arXiv:1307.3975v1 [cs.CC] 15 Jul 2013

Some Improvements to Total Degree Tests

KATALIN FrIEDLT

Abstract

MADHU SUDAN*

tance between two functiorfsand g, denoted byl(f, g)
bePr.cpm|[f(x) # g(x)]. We usedeg(f) to denote the

A low-degree test is a collection of simple, local rules for total degreeof f, anddeg,,.(f) to denote the largest in-

checking the proximity of an arbitrary function to a low-

dividual degree in any of the variables jin

degree polynomial. Each rule depends on the function’s The low-degree testing problem for total degree (maximum
values at a small number of places. If a function satis- degree) is defined as follows:

fies many rules then it is close to a low-degree polynomial.

Low-degree tests play an importantrole in the development pefinition 1 For parametersi € Z+ andé,e € RT, a

of probabilistically checkable proofs.

low-degree tester is probabilistic oracle machin@, that

In this paper we present two improvements to the efficiency has access to a functiofi: /™ — F as an oracle, and
of low-degree tests. Our first improvement concerns the behaves as follows:

smallest field size over which a low-degree test can work.

We show how to test that a function is a degdegolyno-
mial over prime fields of size only + 2.

Our second improvement shows a better efficiency of the

o If deg(f) < d (deg,,..(f) < d) thenT/ accepts.

o If for all total degree (maximum degreé&)polynomi-
alsg, d(f,g) > ¢, thenT rejects with probability.

low-degree test of [14] than previously known. We show

concrete applications of this im_pr_ovement via the notion The low-degree testing problem has been studied widely
of “locally checkable codes”. This improvement translates e 1o their relationship with probabilistically checkabl
into bet_t_er _tradeoffs on the size versus prob_e complexity of (holographic) proofs and program checking. [5, 6, 9, 2,
probabilistically checkable proofs than previously known 10, 13] study the case of testing the maximum degree and
[8, 11, 14, 1] study the case of testing total degre®ur
improvements are to the latter family of testers. We start

1 Introduction by describing their testers.

In this paper we consider functions mappimgvariables
from some finite fieldF" to the same field. Let the dis-
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Definition 2 For pointsz,h € F™, theline through z
with offseth is the set of point$, ;, = {lx(t) = = +
t-hlt e F}.

Definition 3 Given a functionf : F™ — F, a posi-
tive integerd and pointsz, h € F™, the line polynomial
Péf,;d) : ' — F'is a univariate polynomial of degree at
mostd which satisfiengE;f,;d) (t) = f(x+t-h)for the most
t. Ties are broken arbitrarily.

The tester in [14] is effectively the following: “Pick, h
randomly and uniformly fron¥"™ andt¢ randomly fromF’

1Some of the improvements in the former family have also sdfitc
the latter. In particular [1] obtain their improvement wgithe improved
analysis of [2]. Similarly the work of [13] also affects thater family of
testers.


http://arxiv.org/abs/1307.3975v1

and verifythatPéf,;d) (t) = f(z+t-h).” Forour purposes it

is not important howP(/>4) is computed by the tester. This
will become clear in the context of our applications. The
correctness of the tester is proved by the following kind of
a statement.

Informal Statement: If |F| is a sufficiently large function
of d and is a sufficiently small function af, then given
a functionf : F™ — F, if there exists a set of degrele
polynomials{ P, 5, } which satisfies

Pr [Ppn(t) # f(z+t-h)] <6

x,h,t

then there exists a degréepolynomialg : F™ — F' such

thatd(f,g) < 2.
The above statement does not specify the conditiong'on

Lemma 5 ([11, 15]) There exists a constantsuch that if
|F| > d+2andé < ;77 and P and f satisfy

Pr(Pon(t) # fla+t-h) <6

then there exists a function : F™ — F such that

d(f,g) < 20 andg satisfies

d
PI(t)

)

=g(x+t-h)foralz,he F" andt € F.

