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Abstract—Isolated training with Gaussian priors (TGP) of
the component autoencoders of turbo-autoencoder architectures
enables faster, more consistent training and better generalization
to arbitrary decoding iterations than training based on deep
unfolding. We propose fitting the components via extrinsic
information transfer (EXIT) charts to a desired behavior which
enables scaling to larger message lengths (k ≈ 1000) while
retaining competitive performance. To the best of our knowledge,
this is the first autoencoder that performs close to classical codes
in this regime. Although the binary cross-entropy (BCE) loss
function optimizes the bit error rate (BER) of the components, the
design via EXIT charts enables to focus on the block error rate
(BLER). In serially concatenated systems the component-wise
TGP approach is well known for inner components with a fixed
outer binary interface, e.g., a learned inner code or equalizer, with
an outer binary error correcting code. In this paper we extend
the component training to structures with an inner and outer
autoencoder, where we propose a new 1-bit quantization strategy
for the encoder outputs based on the underlying communication
problem. Finally, we discuss the model complexity of the learned
components during design time (training) and inference and show
that the number of weights in the encoder can be reduced by
99.96%.

I. INTRODUCTION

Concatenation of blocks, or modularization, is a crucial

concept in engineering that breaks down complex systems into

smaller, more manageable components to simplify the design

process. In communications engineering, iterating between

the concatenated blocks of a receiver gives rise to an even

more powerful concept: the turbo principle [1]. Here, two

or more serially concatenated blocks iteratively exchange

extrinsic information. Since its introduction in turbo decoders

[2], the principle found application in many different scenarios,

such as turbo equalization of multipath channels, multiple-

input multiple-output (MIMO) detection, bit-interleaved coded

modulation (BICM) and low-density parity-check (LDPC)

decoding [1]. These systems show outstanding performance

close to the theoretical limits in scenarios closely matching

the models assumed in the design, e.g., the channel model.

However, in more complex situations or scenarios with hard-

ware impairments or when no suitable channel models is

known, machine learning-aided communication systems that

are trained to optimize the end-to-end performance can out-

perform classical systems [3], [4]. Still, the well-understood

additive white Gaussian noise (AWGN) scenario serves as
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a valuable benchmark and can be seen as the “worst case”

scenario for the learning-based systems. Like in conventional

communications, the turbo principle has been successfully

applied in form of the turbo-autoencoder, called TurboAE,

to scale deep-learning based transceivers to more practical

block lengths [5]. The TurboAE consists of parallel or serially

concatenated convolutional neural networks (CNNs) at the

transmitter. At the receiver, information is passed iteratively

between another set of two CNNs. It is typically trained in a

deep unfolded fashion, i.e., the iterations of the receiver are

unrolled into a deep neural network (NN), optimally adapting

the constituent NNs to the iterative algorithm. However, this

comes at the cost of increased training complexity which

scales linearly with the number of iterations. To overcome

this issue, component training with Gaussian priors (TGP) has

been proposed in [6], [7].

In this paper we consider component-wise autoencoder

training for the serial TurboAE. The main contributions of

this paper are as follows:

• We apply extrinsic information transfer (EXIT) charts [8]

to analyze and optimize the serial TurboAE for block

error rate (BLER) or large block lengths by finetuning

the inner component to the outer autoencoder [9].

• A Gaussian prior training framework for the serial Tur-

boAE is proposed and demonstrated to drastically reduce

the training complexity.

• A new binarization strategy for an encoder output layer

(binary phase shift keying (BPSK) modulation) is pro-

posed based on the underlying communication problem.

• The encoder networks are distilled down to just 148

weights by a student-teacher method without performance

degradation, enabling practical implementations.

