4] or other construction methods must be used as in [9].

C. Frobenius Normal Form

The code construction presented below in Sec. IV is based

on the Frobenius normal form. To this end, let T ∈ GLn(F),
with GLn(F) denoting the general linear group, be a non-

singular matrix describing a linear, bijective self-mapping

τ : Fn → F
n via τ(x) := Tx. Then, there exists a matrix

F ∈ GLn(F) of the form

F =













Bf1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Bfj













with j ∈ N, consisting of companion matrices Bfi [6, p. 106]

of size di × di of a polynomial fi(x) =
∑di

ℓ=0 αi,ℓx
ℓ with

αi,ℓ ∈ F, together with a matrix SF ∈ GLn(F) such that

T = S−1
F FSF [10]. The matrix F is called the Frobenius

normal form or, equivalently, rational canonical form of T

and is determined by T except for the order of the blocks Bfi .

III. GENERALIZED AUTOMORPHISMS OF CODES

This section investigates the general automorphism group

GAut(C) of linear codes. Afterward, we propose code design

and an adaption of AED that take advantage of using general

automorphisms from GAut(C).

A. Automorphism Group of Parity-Check Codes

In the following, we will derive algebraic properties provid-

ing automorphisms of arbitrary codes and enabling a joint con-

struction of linear codes together with their automorphisms.

This will be approached by finding automorphisms of Fn and

restricting them to the code subspace C ⊂ F
n. Directly finding

automorphisms of C and exploiting the associated flexibility

is part of our ongoing research.

A linear, bijective self-mapping τ : Fn → F
n based on

a non-singular transformation matrix T ∈ GLn(F) is an

automorphism of a code C if and only if

∀x ∈ C : Hx = 0 ⇐⇒ HTx = 0.

Thus, in order to identify the automorphisms of a code, non-

singular matrices can be used that retain the null space of H

under right multiplication, i.e.,

Null(H) = Null(HT), (1)

which is investigated below in Theorem 1. In order to state

the theorem, the following definitions are useful:

T := {T ∈ GLn(F) : T fulfills (1) } ,

Z(n, k) :=

{

Z ∈ GLn(F) : Z =

[

C 0(n−k)×k

D E

]}

,

with C ∈ F
(n−k)×(n−k), D ∈ F

k×(n−k), and E ∈ F
k×k. As

before, for the sake of simplicity, the parameters (n, k) will

be omitted if they are clear from the context.

Theorem 1. Let H ∈ F
(n−k)×n be of rank n − k. Then, T

forms a subgroup of the general linear group GLn(F) which

is conjugated to the matrices in Z , i.e.: T ∈ T if and only if

there exists Z ∈ Z and A ∈ GLn(F) such that T = AZA−1,

where A ∈ GLn(F) is a non-singular matrix, termed code

characterization matrix (CCM), such that

HA = H̃ =
[

I(n−k)×(n−k) 0(n−k)×k

]

. (2)

Proof. First, we consider the case H = H̃ . The null space

of H̃ is the linear span of the k canonical vectors

en−k+1, . . . , en ∈ F
n where the ith entry of ei is 1 and all

other entries are 0. Then, the subspace Null(H̃) is mapped

on itself by all matrices Z ∈ Z , i.e.,

span{Zen−k+1, . . . ,Zen} = span{en−k+1, . . . , en}, (3)

proving the theorem in the case of H = H̃ .

An arbitrary matrix H ∈ F
(n−k)×n of rank n − k can be

transformed into H̃ by applying Gaussian elimination on the

columns which can be represented by multiplication of H

from the right with a non-singular matrix A as in (2).

Consider again the basis {en−k+1, . . . , en} of Null(H̃).
Then, using (2) and arbitrary i ∈ {1, . . . , k}, it follows

that 0 = H̃en−k+i = HAen−k+i.Thus, Aen−k+i is an

element of Null(H). In addition, since A is non-singular

and the vectors in {en−k+1, . . . , en} are linearly independent,

it follows that the vectors in {Aen−k+1, . . . ,Aen} are also

linearly independent. Therefore, {Aen−k+1, . . . ,Aen} is a

basis of Null(H).
The CCM A is a non-unique change-of-basis matrix

mapping the basis {en−k+i}
k
i=1 of Null(H̃) to the basis

{Aen−k+i}
k
i=1 of Null(H). Hence, A−1 is a change-of-basis

matrix from the set {Aen−k+i}
k
i=1 to the set {en−k+i}

k
i=1.

