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Some Improvements to Total Degree Tests∗

KATALIN FRIEDL† MADHU SUDAN‡

Abstract

A low-degree test is a collection of simple, local rules for
checking the proximity of an arbitrary function to a low-
degree polynomial. Each rule depends on the function’s
values at a small number of places. If a function satis-
fies many rules then it is close to a low-degree polynomial.
Low-degree tests play an important role in the development
of probabilistically checkable proofs.

In this paper we present two improvements to the efficiency
of low-degree tests. Our first improvement concerns the
smallest field size over which a low-degree test can work.
We show how to test that a function is a degreed polyno-
mial over prime fields of size onlyd+ 2.

Our second improvement shows a better efficiency of the
low-degree test of [14] than previously known. We show
concrete applications of this improvement via the notion
of “locally checkable codes”. This improvement translates
into better tradeoffs on the size versus probe complexity of
probabilistically checkable proofs than previously known.

1 Introduction

In this paper we consider functions mappingm variables
from some finite fieldF to the same field. Let the dis-

∗A version of this paper appeared inProceedings of the 3rd Israel
Symposium on Theory of Computing and Systems, Tel Aviv, Israel, Jan-
uary 4-7, 1995. This version corrects a few typographical errors.

† Computer and Automation Research Institute, Hungarian Academy
of Sciences. e-mail:kati@ilab.sztaki.hu.. Most of this work
was done while at the Department of Computer Science, University of
Chicago. Supported in part by OTKA Grant 2581.

‡ Research Division, IBM T.J. Watson Research Center, P.O. Box
218, Yorktown Heights, NY 10598, USA. e-mail:madhu@watson.
ibm.com.

tance between two functionsf andg, denoted byd(f, g)
bePrx∈Fm [f(x) 6= g(x)]. We usedeg(f) to denote the
total degreeof f , anddegmax(f) to denote the largest in-
dividual degree in any of the variables inf .

The low-degree testing problem for total degree (maximum
degree) is defined as follows:

Definition 1 For parametersd ∈ Z+ and δ, ǫ ∈ R+, a
low-degree tester is probabilistic oracle machineT , that
has access to a functionf : Fm → F as an oracle, and
behaves as follows:

• If deg(f) ≤ d (degmax(f) ≤ d) thenT f accepts.

• If for all total degree (maximum degree)d polynomi-
alsg, d(f, g) > ǫ, thenT rejects with probabilityδ.

The low-degree testing problem has been studied widely
due to their relationship with probabilistically checkable
(holographic) proofs and program checking. [5, 6, 9, 2,
10, 13] study the case of testing the maximum degree and
[8, 11, 14, 1] study the case of testing total degree1. Our
improvements are to the latter family of testers. We start
by describing their testers.

Definition 2 For pointsx, h ∈ Fm, the line throughx
with offseth is the set of pointslx,h = {lx,h(t) = x +
t · h|t ∈ F}.

Definition 3 Given a functionf : Fm → F , a posi-
tive integerd and pointsx, h ∈ Fm, the line polynomial
P

(f,d)
x,h : F → F is a univariate polynomial of degree at

mostd which satisfiesP (f,d)
x,h (t) = f(x+ t ·h) for the most

t. Ties are broken arbitrarily.

The tester in [14] is effectively the following: “Pickx, h
randomly and uniformly fromFm andt randomly fromF

1Some of the improvements in the former family have also affected
the latter. In particular [1] obtain their improvement using the improved
analysis of [2]. Similarly the work of [13] also affects the latter family of
testers.
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and verify thatP (f,d)
x,h (t) = f(x+t·h).” For our purposes it

is not important howP (f,d) is computed by the tester. This
will become clear in the context of our applications. The
correctness of the tester is proved by the following kind of
a statement.

Informal Statement: If |F | is a sufficiently large function
of d andδ is a sufficiently small function ofd, then given
a functionf : Fm → F , if there exists a set of degreed
polynomials{Px,h} which satisfies

Pr
x,h,t

[Px,h(t) 6= f(x+ t · h)] ≤ δ

then there exists a degreed polynomialg : Fm → F such
thatd(f, g) ≤ 2δ.