II. PRELIMINARIES

A. Densely Connected Convolutional Layers

Densely connected convolutional neural networks

(DCCNNs) [10] allow the training of deeper structures

with fewer weights than plain CNNs. A DCCNN consists of

blocks of convolutional layers with an increased amount of

connections, and transition layers. The input to each densely

connected convolutional layer is not only the output from the

last layer, but a concatenation of all preceding feature maps

within a block. This means the number of feature maps for

inputs increases with a growth parameter F , which is the

number of output feature maps per layer. Furthermore, each

http://arxiv.org/abs/2305.09216v1
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Fig. 1: Structure of the CNN-based serial TurboAE communication system
consisting of a real-valued encoder, channel, and an iterative decoder.

layer consists of a batch normalization, a rectified linear unit

(ReLU) activation and a convolutional layer with kernel size

K . Every densely connected block proceeds a transition layer.

The output of the transition layer is the only input to the next

densely connected block. It interrupts the growth process of

the number of feature maps. The transition layer is a 1 × 1
convolutional layer that outputs F0 feature maps.

B. Serial Turbo Autoencoder

The serial TurboAE [7] is based on the structure of serially

concatenated codes with an iterative (turbo) decoding architec-

ture. However, the encoders and decoders are implemented as

CNNs. The system model is shown in Fig. 1. The encoder con-

sists of an outer encoder, an interleaver and an inner encoder.

The corresponding decoder is based on a CNN for decoding

the inner code and a CNN for decoding the outer code. Again,

both are connected by an interleaver and a deinterleaver. For

training, the iterations of the decoder are unfolded, yielding a

deep neural decoder with intermediate (de-)interleaver layers.

The difference to the straight-forward training with stochastic

gradient descent (SGD) is the alternating training schedule for

the encoder (TTX updates) and the decoder (TRX updates). For

further details, the reader is referred to [5].

C. Training with Gaussian Priors

TGP [6], [7] is a method to reduce complexity during

training for systems with concatenated components in contrast

to unfolding the decoder. The idea is to train each component

individually and isolated with a single decoding iteration. Only

during inference the components are concatenated as in the

desired system. The alignment of the components can be

done with EXIT charts. For training, the a priori information

from the other component has to be generated artificially.

The generation process is well known under two conditions.

First, the information, in form of log-likelihood ratios (LLRs),

is Gaussian distributed. Second, the variable for which we

generate the a priori LLRs consists of bits. The a priori LLR

distribution LA
u for a bit u and a set a priori information IA

is then given by

LA
u ∼ N ((2u− 1) · µ(IA), 2µ(IA)) (1)

where µ(IA) ≈
1
2

(

− 1
H1

log2

(

1− I
1

H3

A

))
1

H2

with constants

H1 = 0.3073, H2 = 0.8935 and H3 = 1.1064 [11].
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Fig. 2: Block diagrams of the (non-iterative) autoencoders.

D. EXIT Charts

EXIT charts [8] are a design tool for iterative, component

based systems. The key idea is to calculate the input/output

behavior of each component and predict the decoding trajec-

tory of the concatenated system. The behavior is displayed

by the produced extrinsic information from a certain a priori

information. The a priori LLRs can be generated according to

(1) and the information between LLRs L and bits u can be

approximated [1] by

I(L,u) ≈ 1−
∑

i

log2 (1 + exp(−(2ui − 1) · Li)) . (2)

The chart shows these two curves where one is flipped along

the first bisector. This means that the x-axis shows the a priori

information of one component and the extrinsic information

from the other component and vice versa for the y-axis.

The decoding trajectory can be estimated by iterating “ping-

pong”-wise between the two curves. The intersection of the

curves indicates the maximum reachable mutual information

by iterating between the components. However, the estimated

trajectory is only accurate if the exchanged information is

uncorrelated between the components. This does not hold for

short block lengths, as cycles in the decoding graph lead to

correlated information exchange. A more appropriate design

tool for short block lengths are scattered EXIT charts [12].

Here, the chart consists of many trajectories displayed as a

scatter plot.