Thus, conjugation of arbitrary Z ∈ Z with A leads to all

matrices that fulfill (1).

y Preprocessing(T) Dec. T−1 x̂

Fig. 2. Path of a GAED if an automorphism T ∈ Aut(C) is used.

Theorem 1 provides some structural insights into the auto-

morphism group of a code and states an explicit construction

method of automorphisms. Another relevant property of its

CCM for the code design is highlighted in Theorem 2 and

proven in the appendix.

Theorem 2. All characteristics of a linear code with

PCM H ∈ F
(n−k)×n, except for its code rate, are contained

within the non-singular CCM A ∈ GLn(F). In addition, the

inverse of A is of the form:

A−1 =

(

H

Λ

)

, (4)

where Λ ∈ F
k×n must be chosen such that A−1 is of full

rank. Furthermore, the CCM A is not unique.

B. Generalized Automorphism Ensemble Decoding

The statements in Sec. III-A hold for arbitrary fields. In this

section, we confine ourselves to binary codes C ⊂ F
n
2 to adapt

AED for automorphisms of GAut(C) \Aut(C). We require

a preprocessing of the bit-wise LLRs, as depicted in Fig. 2,

for using generalized automorphisms in GAED. In order to

describe the effects of F2-sums on the LLRs, let (Xi)
s
i=1 ∈ F

s
2

be a sequence of binary random variables. Accordingly, let

(Li)
s
i=1 ∈ R

s be their corresponding LLRs. Then, the LLR of

the F2-sum is given by the box-plus operator [11]:

L

(

s
∑

i=1

Xi

)

= 2 ·tanh−1

(

s
∏

i=1

tanh

(

Li

2

)

)

=:
s

⊞
i=1

Li. (5)

Let x ∈ C be an arbitrary codeword that is transmitted

over a binary memoryless channel. Consider an automorphism

T ∈ GAut(C), and define

x̃ := Tx =

(

n
∑

i=1
T1,ixi, . . . ,

n
∑

i=1
Tn,ixi

)⊤

. (6)

Then, to mimic the effect of this automorphism at the receiver

the bit-wise LLRs L(yi|xi) are processed according to

L(yj |x̃j) =
n

⊞
i=1,

Tj,i=1

L(yi|xi), ∀j ∈ {1, . . . , n}, (7)

which follows immediately from (5). Note that permuting the

bit-wise LLR vector πi(L) with πi ∈ Aut(C) in Sec. II-B is

a special case of (7). Hence, the proposed GAED algorithm

naturally generalizes AED proposed in [5].

According to (7), the numbers of non-zero entries per row

of T indicate the number of LLR values that participate

in the boxplus summations. To quantify those effects, we

conveniently define the weight Ω(T) as the number of non-

zero elements of T and ∆(T) = Ω(T)− n as the weight over

permutation. Note that, due to T ∈ GLn(F), Ω(T) is lower

bounded by n which is only obtained if T ∈ Aut(C).

Since the magnitude of an LLR indicates the reliability of

the message, it is important to understand the influence of the

weight Ω(T) of an automorphism on the magnitude of the

LLR after the proposed preprocessing. It can be shown that

the magnitude of the outgoing LLR is decreasing if more finite

LLRs participate in the boxplus summation. Thus, the prepro-

cessing with an automorphism T ∈ GAut(C)\Aut(C) leads to

an information loss. Hence, we expect the paths of GAED with

such automorphisms to individually possess a higher decoding

error probability. Still, as long as the performance degradation

per path is not too severe, the decoding performance of the

full GAED algorithm can improve. Note that the complexity

of GAED is comparable to AED because the preprocessing

step can be interpreted as one check node update.

IV. CONSTRUCTION OF LINEAR CODES WITH SPARSE

AUTOMORPHISMS

Next, we propose a method to construct linear codes C with

a specific, potentially sparse, automorphism T ∈ GAut(C).
We observe that if T is sufficiently sparse, then often T−1

and T 2 are also sparse automorphisms usable in GAED. A

possible approach is to find a non-singular CCM A such that

A−1TA ∈ Z . The following construction method designs a

code C along with an automorphism of weight Ωobj and is

based on the observation that the Frobenius normal form is,

in some cases, an element of Z:

1) Choose Ωobj close to n, i.e., ∆(T) close to zero.