Theorem 6 Letq denote the order of the fiel#l andp its
characteristic. Then there exists a constarguch that if
g—q/p—1>dands < (d+1 E and P and f satisfy

Lo Pon(t) # fl@tt-h)] <o

andd, and determining the exact conditions on these pa- then there exists a degrelepolynomialg : F* — F' such
rameters turn out to be the interesting aspect in the asalysi thatd(f, g) < 26.

of low-degree tests. The improvements noted in this paper

apply to these two parameters.

1.1 Reducing Field Size

The motivation for the following theorem is primarily one
of curiosity. The smallest field size over which polynomi-
als of a given total degree exhibit sufficient “redundancy”
to, say, enable the application of the Schwartz-Zippel like
theorems [16, 18], is when the field size is at least 2.

In Section 2 we also show that the requiremen®pis the
tightest possible in the following sense: Forzaly, d such
thatd > ¢ — ¢/p — 1, we show that there exist functions
g: F™ — FandP, ) : F — F, suchthatleg(P, ) < d
andforallx,h € F™,t € F, P, p(t) = g(x +t - h), but
deg(g) > d.

1.2 Improving the efficiency

Improving the second of the two parameters in the state-

‘'ment of the Informal Statement is a task of greater signif-

icance. (Here an improvement would imply a larger value
of .) The result in [11] shows that the test works for

The low-degree tester of [11] uses sets of the same size,
i.e.,d + 2, as elementary test sets. Their proof manages to.
show that in a certain sense (see Lemma 5) fields of size
d + 2 are sufficient to show some sort of robustness. How-

ever their proof falls short of showing low-degree tests tha
work over fields of sizel + 2 because of the lack of an
“exact characterization” (in the sense of [15]). We com-
plement their work by providing an exact characterization
of low-degree polynomials, which shows that their tester is
good for prime fields of sizé+ 2, and improves the bound
for non-prime fields as well. We give examples to show
that our characterizations are essentially the best pessib

Lemma 4 If ¢, the order of ', andp, its characteristic,
satisfyg — q/p — 1 > dandg : F™ — F satisfy

Péf’,;d) (t)=g(x+t-h)forall z,h,t
theng is a degreel polynomial.

We use the above statement in combination with the fol-
lowing Lemma from [11, 15], to get Theorem 6.

§ < O(1/d?). The improvements in [14] and [1] yielded
0 < O(1/d)andé < §, for somed, > 0 respectively. The
constant, coming from the latter analysis is not described
explicitly but the number appears to be fairly small. Here
we show that the theorem works for afiy< 1/8. More
precisely,

Theorem 7 For everye > 0, there exist < oo such that
for all d, if |F'| > c¢d the following holds. Given a function
f: F™ — F and degreel polynomials{ P, ;,} satisfying

Pr [Pon(t) # fl@+1-h)]=d<1/8—¢
there exists a degregpolynomialg such thati(f, g) < 24.

Remark: The bound on the field size in the above theorem
is also better than that of [1] who are only able to show it
for || > d®. However, this improvement can already be
inferred in the work of [13]. In fact, our analysis inherits
this particular improvement from their analysis.



1.3 An Application

The codes of [6] for instance produce good codes which
are (polylog(k;), ©2(1))-locally testable. The work of [2]

The second theorem given above turns out to have someimplicitly describe a related code which achieves both

implication to the properties of probabilistically cheblka
proofs. In particular it implies that the proofs construtcte

D, % = O(1), but requires very large alphabet sizes to get
this — namely their code requires = k. The significant

in [1] have a much smaller probe complexity than shown improvementin [1] is to get good codes which have 2,

earlier. It turns out that all the known construction of
holographic proof inherits part of their properties frore th

d > 0 with a; = polylog(k;). (By applying a recursive
technique introduced by [2] to this code they later manage

properties of some underlying error-correcting code. It is to reduces to a constant as well.) The code used by [1] is
easiest to describe the effect of our analysis in terms of the following (see also [15]):

the improvement in the properties of the codes created in

[1, 15]. The following definitions are from [15].