III. COMPONENT TRAINING FOR SERIAL ARCHITECTURES

A. Identifying Component Interfaces

The serial TurboAE can be interpreted as an inner autoen-

coder, and an outer autoencoder with BPSK modulation and an

virtual channel in between. This virtual channel consists of the

inner autoencoder and the actual channel, but can be abstracted

to an AWGN channel with an certain signal-to-noise-ratio

(SNR). The concept is shown in Fig. 2. The goal of the

component training is to optimize each autoencoder isolated.

Thus, we first identify the components and their interfaces.

For a serial TurboAE with rate R = k
n
= RO · RI = 1/2 we

choose the outer and inner autoencoder to have rate RO = 1/2
and RI = 1, respectively. [13] showed that this allocation

of the rate is optimal for asymptotic block lengths and [14]
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Fig. 3: Influence of clipping on the learned modulation.

observed it empirically. The inner autoencoder is shown in

Fig. 2a. The input to the inner decoder are the real-valued

channel observations y and the available a priori information

in form of LLRs LA
c

from the (artificial) outer decoder. The

output are the extrinsic LLRs LE
c

= LT
c
− LA

c
, where the

total LLRs LT
c

are the direct output of the NN. As loss, we

choose a binary cross-entropy (BCE) loss between c and LT
c

.

To generate artificial a priori LLRs for the inner autoencoder,

the outer autoencoder must use BPSK symbols. The outer

autoencoder is shown in Fig. 2b. The input to the outer decoder

are the a priori LLRs of the coded bits LA
c

. The outputs are

not only the uncoded bit estimates LT
u

, but also the refined

extrinsic LLRs LE
c
= LT

c
−LA

c
, where LT

c
is the direct output

of the NN. The outputs can be trained with a BCE loss between

u and LT
u

, and c and LT
c

, respectively. The losses are added

without a weighting factor, as they are in the same order of

magnitude.

B. Autoencoder with Binary Modulation

Forcing a BPSK modulation can be seen as a 1 bit quanti-

zation of the encoder output layer. The authors of [5] propose

to first train the output layer with real valued outputs and

apply binarization with a straight-through estimator (STE) for

gradient computation afterwards. This procedure outperforms

training a model from scratch with binarization and a STE for

gradient computation. Here, we propose a new quantization

strategy based on the underlying communication problem.

Similar to [5], we first train with a real valued output layer and

only start the quantization process once the system is trained.

For the latter, we propose to clip x with a threshold xclip,

which is gradually decreased from 1.5 to 1.0 in steps of 0.1
every 10 epochs. The key idea is that the clipping is applied

after normalization of x, i.e., reducing the energy of the

transmission. Consequently, the encoder tries to compensate

for this energy loss by increasing the probability of symbols

with larger magnitude and decreasing the probability of sym-

bols with smaller magnitudes. Once xclip ≈ 1, the encoder

must converge to a BPSK modulation to transmit with the

maximum possible energy. For inference we use a binarizer.

The advantage of this approach is that no STE is used, thus, no

gradient mismatch between forward and backward path during

training. The concept and intuition is visualized in Fig. 3.
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Fig. 4: EXIT chart of the learned components.

C. Fitting Components via EXIT Charts

The outer autoencoder is trained as in [15], where it was

found that training in the waterfall region leads to the best

overall performance. This means that we train the outer

autoencoder to be as good as possible and then fit the inner

autoencoder to the resulting outer autoencoder. Moreover, the

proposed design via EXIT charts allows to fit autoencoders for

large block lengths. We can train the CNN-based autoencoders

on short block lengths with a certain EXIT behavior and

evaluate the concatenated autoencoders on large block lengths

to achieve scaling to large block lengths. Similar to [7] we

propose a two step training process. First, we train the inner

autoencoder with high a priori information IA > 0.8. The

training process is stopped, once the slope of the EXIT

characteristic starts increasing (it starts out flat). Second, set

a certain fraction α of each batch to IA = 0 and continue

training. As a result, the autoencoder is optimized for high

a priori information, which is to be expected from the outer

lower rate code, but a reasonably high decoding performance

without a priori information to start the iterative decoding.