2) Sample a matrix T ∈ GLn(F) with Ω(T) = Ωobj

• Determine the sizes di of the Frobenius normal form

F by solving a set of linear equations [10].

• Evaluate if the matrices Bfi can be ordered such that

F is an element of Z , e.g., by using Theorem 3.

• Otherwise, repeat step 2).

3) Calculate SF = A−1, such that F = A−1TA ∈ Z .

4) Extract the PCM, denoted Hc, according to Theorem 2.

5) Find an optimized PCM Hopt based on Hc.

Theorem 3 states a sufficient condition for the existence of a

CCM for a given T . A proof is given in the appendix.

Theorem 3. Let d1, . . . dj be the sizes of the block matrices

of the Frobenius normal form F of T . If there exists a

subset J ⊆ {1, . . . , j} with
∑

i∈J di = k, then there exists

an ordering of the Bfi yielding an upper-right all-zero block

of size (n− k)× k or k × (n− k) within F . Hence, C(n, k)
and C(n, n− k) can be constructed.

Note that the method only yields a PCM. A generator matrix

must still be determined, which may contain zero columns.

Then, a suitable reduction of G, H and T can be performed

resulting in a code with smaller block length.

It is not guaranteed that a code constructed with the pro-

posed method has good properties as, e.g., large minimum

Hamming distance. In addition, structural properties of the

resulting PCM are not yet considered in the first four steps,

but is subject to ongoing research. Thus, we currently perform

a heuristic optimization in which we randomly choose low-

weight dual codewords to construct a full rank PCM. Note

TABLE I
CODE PARAMETERS

Code C1 C1,ref C2 C2,ref C3 CBCH

n 39 39 32 32 63 63
k 24 24 16 16 45 45

dmin 6 6 5 8 5 7

that the full dual codebook can be determined for all of the

upcoming codes.

V. RESULTS

We analyze the performance of three constructed binary

codes C1-C3, two reference codes C1,ref, C2,ref from [12] and

a BCH code CBCH, with parameters outlined in Table I.

The minimum Hamming distances were obtained using the

methods proposed in [13]. To evaluate the frame error rate

(FER), we perform Monte-Carlo simulations using an AWGN

channel, accumulating at least 300 frame errors for each SNR.

The notation GAED-ℓ-BP–p denotes GAED consisting of ℓ
BP path decoders performing p iterations of normalized min-

sum decoding (normalization constant 3
4). All GAEDs rely on

three different automorphisms, namely the identity mapping

I, an automorphism T constructed according to Sec. IV, and

its inverse T−1. Additionally, as reference, we show results of

a redundant row BP decoder, named R-ℓ-BP–p decoder, which

performs BP decoding with p iterations using an overcomplete

PCM consisting of ℓ · (n − k) low-weight dual codewords.

This approach is known to potentially improve BP decoding

of short block codes [3]. Ordered statistics decoders are used

to approximate the ML performances of all codes [14].

Fig. 3-5 depict the FER over Eb/N0 for codes C1-C3 based

on automorphisms with different weights over permutation.

Code C1 was constructed based on a permutation (∆(T) = 0),
hence GAED equals AED. Codes C2 and C3 were designed

to have automorphisms with ∆(T) = 10 and ∆(T) = 5,

respectively, to show validity of the general approach. For

all constructed codes, the performance of GAED-3-BP-10 is

compared against two decoders with comparable complexity,

namely the BP-30 and the R-3-BP-10. Additionally, Fig. 3-5

depict the performance of the ML decoder for the constructed

codes and some reference codes. Both are intended as an

indication of the best achievable performance. Since the paper

at hand is intended as a proof of concept, a natural gap to this

performance is still observed.

We observe that GAED-3-BP-10 results in lower error rates

compared to BP-30. For code C1, GAED-3-BP-10 shows a

gain of 0.6 dB compared to BP-30 at an FER of 10−3 and

also outperforms R-3-BP-10 by 1 dB. When decoding C2 and

C3, GAED-3-BP-10 also is able to yield a gain over BP-30.

For code C2, R-3-BP-10 obtains a gain compared to GAED-

3-BP-10. However, in higher SNR regime, GAED-3-BP-10 is

able to close the gap to R-3-BP-10.