The above statement does not specify the conditions on|F |
andδ, and determining the exact conditions on these pa-
rameters turn out to be the interesting aspect in the analysis
of low-degree tests. The improvements noted in this paper
apply to these two parameters.

1.1 Reducing Field Size

The motivation for the following theorem is primarily one
of curiosity. The smallest field size over which polynomi-
als of a given total degree exhibit sufficient “redundancy”
to, say, enable the application of the Schwartz-Zippel like
theorems [16, 18], is when the field size is at leastd + 2.
The low-degree tester of [11] uses sets of the same size,
i.e.,d+ 2, as elementary test sets. Their proof manages to
show that in a certain sense (see Lemma 5) fields of size
d+ 2 are sufficient to show some sort of robustness. How-
ever their proof falls short of showing low-degree tests that
work over fields of sized + 2 because of the lack of an
“exact characterization” (in the sense of [15]). We com-
plement their work by providing an exact characterization
of low-degree polynomials, which shows that their tester is
good for prime fields of sized+2, and improves the bound
for non-prime fields as well. We give examples to show
that our characterizations are essentially the best possible.

Lemma 4 If q, the order ofF , andp, its characteristic,
satisfyq − q/p− 1 ≥ d andg : Fm → F satisfy

P
(g,d)
x,h (t) = g(x+ t · h) for all x, h, t

theng is a degreed polynomial.

We use the above statement in combination with the fol-
lowing Lemma from [11, 15], to get Theorem 6.

Lemma 5 ([11, 15]) There exists a constantc such that if
|F | ≥ d+ 2 andδ ≤ 1

c(d+1)2 andP andf satisfy

Pr
x,h,t

[Px,h(t) 6= f(x+ t · h)] ≤ δ

then there exists a functiong : Fm → F such that
d(f, g) ≤ 2δ andg satisfies

P
(g,d)
x,h (t) = g(x+ t · h) for all x, h ∈ Fm andt ∈ F .

Theorem 6 Let q denote the order of the fieldF andp its
characteristic. Then there exists a constantc such that if
q − q/p− 1 ≥ d andδ ≤ 1

c(d+1)2 andP andf satisfy

Pr
x,h,t

[Px,h(t) 6= f(x+ t · h)] ≤ δ

then there exists a degreed polynomialg : Fm → F such
thatd(f, g) ≤ 2δ.

In Section 2 we also show that the requirement on|F | is the
tightest possible in the following sense: For allp, q, d such
thatd > q − q/p − 1, we show that there exist functions
g : Fm → F andPx,h : F → F , such thatdeg(Px,h) ≤ d
and for allx, h ∈ Fm, t ∈ F , Px,h(t) = g(x + t · h), but
deg(g) > d.

1.2 Improving the efficiency

Improving the second of the two parameters in the state-
ment of the Informal Statement is a task of greater signif-
icance. (Here an improvement would imply a larger value
of δ.) The result in [11] shows that the test works for
δ ≤ O(1/d2). The improvements in [14] and [1] yielded
δ ≤ O(1/d) andδ ≤ δ0 for someδ0 > 0 respectively. The
constantδ0 coming from the latter analysis is not described
explicitly but the number appears to be fairly small. Here
we show that the theorem works for anyδ < 1/8. More
precisely,

Theorem 7 For everyǫ > 0, there existc < ∞ such that
for all d, if |F | ≥ cd the following holds. Given a function
f : Fm → F and degreed polynomials{Px,h} satisfying

Pr
x,h,t

[Px,h(t) 6= f(x+ t · h)] = δ ≤ 1/8− ǫ

there exists a degreed polynomialg such thatd(f, g) ≤ 2δ.

Remark: The bound on the field size in the above theorem
is also better than that of [1] who are only able to show it
for |F | ≥ d3. However, this improvement can already be
inferred in the work of [13]. In fact, our analysis inherits
this particular improvement from their analysis.