We observed that the fraction α directly relates to the slope

of the EXIT characteristic. A lower α leads a to steeper slope

and vice versa. This is visualized in Fig. 4 for α = 0.075
and α = 0.085 at Eb/N0 = 4 dB. Further, another inner

autoencoder is shown for α = 0.08 at Eb/N0 = 2 dB. Lastly,

two trajectories are shown for an interleaver length of n = 128
and n = 2048. We can see that the trajectory for n = 128 does

not converge and Fig. 5 reveals that even for α = 0.075 at

Eb/N0 = 4 dB, the trajectory corridor is quite small. This

means the for n = 128 the inner and outer autoencoder are

fitted nicely. The other trajectory in Fig. 4 for n = 2048
converges to the intersection point which is just shy of 1.0,

determining the best possible performance at Eb/N0 = 2 dB

even for n → ∞.

D. Discussion Component vs Unfolded Training

A problem with unfolded training is the computational com-

plexity, as every unfolded iteration runs thorugh a forward and
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TABLE I: Hyperparameters for architecture and training the serial TurboAE

Parameter Value

CNN Layers 5
CNN F,K 100, 5
DCCNN Blocks 3
Layers per Bl. 3
1. DCCNN F0, F,K 16, 12, 5
2. DCCNN F0, F,K 16, 16, 5
3. DCCNN F0, F,K 16, 12, 5
(k, n) (64, 128)
Padding Circ. [17]

Parameter Value

Loss BCE
TTX, TRX 100, 500
Batch size 500− 2000
Learning rate 10−4

− 10−6

Encoder SNR 4.0dB
Enc. IA 0.8− 1
Decoder SNR 0.5− 4.0 dB
Dec. IA 0.6− 0.9
α 0.075

a backward pass. In contrast, TGP is based on a single iteration

and, thus, saves computational complexity and time by a factor

of the number of iterations Nit in the decoder. While the

unfolding increases complexity, it provides the opportunity

for the decoder to mitigate short block length effects, i.e.,

short cycles in the graph and correlated a priori information.

As the TGP trained decoder never experiences correlated a

priori information during training, it cannot mitigate these

effects. An advantage of TGP, in terms of convergence over

training epochs, is that the input to the decoders during

training is always of good quality, since the a priori LLRs

are not output of a previous (potentially untrained) decoder.

Therefore, the TGP approach benefits from a fast convergence,

especially at the beginning of training. Lastly, TGP does not

directly optimize the bit error rate (BER) as unfolded training

does [15]. While the decoders optimize the BER in every

iteration, the EXIT behavior of the components determine

the performance in terms of BER and BLER. We observed

that inner components with a steeper slope tend to perform

better in terms of BLER and worse in BER than an inner

components with a more gentle slope. The steeper slope of

the inner component leads to a later intersection with the outer

component but a tighter corridor for the trajectory, as shown

in Fig. 4. Thus, the outer component can output better bit

estimates, if the trajectory converges. However, the trajectory

converges less often due to the tighter corridor.

IV. RESULTS

For the serial TurboAE the encoders are plain CNNs and the

decoder are DCCNNs with hyperparameters for architecture

and training as in Tab. I. For all evaluations we use interleavers

according to the LTE standard [16].
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short (n = 128) component codes.
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Fig. 7: BLER over an AWGN channel (k = 64, n = 128, Nit = 6).