Comparing GAED-3-BP-30 and BP-90, i.e., when decoding

with increased complexity, similar improvements can be ob-

served. For code C3, the performance of GAED-3-BP-10 and

BP-90 coincide. Hence, the latter was omitted for clarity. As

0 1 2 3 4 5 6 7 8

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Eb/N0 (dB)

F
E

R

ML approx.

ML approx. C2,ref [12]

BP-30

BP-90

R-3-BP-10

GAED-3-BP-10

GAED-3-BP-30

GAED-7-BP-30

Fig. 3. Performance of different decoders for code C1(39, 24). The GAED-7
relies on Tα with ∆(Tα) = 0 and α ∈ {−3, . . . , 3} in its paths.

0 1 2 3 4 5 6 7

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10
−2

Eb/N0 (dB)

F
E

R

ML approx.

ML approx. C2,ref [12]

BP-30

R-3-BP-10

GAED-3-BP-10

0 1 2 3 4 5 6 7

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10
−2

Eb/N0 (dB)

F
E

R

ML approx.

ML approx. C2,ref [12]

BP-30

R-3-BP-10

GAED-3-BP-10

Fig. 4. Performance of different decoders for code C2(32, 16) with
∆(T) = 10 and ∆(T−1) = 13.

additional reference, we simulated the performance of BP-30

for CBCH using the optimized PCM 1min from [15]. It can

be observed that the performance of BP-30 for codes C3 and

CBCH coincide over the whole SNR regime. Our simulations

indicate that increasing the number of iterations does not yield

further improvement for all decoders of C3. Note that GAED

for C2 and C3 relies on elements from GAut(C) \Aut(C),
serving as proof that the generalized automorphism group can,

in fact, improve decoding.

VI. CONCLUSION

In this paper, we have shown that the application of the

more general definition of automorphisms prevailing in linear

algebra in GAED can be used to improve decoding com-

pared to BP decoding. One important advantage is that this

more general definition is expected to simplify the search

for suitable transformation significantly. To this end, we first

analyzed generalized automorphisms of linear codes based on

non-singular mappings of F
n and proved a specification of

their structure introducing the CCM. Then, we described the

resulting effects at the receiver and reasoned that generalized

automorphisms should possess sparse matrices to prevent

severe information loss. Additionally, we introduced a method

1 2 3 4 5 6

10−1

10−2

10−3

10−4

10−5

10−6

10
−2

Eb/N0 (dB)

F
E

R ML approx. CBCH

BP-30 CBCH

ML approx.

BP-30

R-3-BP-10

GAED-3-BP-10

GAED-3-BP-30

1 2 3 4 5 6

10−1

10−2

10−3

10−4

10−5

10−6

10
−2

Eb/N0 (dB)

F
E

R ML approx. CBCH

BP-30 CBCH

ML approx.

BP-30

R-3-BP-10

GAED-3-BP-10

GAED-3-BP-30

Fig. 5. Performance of different decoders for code C3(63, 45) with ∆(T) =
5 and ∆(T−1) = 6.

to construct linear codes together with potentially sparse au-

tomorphisms. Finally, we discussed the decoding performance

of GAED for three exemplary constructed codes with varying

code sizes and rates. In all cases, GAED improved decoding

when compared to equal complexity BP decoding. Therefore,

this approach is very promising to enable alternative code

designs and to improve decoding performance.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” Ph.D. dissertation,
Mass. Inst. Tech., Cambridge, 1960.

[2] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, 2008.

[3] T. Hehn, J. B. Huber, S. Laendner, and O. Milenkovic, “Multiple-bases
belief-propagation for decoding of short block codes,” in Proc. IEEE

Int. Symp. Inf. Theory (ISIT), 2007.
[4] M. Geiselhart, M. Ebada, A. Elkelesh, J. Clausius, and S. ten Brink,

“Automorphism ensemble decoding of quasi-cyclic LDPC codes by
breaking graph symmetries,” IEEE Commun. Lett., 2022.

[5] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink,
“Automorphism ensemble decoding of Reed–Muller codes,” IEEE Trans.

Commun., 2021.
[6] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting

Codes. Elsevier, 1977.
[7] T. Berger, “The automorphism group of double-error-correcting BCH

codes,” IEEE Trans. Inf. Theory, 1994.
[8] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink,

“On the automorphism group of polar codes,” in Proc. IEEE Int. Symp.