1.3 An Application

The second theorem given above turns out to have some
implication to the properties of probabilistically checkable
proofs. In particular it implies that the proofs constructed
in [1] have a much smaller probe complexity than shown
earlier. It turns out that all the known construction of
holographic proof inherits part of their properties from the
properties of some underlying error-correcting code. It is
easiest to describe the effect of our analysis in terms of
the improvement in the properties of the codes created in
[1, 15]. The following definitions are from [15].

An (k, n, d, a)-code consists of an alphabetΣ such that
log |Σ| = a and a functionC : Σk → Σn, such that for any
two stringsm,m′ ∈ Σk, the (Hamming) distance between
C(m) andC(m′) is at leastd. For applications to prob-
abilistically checkable proofs, it is sufficient to consider
codes restricted a small range of these parameters. We call
these thegoodcodes. Such codes need to have constant
relative distance. The encoded message is allowed to be
much larger than the original message size, as long as the
final length is polynomially bounded.

Definition 8 (Good Code) A family of codes{Ci} with
parameters(ki, ni, di, ai) is good ifki → ∞, ni is up-
per bounded by some polynomial inki, di/ni > 0 and
ai = polylog(ki).

For the application to probabilistically checkable proofs,
the primary question is the following: “Does the code ad-
mit very simplerandomized error detection?”. This notion
is formalized in the next definition. Intuitively the defini-
tion says that the error-detection can be done by probing
justp letters of a word to get a confidenceδ that it is close
to some codeword.

Definition 9 For a positive integerp and a positive real
numberδ, an (n, k, d, a)-codeC over the alphabetΣ is
(p, δ)-locally testableif the following exist

• A probability spaceΩ which can beefficiently sam-
pled.

• Functionsq1, q2, . . . , qp : Ω → {1, . . . , n}.

• A boolean functionV : Ω× Σp → {0, 1}.

with the property that for allw ∈ Σn, if

Pr
r∈Ω

[

V (r, wq1(r), . . . , wqp(r)) = 0
]

< δ

then there exists a (unique) stringm ∈ Σk such that
d(w,C(m)) < d/2. Conversely, ifw = C(m) for some
m, thenV (r, wq1(r), . . . , wqp(r)) = 1 for all r ∈ Ω.

The codes of [6] for instance produce good codes which
are(polylog(ki),Ω(1))-locally testable. The work of [2]
implicitly describe a related code which achieves both
p, 1δ = O(1), but requires very large alphabet sizes to get
this – namely their code requiresai = kǫi . The significant
improvement in [1] is to get good codes which havep = 2,
δ > 0 with ai = polylog(ki). (By applying a recursive
technique introduced by [2] to this code they later manage
to reducea to a constant as well.) The code used by [1] is
the following (see also [15]):

Definition 10 (Polynomial-Line Codes) Let c1 > 1 and
c2 ≥ 1 be parameters. Thepolynomial-line codes{Lm}
are chosen by lettingd = Θ(mc1) and picking a finite
fieldF of sizeΘ(dc2). The code works over the alphabet
Σ = F d+1. The message consists of

(

m+d
d

)

field elements

(or
(

m+d
d

)

/(d + 1) letters fromΣ) and is viewed as an
m-variate degreed polynomial specified by its coefficients.
Given a message polynomialf , the codeword consists of
{P

(f,d)
x,h }x,h∈Fm whereP (f,d)

x,h is the line polynomial for
the linelx,h described by itsd + 1 coefficients. The code
achieveskm =

(

m+d
d

)

/(d + 1) andnm = |F |O(m2) over
the alphabetF d+1.

It is clear that for all constantsc1 andc2 the Polynomial-
Line codes are good codes. [1] show that for allc1 > 1
and c2 ≥ 3 these codes give(2, δ > 0)-locally testable
codes. [13] improve this toc2 ≥ 1, without changing theδ
in any significant way. Our analysis (Theorem 7) immedi-
ately yields that Polynomial-Line Codes are(2, 1/8 − ǫ)-
locally testable. It can be easily shown that no code can
achieve(2, 1/2 + ǫ)-local testability. Thus in this case our
results come close to optimality.