A. Decoding Performance for Large Block Lengths

Fig. 6 shows the BER of the serial TurboAE with training

with Gaussian priors (TGP) compared to the LTE turbo code

for large block lengths (k ∈ {800, 1024}, n ∈ {1600, 2048},

R = 1/2). To the best of our knowledge, this is the first time

that a competitive performance of an autoencoder is demon-

strated for a message length of k ≈ 1000. The performance

for the serial TurboAE is evaluated with the outer autoencoder

and inner autoencoder (Eb/N0 = 2 dB, α = 0.08) shown in

Fig. 4. For the evaluation we increased the number of inputs

to the CNNs and increased the size of the interleaver. Also the

turbo-product framework [18] can be used in case the NNs are

not based on CNNs. Note, the components are trained with

k = 64, n = 128 and are not trained or finetuned for longer

lengths. While the performance is roughly 0.1 dB worse than

the LTE turbo code in the low SNR regime, the serial TurboAE

shows an error floor for higher SNRs. This error floor behavior

is due to the intersection in Fig. 4 being just shy of a mutual

information of 1.0.

B. Comparison of TGP and Unfolded Training

The decoding performance after training is shown in Fig. 7

in terms of BLER for short block lengths (k = 64, n = 128,

R = 1/2). The serial TurboAE with TGP and Nit = 6
iterations performs slightly better than the serial TurboAE with

unfolded training. Both perform marginally better than the LTE

turbo code. Further, the outer code with the proposed gradual



TABLE II: Approximate number of weights

Name Encoder Decoder Layer type

TurboAE [5] 3.0 · 104 2.4 · 106 Conv.

Ser. TurboAE [7] 4.1 · 105 2.4 · 106 Conv.

ProductAE [19] 2.8 · 105 1.9 · 106 Dense

This work 148 1.2 · 105 Conv.
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Outer AE

Inner AE

Fig. 8: Convergence speed comparison in terms of BER vs. training epochs
(k = 64, n = 128).

clipping outperforms the STE-based proposition from [5]. A

more prominent advantage shows the training behavior which

is displayed in Fig. 8. The figure compares the valdiation BER

of the components with TGP and the unfolded training. Note,

the BER of the outer code is without iterative decoding and the

inner code is with iterative decoding. Both need significantly

fewer epochs for training than the unfolded training. Finally,

we observed that component-wise TGP is more robust in a

sense that the component autoencoders consistently converged

to the same shown performance, while for the unfolded

training, the shown results are from the best run out of many.

V. DISCUSSION ON MODEL COMPLEXITY

A valid criticism of autoencoders for channel coding is

the increased computational and memory complexity. The

proposed systems [5], [7], [19] consists of a huge amount

of weights, see Tab. II. However, the complexity is simply

outside the scope of these works. Therefore, these works can

be seen as design time systems, where a great exploration

space is needed to find good solutions. This exploration space

of a NN is usually coupled to the number of trainable weights.

However, once a good solution is found, the knowledge can

be distilled into smaller NNs [20]. The intuition is that the

solution is inside the solution space of the larger and the

smaller NN. However, the smaller NN can not converge to the

solution, as the needed convergence trajectory is not inside the

solution space. A common knowledge distillation approach is

the student-teacher approach. Here, the student is influenced

by a regression loss with the outputs of the teacher. We applied

this approach to the encoder with an mean squared error

(MSE) loss. A smaller CNN-based encoder with a total of

148 weights (reduction by 99.96%) for the inner and outer

encoder in total was able to represent the solution from the

large encoder without any loss in performance.

VI. CONCLUSION

We introduced the component-wise TGP for the serial Tur-

boAE and demonstrated a faster and more consistent training.

By training the components to match a desired EXIT curve, the

resulting serial TurboAE shows a competitive BER for mes-

sage lengths of k ≈ 1000. To the best of our knowledge, this

is the first autoencoder that performs close to classical codes

in this regime. Furthermore, we proposed a new quantization

strategy to force a trainable encoder to a BPSK modulation.

Lastly, we demonstrated a reduction of the number of weights

by 99.96% in the encoder after training. Future works could

include the exploration of different autoencoders as compo-

nents and complexity reduction in the decoder.
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