An (k,n,d,a)-code consists of an alphabél such that
log |~| = a and a functiorC : ¥ — %", such that for any
two stringsm, m’ € £*, the (Hamming) distance between
C(m) andC(m’) is at leastd. For applications to prob-
abilistically checkable proofs, it is sufficient to congide

Definition 10 (Polynomial-Line Codes)Letc¢; > 1 and

¢a > 1 be parameters. Thpolynomial-line code§L,,}
are chosen by letting = ©(m*) and picking a finite
field F of size©(d“2). The code works over the alphabet
¥ = F¥*1. The message consists(@f}?) field elements

(or (™F%)/(d + 1) letters from¥) and is viewed as an

codes restricted a small range of these parameters. We calln-variate degreel polynomial specified by its coefficients.
these thegoodcodes. Such codes need to have constant Given a message polynomig) the codeword consists of
relative distance. The encoded message is allowed to be{Pw(;f};d)}thGFm wherer(f,’Ld) is the line polynomial for

much larger than the original message size, as long as thethe linel, ;, described by itgl 4 1 coefficients. The code

final length is polynomially bounded.

Definition 8 (Good Code) A family of codes{C;} with
parameters(k;, n;, d;, a;) is good ifk; — oo, n; is up-
per bounded by some polynomial &, d;/n; > 0 and
a; = polylog(k;).

For the application to probabilistically checkable prqofs
the primary question is the following: “Does the code ad-
mit very simplerandomized error detection?”. This notion
is formalized in the next definition. Intuitively the defini-

achievesk,, = (™+%)/(d + 1) andn,, = |F|°™) over
the alphabef¢+1,

It is clear that for all constantg andc; the Polynomial-
Line codes are good codes. [1] show that forall> 1
andce > 3 these codes give2,5 > 0)-locally testable
codes. [13] improve this te, > 1, without changing thé

in any significant way. Our analysis (Theorem 7) immedi-
ately yields that Polynomial-Line Codes g2 1/8 — ¢)-
locally testable. It can be easily shown that no code can
achieve(2,1/2 + e)-local testability. Thus in this case our

tion says that the error-detection can be done by probing results come close to optimality

justp letters of a word to get a confidené¢hat it is close
to some codeword.

Definition 9 For a positive integep and a positive real
numberd, an (n, k,d, a)-codeC over the alphabek is
(p, §)-locally testableif the following exist

e A probability space&? which can beefficiently sam-
pled.

e Functionsg:,gs,...,qp : 2 — {1,...,n}.

e A boolean functio®” : Q x ¥? — {0, 1}.

with the property that for allv € X7, if

Pr [V(r, Wa, (r)5 - - -

Pr Wy (r)) = 0] <0

then there exists a (unique) string € X* such that
d(w,C(m)) < d/2. Conversely, ifv = C(m) for some
m, thenV (r, w ) = 1forallr € Q.

q1(T)a"'qup

Connection with proof checking Lastly we describe a
very informal manner the way in which this affects the con-
struction of probabilistically checkable proofs. We assum
that the reader of this subsection is familiar with the notio
of probabilistically checkable proofs (PCPs) as defined in
[2] (see, for instance, [3] for a survey). In particular we-di
cuss the probe complexity of proofs and the sizes of prob-
abilistically checkable proofs.

As mentioned earlier every holographic proof ends up in-
heriting part of its properties on some underlying locally-
testable code. In order to test that a given proof is valid
one ends up testing that the proof corresponds to a valid
codeword. This effectively implies that to obtain a fixed
degree of confidence, one has to loolCdp /) letters in

the proof. Thus the probe complexity of a PCP seems to be
inherently dependent on the ratiopéands.