Inf. Theory (ISIT), 2021.
[9] C. Chen, B. Bai, X. Yang, L. Li, and Y. Yang, “Enhancing iterative

decoding of cyclic LDPC codes using their automorphism groups,” IEEE

Trans. Commun., 2013.
[10] P. B. Bhattacharya, S. K. Jain, and S. Nagpaul, Basic Abstract Algebra.

Cambridge University Press, 1994.
[11] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block

and convolutional codes,” IEEE Trans. Inf. Theory, 1996.
[12] M. Grassl, “Bounds on the minimum distance of linear codes and

quantum codes,” Online available at http://www.codetables.de, 2023,
accessed 2023-01-04.

[13] M. Punekar, F. Kienle, N. Wehn, A. Tanatmis, S. Ruzika, and H. W.
Hamacher, “Calculating the minimum distance of linear block codes via
integer programming,” in Proc. Int. Symp. on Turbo Codes & Iterative

Inf. Process. (ISTC), 2010.
[14] M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes

based on ordered statistics,” IEEE Trans. Inf. Theory, 1995.
[15] M. Helmling, S. Scholl, F. Gensheimer, T. Dietz, K. Kraft, S. Ruzika,

and N. Wehn, “Database of Channel Codes and ML Simulation Results,”
www.uni-kl.de/channel-codes, 2019, accessed 2023-01-04.

http://www.codetables.de
www.uni-kl.de/channel-codes

APPENDIX

Proof of Theorem 2. Consider a linear code C with PCM H .

From Theorem 1, it follows that there exists at least one CCM

A ∈ GLn(F) to transform H into H̃ . If H̃ is multiplied from

the right with some matrix Z ∈ Z , then H̃Z = H̃ holds.

Thus, A1 = AZ also transforms H into the desired form.

Therefore, the matrix A is not unique.

If A−1 has the structure described in (4) and the code rate

r is known, then the PCM H of C can be extracted from

the inverse CCM. Thus, A−1 characterizes C because a linear

code is fully defined by its PCM. Consequently, A also must

characterize the code. To prove (4), H̃ is multiplied with A−1

from the right. Assuming that

A−1 =

(

U(n−k)×n

Λk×n

)

,

it can be seen that H̃A−1 = HAA−1 = H and

H̃A−1 =
[

I(n−k)×(n−k) 0(n−k)×k

]

(

U

Λ

)

!
= H

⇐⇒U + 0(n−k)×k = U
!
= H .

Therefore, the PCM is contained within A−1.

Proof of Theorem 3. Let d1, . . . dj be the sizes of the block

matrices of the Frobenius normal form F of T and let there

exist a subset

J ⊆ {1, . . . , j} =: I

with
∑

i∈J di = k. Then, because the sizes of the block

matrices of the Frobenius normal form necessarily sum up

to n, i.e.,
∑

i∈I di = n, it follows that
∑

i∈I\J di = n− k.

Without loss of generality, assume that J = {1, . . . ,m}.

Define the matrices

FJ :=













Bf1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Bfm













∈ F
k×k, and

FI\J :=













Bfm+1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Bfj













∈ F
(n−k)×(n−k).

Then, FJ and FI\J are of the form

















∗ ∗ 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

∗ · · · · · · ∗ ∗
∗ ∗ · · · · · · ∗

















,

and there exists

F =

(

FI\J 0

0 FJ

)

=



























∗ ∗ 0 ··· 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

... 0(n−k)×k

∗ ··· ··· ∗ ∗
∗ ∗ ··· ··· ∗

∗ ∗ 0 ··· 0
...

. . .
. . .

. . .
...

0k×(n−k)

...
. . .

. . .
. . . 0

∗ ··· ··· ∗ ∗
∗ ∗ ··· ··· ∗



























∈ Z(n, k)

Similarly, there exists F ∈ Z(n, n− k). Therefore, according

to Theorem 2, C(n, k) as well as C(n, n − k) can be con-

structed.

	Introduction
	Preliminaries
	Automorphism Group
	Automorphism Ensemble Decoding
	Frobenius Normal Form

	Generalized Automorphisms of Codes
	Automorphism Group of Parity-Check Codes
	Generalized Automorphism Ensemble Decoding

	Construction of Linear Codes with Sparse Automorphisms
	Results
	Conclusion
	References
	Appendix