However, the relationship betwegpé and the probe com-



plexity of PCP turns out to be not so simple. [7] man-
age to reduce the probe complexity of a PCP to about 24
bits to get a confidence df/2 (from some unknown num-
ber estimated to be arouri@* in [1]) without improving

the analysis of low-degree tests! How do they obtain this
reduction? It turns out that this reduction is obtained by
exploding the proof size to the order ot (from some
smaller polynomial of size about'2 in [1]). But by incor-
porating the analysis from this paper into the analysis of

r)/p*] holds. Thus the largest power pthat dividesn! is

Yitaln/p'] =322 (Ir/p'] + [(n —1)/p’]). Therefore
n! andr!(n — r)! are divisible by exactly the same power

of p. |

Proof of Theorem 11: Assume for the sake of contradic-
tion that the assertion of the theorem is false. ingbe the
smallest positive integer for which the following holds:

PCP one can obtain better bounds on the probe complexity

of proof systems. The verifier we construct probes a proof
at most 165 bits (as opposed to e of [1, 13]) while in-
creasing the proof size to onh?*< (to be contrasted with
then!" in [7]). (We point out that the improvement relies
fairly heavily on the techniques developed in [7] and [13],
as well as those of [2] and [1].)

2 Characterizing the Total Degree of
Polynomials

Let F' = F, be afinite field of ordeg = p® wherep is its
characteristic.

Theorem 11 Letg : F™ — F be a function which satis-
fies

Vo,he Fte F P9 (6) = gla +t-h).

Thenifg — ¢/p — 1 > d, then g is a polynomial of degree
at mostd.

Remark. The inequalityg — ¢/p — 1 > d in the Theo-
rem cannot be weakened for apylndeed, for anyl such
thatq — q/p — 1 < d < ¢, consider the bivariate func-
tion g(z1,22) = (:cgpfl)IQ)‘Z/P. For every pairz, h, the
univariate function?, ;, given by P, ,(t) = g(x + ¢ - h).
Each term in this univariate polynomial has degree at most
(p+ 1)g/p = q + ¢/p and each exponent is divisible by
q/p. As a function we have? = ¢, and thusdeg(Py 1)

is at mosty — ¢/p. Thus we haveDéf’,;‘i) P, p. On the
other hand the total degree ¢fs ¢ > d.

For the proof of Theorem 11, we first prove a lemma about
the behavior of the binomial coefficients modglo

Lemmal2 Let0 < r <n < p* — 1. If r = kp*~! then
(™) is not divisible byp.

Proof: For any positive integel, the largest power of
p that dividesl! is |I/p| + [I/p*] + |I/p*| + ---. But
for r = kp°~!, the identity [n/p’| = [r/p’] + [(n —

dg: F™ — FstVz,he F"" te F

w.h > d.

1)

Expresg in the form:

q—1 q—1
_ E E i1 7
g(xlﬁ""‘rm)_ ail7~~~;i7nxl x’r;{l

i1=0 =0

(Notice that there exists’s such that the above is true, and
these are unique.) Singgeis not a degree polynomial,
there exist andiy,...,4, such thatZ;”:lz'j =10l>d
..im 7 0. Let! be the largest integer with this
property. We consider the following cases:

Case: Z;’:ll i; > d: We show that this contradicts the
assumption thatn is the smallest integer for which
(1) holds. Fora,, € F, letg,,, : F™ — F be given

by ga,, (z1,.. ., Zm-1) = g(z1, ..., Tm—1, am).dNo-
tice firstthaty,,. satisfiesy,,  (z+t-h) = Pé",‘;m’ (1)

forallz,h € F™~'andt € F. This follows from the
fact thatPéf’,jM’d)() = P(g’d)(~) forz’ =< z,ap, >

=L

andh’ =< h,0 >. We now show that there exists,

such thatleg(g,,,) > d. Observe that the coefficient
for %t -zl is S0 ) vy i, ial,. This sum-
mation is a non-zero polynomial iry,, of degree less
thang. Thus there must exist a point,, where the
summation is non-zero. This gives ugs, such that
Ja,,,» @ function ofm — 1 variables, satisfies (1). As

promised, this violated the minimality of.
Case: } "' ,i; > d: Similar to above.

Case:l=>" i;<gq For aj,...,ap, € F, let
: F — F be given byg,,,. . .a,,(t)

amt). The coefficient ot! in g,, . 4, iS

ga17~~~;am
glait, ...,
given by

k1

km
S S

Ay -

>

k1yeoiskm Sl k4. Ak =l



Since this expression is a polynomial in thgs of
degree less than and is not identically zero, there
exist ai,...,an, for which the coefficient oft! in
Jas.....an, (t) 1S NON-zero. But forr = 0 anda =<
a1, ... am >, we find thatP'%? = g, . . and
the fact thaty,, ... 4,, IS Not a polynomial of degre@

contradicts the conditions guaranteed in (1).

Case: None of the above: In this case we
havey """ 'i; < d, im < Y7,i; < dandl >
q. Here we consider the functuml1 _____ am_1.b(t)
g(ait,...,am—1t,b + t) and show that for some
choice ofay,...,a,,_1 andb, the coefficient oft”
iN Gay.....am_1,b IS NON-zerO0, fOr SOMeE in the range
[d +1,q], of the formnp*~! + Y77 Yi;. Such a
choice forr exists since the rangjé + 1, ¢] contains
atleasty —d — 1> q/p = p*~* elements.

We start with the observation that the coefficient of
t" in the functiong,, ... 4., , »(t) is the same as the
coefficient oft” in the formal power series expansion
of g with the formal substitutions; = «,;¢ andx,,, =

b + t. This is true because the formal power series
contains terms of degree at mésind! satisfies the
condition: ¢ +r > [. (Sincel = i, + 27 1 z'J <
im+r<d+r<r+q.)

The coefficient of” in the formal expansion is

m—1

km .
mel k_)akl ,,,,, km, H a?lbzizl

i=1 i=1

ki—r

where the summation ranges over all choices of
ki,...,kn suchthatr <377, k; < 1. Thus coef-
ficient is a polynomial inz;’s andb of degree at most

g in each variable. Moreover fot; = zJ, the term

_____ k. IS non-zero and the terr(1 k j””_km 1)

simplifies to (n;:”:]) which is also non-zero (by
Lemma 12). Thus the coefficient ¢f is a non-zero
polynomial of maximum degree at mogt Hence

there exists a choice af, . . ., a,,_1 andb such that

the coefficient of” is non-zero module.

We now obtain the contradiction in the usual way.
We observe thaga, ... a,. .. g Dfor x =<
0,...,0,b >andh =< aq,... am 1,1 >. Thus
Jar.....am_1,b Should be a polynomlal of degree at
mostd, contradicting the fact that the coefficient of
t" is non-zero.

3 Efficiency of the Lines test

The main theorem of this section is motivated by the fol-
lowing tester: The testéf is provided access to an oracle
for f : F™ — F and an augmenting oracle : F>™ —
Fd4+1. The augmenting oracle takes as input the descrip-
tion of a line by the pair, h € F* and provides the coef-
ficients of the “line polynomial’P, ;. The effect of Theo-
rem 13 is to show that the tester behaves as follows:

e If f is a degreel polynomial then there exists an
such thatT7-© always accepts.

e If d(f,g) > 1/4 for every degreel polynomial g,
then for every oracl® : F?™ — Fatl 710 rejects
with probability at least /8 — ¢.

e 7 makes exactly one call to each oracle (i 2and
0).

The consequences of this theorem are summarized in Sec-
tion 4.

Theorem 13 For everye > 0, there exists: < oo such

that for alld € Z* if |F| > cd then the following holds.
Given a functionf : F™ — F and degreel polynomials
{Py.n} such that:

Pr [Pop(t) # flw+t-h)]=0<1/8—¢
there exists a degregpolynomialg such thatl(f, g) < 24.

Our proof is based on the proof in [15] and borrows var-
ious ingredients from their technique. However our anal-
ysis seems to be simplify certain aspects of their proof by
introducing an inductive analysis to their proof. The im-
provement in the value of is obtained by very careful
sampling of the underlying space and the application of
pairwise independent analysis to their space. The use of
pairwise independent analysis in low-degree testing seems
to be new.

In what follows we fix ane > 0. We assume that —
oo. Thus whenever the notatien= o(1) is used in what
follows, it implies thatoe — 0 asc — oo.

We start with a couple of definitions. Given a functifn
Fm — I, letd; be defined as

6= Pr|f(a) # P}

)

B0
and letCorry : F™ — F be the function defined by

Corry(x) = plurality, { P/ (0)}2.

2Theplurality of a multiset is the most commonly occurring element
in the multiset. We use the word plurality as opposed to nitgjeince




We start with a few basic facts abait andCorr.

Fact 14 For any functionf : '™ — F, and degreel
polynomials{ P, ;, : F' — F}; herm,

zf;lrt [f(z+1t-h) # Py p(t)] > dy.

The above fact follows directly from the fact that for each
z, h P/ minimizes (over random) the probability that

Flz+t-h) £ Poy(t).

Lemma 15 ([11]) d(f, Corrs) < 26;.

Lemma 16 ([11]) Forall 8 > 0, if g is a degreel polyno-
mial such thatl(f,g) < 1/4 — 8, thenCorry = g.

Now consider functiong, { P, ;,} with
Pr [Po(t) # f(w+t-h)] =0,

For such af consider the functioQorr;. By Lemma 18,

Corrs,d)
Pr |:P( fo
x,h,t z,h

(t) # Corry(a +t - h)} = bcor, < 5.
By induction there exists a degreepolynomial g such
that d(Corry,g) < 20cor;, < 207. By Lemma 15
d(f, COI’I’f) < 2(5]0. ThUSd(f, g) < 45]0 <46 < 1/2 — 4e.
By Lemma 17d(Corrs, g) = o(1). This in turn implies
thatd(f,g) < 1/4 — e 4+ o(1). By Lemma 16 we now

conclude thaCorr¢ = g implying thatd(f, g) < 2d;. |

We need a slightly stronger version of the above lemma for 3.1 Proof of Main Lemma

our purposes which we prove next.

Lemma l7 Forall 3 > 0,if g : F™ — F'is a degreeal
polynomial such thad(f, g) < 1/2—gthend(Corrs,g) =

o(1).

Proof: Consider randomly chosen h € F™ and the
line [, ». Notice that this line represents a pairwise inde-
pendent collection of points fromA"™. Thus with proba-
bility 1 — a, wherea = o(1), the number of pointgy, on
lz,5 such thatf(y) # g(y) is less tharl /2 — ¢/2 and in
such case?m(f;;d) =P,

Now con-
sider the sef3 = {:z:|Pm(7f,’Ld) # Péf’,;d) for a majority ofh €

The proof of Lemma 18 relies on a minor strengthening of
the following lemma due to [13], which in turn improves
upon a similar lemma in [2].

Lemma 19 ([13]) For anye > 0, if r; andc; are families
of degreed polynomials such that

[ri(4) # ¢;(1)] < 1/4 -,

then there exists a bivariate polynomial of degreed in
each variable such that

Pr [ri(j) # Qi,j) or¢; (i) # Qi,5)] < 1/2 —e.

i,jeF

F™}. Based on the above argument notice that the fraction e first strengthen the conclusion obtained above slightly.

|B|/|F|™ is at mos«a = o(1). But foraz ¢ B, we have
Corr¢(z) = g(z). I

The main lemma we prove is the following:

Lemma18Vf : F™ — Fs.t|F| > 16/eandd; <
1/8 — ¢, dcorr; < 0.

We defer the proof to the next subsection. We first show

why this suffices.

Proof of Theorem 13: We prove this theorem by induc-
tion of §. (Observe that since we are talking of functions
over finite domainsj can only take finitely many values.)
Say the theorem is true for functioris{ P, } with

Pr [Pon(t) # fla+1t-h)] <.

the latter could also be used to point to the (unique) elertiettoccurs
with frequency more than half.

Lemma 20 Lete > d/|F| and Letr; andc; be families of
degreed polynomials such that

[ri(j) # ¢; ()] <1/4 —e.

Then there exists a bivariate polynom@lof degreed in
each variable such that

Pr [ri() £ QG )) < 1/4

and Pr [¢;() # Q(.J)] < 1/4.

Proof: This lemma follows in a straightforward manner
from Lemma 19. Let) be the bivariate polynomial guar-
anteed by Lemma 19. We define thad rowsandbad
columnsas follows. Let

Buow = {i € Flri() # Q(i. )} and letz = | Buow|/|F|.



Similarly let

Bcol = {.] S F|CJ() # Q(v

We count the number of points B, X (F'— B.o1) which
satisfyr;(j) # c¢;(i). For each bad row , there are at
mostd points for whichr;(j) = Q(4, 7). All the remaining
points must lie on a bad column or must satisfy;) #

¢; (7). Thus the fraction of violations in any bad row (from
the good columns) is at leaét — d/|F| — y). Similarly

4)} and lety = |Beol| /| F.

we count the violations in bad columns and good rows and

summing all theses violations we get:

1/4—¢

Pr; j [ri(j) # ¢;(i)]

(Pr; [i € Brow]

* Pr; [j & Beol @andc; (i) # r;(j)|i € Brow))
+(Pl“j [j < BC(,]]

*Pri [Z ¢ Brow andcj (2) 7& Tz(])“ S Bcol])
z(1—y— y(l—x—%).

VIV

Y

) +

We now use the fact that y < 1/2 and that > d/|F|, to
reduce the above te < 1/4 andy < 1/4.

We are now almost ready to prove Lemma 18. We first
prove a variant and then show how it implies the final re-
sult.

Lemma 21 If §; < 1/8 — ¢, then forz, hi, ho chosen uni-
formly at random from#™,

f.d (f,d
m,}EI:M [ m(hl)( ) # Pw )( 0)| <4ad; wherea = €2TF|-
Proof: Pick z, h1, ha, hz at random fromF™ and con-

sider the set of point§z + ihy + jhe +ijhsli, j € F}. We
partition this set in two ways - by “rows” and by “columns”
as follows. For € F'letrow; = {z+ihi+jha+ijhs|j €
F}. Similarly for j € F letcol; = {z + ihy + jha +
ijhsli € F'}. Notice that each row and column is a line
from the spacé™. We first observe that these are actually
random lines (Here we call the distribution of lines picked
by choosing a lind,, ;, by pickingz,h € F™ uniformly
and randomly, to be theniformdistribution over lines.)

Claim 22 For iy # iy € F', the rowsrow;, androw;, are
independently and uniformly distributed over lineghif'.
(Similarly for the columns.)

Letm(i,j) = f(z+ih1+jha+ijhs). Furtherlet;(-) =
»d d .
Péiiizl,h2+ih3(') andc;(-) = piHd) (). Foraline

. z+jha,h1+jhs
Iy, from F™, defined(l, ) to be PI‘tGF[f(ZC + th) #

Péf,;d)(t)]. Notice thatE, 1,[0(l;,n)] = 0. The pairwise

independence of the lines implies that the collection of rea
numbers{d(row;)}icr is a pairwise independent collec-
tion of variables taking values froffi, 1] with expectation

dy. The second moment method thus allows us to estimate
the mean of this sample and shows that:

25 row;)/|F| > 1/8 — ¢/2

x hl h2 h'g
< ads(1—0d5) wherea = 1 (2)
=S QOof f 04—62|F|.

A similar analysis applied to the columns yields:
> —

b Zé (col;)/|F| > 1/8 —¢/2
< ads(l —d5)wherea = 1 (3)
= QOof f Oé—elel.

By combining (2) and (3) yields that with probability all
but at mostads over four tuplegz, hy, ho, h3) we have,
Pr; jer[ri(j) # ¢;(i)] < 1/4 — e. This allows us to apply
Lemma 20 to claim that for at lea3f4 fraction of thei’s,

r:(+) = Q(i, ) (and similarly for the columns).
Once again, we use pairwise independence to show that
P (i€ Firi(0) # m(i,0))
> (1/8—¢/2)|F]]
4
< adf(l—d5) wherea = Iy 4)
WP (€ Fley(0) £ m(0.5)}
> (1/8—¢/2)|F]]
4
S aéf(l — 6f) Whel’ea = W (5)

Thus we now see that with probability at ledst- 4a6 ¢

all the events in (2), (3), (4) and (5) hold. In this case
m(i,0) = Q(4,0) for at least3/4 — 1/8 + € fraction of

i € F, which implies thatg(-) = Q(-,0). Thus we have

PY () = () = Q()smmwéQO—Qmm
ThusPY) (0) = P (0) = (0,0). 1

Proof of Lemma 18: We start with the following obser-
vation:

Vv, Pr [pluralltyhl{P fd)( 0)} #

(f.d) (f,d)
< P P .
- h?}lz |: ( ) 7& ;b2 (0):|

Pfd)( )}

whg

Ihl



We prove the above by running two different probabilis-

traditional proofs and the verifier probes them in at most

tic experiments. Say, a bag has a number of colored balls,165 bits and always accepts correct proofs, while reject-

with the distribution of the number of balls of each color
being known. In the first game we nominate a color and
then pick a random ball and we lose if the color of the ran-
domly chosen ball is different from the nominated one. In

the second game we pick two balls (with replacement) at as that used by [13].

ing incorrect theorems with probability/2. To be able to

lay out precise bounds on the size of the proof, one needs
to be careful about the model of computing used to define
the size of a proof. The model we use here is the same
In fact our verifier uses theirs as a

random from the bag and lose if the balls have different black box and then builds upon it. In addition to the use
colors. Itis clear that in the first game the best choice is to of such size-efficient proof systems our construction also

deterministically pick the most often occuring color in the

use many ingredients from the query-efficient proofs of

bag, while the second game corresponds to a mixed strat-{7]. The recursion mechanism of [2] plays a central role

egy for nominating the color in the first game. Thus we are

no more likely to lose in the first game than in the second.

The inequality above represents this analysis, with/tke

corresponding to the balls aqu(f,;d) (0)'s corresponding
to their colors.

We now use the inequality above as follows:

Pr

ha

E,

Corrf(z) = plurality,,, { P, (0)}
# P4D(0)

:Ehg

<5 | pr [P0 # P00 |

In turn this implies

5Corr f

Pr [Corry(z) # P2 (0)]

< PO 0)].

Ihg

P [ (£.d)
o Pany (0) #

By Lemma 21 the last quantity above is boundediby;.
Thus if we choosgF| to be sufficiently large (strictly
greater thar{16/¢2)) then we get the conclusiaiter, <

5.

4 Conclusions

Here we list the two main consequences of Theorem 13.

The first is a straightforward corollary of the efficiency of
the lines test and talks about the local testability prgpert
of the Polynomial-Line Codes (see Definition 10).

Theorem 23 The Polynomial-Line Codes afe
locally testable.

11/8_6)

By applying Theorem 13 to the task of constructing ef-
ficient probabilistic verifiers, we get small “transparent”
proofs with low query complexity. The transparent proofs
so obtained are only slightly super-quadratié{(-sized -
wheren is the size of traditional proof) in the length of the

in the combination of the various proof systems used here.
The final ingredient in the proof system is the randomness-
efficient parallelization protocol of [1] (which is whereeth
efficiency of the tester of [14] plays a role). Details of the
construction will be available in the full paper.

Last we would also like to mention two interesting ques-
tions that may be raised about locally checkable codes.

1. Does there exist a family of goa@, 1/2) locally-
checkable codes?

2. Does there exist such a family of codes with constant
alphabet size?
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