Connection with proof checking Lastly we describe a
very informal manner the way in which this affects the con-
struction of probabilistically checkable proofs. We assume
that the reader of this subsection is familiar with the notion
of probabilistically checkable proofs (PCPs) as defined in
[2] (see, for instance, [3] for a survey). In particular we dis-
cuss the probe complexity of proofs and the sizes of prob-
abilistically checkable proofs.

As mentioned earlier every holographic proof ends up in-
heriting part of its properties on some underlying locally-
testable code. In order to test that a given proof is valid
one ends up testing that the proof corresponds to a valid
codeword. This effectively implies that to obtain a fixed
degree of confidence, one has to look atO(p/δ) letters in
the proof. Thus the probe complexity of a PCP seems to be
inherently dependent on the ratio ofp andδ.

However, the relationship betweenp/δ and the probe com-



plexity of PCP turns out to be not so simple. [7] man-
age to reduce the probe complexity of a PCP to about 24
bits to get a confidence of1/2 (from some unknown num-
ber estimated to be around104 in [1]) without improving
the analysis of low-degree tests! How do they obtain this
reduction? It turns out that this reduction is obtained by
exploding the proof size to the order ofn104 (from some
smaller polynomial of size aboutn12 in [1]). But by incor-
porating the analysis from this paper into the analysis of
PCP one can obtain better bounds on the probe complexity
of proof systems. The verifier we construct probes a proof
at most 165 bits (as opposed to the104 of [1, 13]) while in-
creasing the proof size to onlyn2+ǫ (to be contrasted with
then104 in [7]). (We point out that the improvement relies
fairly heavily on the techniques developed in [7] and [13],
as well as those of [2] and [1].)

2 Characterizing the Total Degree of
Polynomials

Let F = Fq be a finite field of orderq = ps wherep is its
characteristic.

Theorem 11 Let g : Fm → F be a function which satis-
fies

∀x, h ∈ Fm, t ∈ F P
(g,d)
x,h (t) = g(x+ t · h).

Then ifq − q/p− 1 ≥ d, then g is a polynomial of degree
at mostd.

Remark. The inequalityq − q/p − 1 ≥ d in the Theo-
rem cannot be weakened for anyq. Indeed, for anyd such
that q − q/p − 1 < d < q, consider the bivariate func-

tion g(x1, x2) = (x
(p−1)
1 x2)

q/p. For every pairx, h, the
univariate functionPx,h given byPx,h(t) = g(x + t · h).
Each term in this univariate polynomial has degree at most
(p + 1)q/p = q + q/p and each exponent is divisible by
q/p. As a function we havetq = t , and thusdeg(Px,h)

is at mostq − q/p. Thus we haveP (g,d)
x,h ≡ Px,h. On the

other hand the total degree ofg is q > d.

For the proof of Theorem 11, we first prove a lemma about
the behavior of the binomial coefficients modulop.

Lemma 12 Let 0 < r ≤ n ≤ ps − 1. If r = kps−1 then
(

n
r

)

is not divisible byp.

Proof: For any positive integerl, the largest power of
p that dividesl! is ⌊l/p⌋ + ⌊l/p2⌋ + ⌊l/p3⌋ + · · ·. But
for r = kps−1, the identity⌊n/pi⌋ = ⌊r/pi⌋ + ⌊(n −

r)/pi⌋ holds. Thus the largest power ofp that dividesn! is
∑∞

i=1⌊n/p
i⌋ =

∑∞
i=1(⌊r/p

i⌋+ ⌊(n− r)/pi⌋). Therefore
n! andr!(n − r)! are divisible by exactly the same power
of p.

Proof of Theorem 11: Assume for the sake of contradic-
tion that the assertion of the theorem is false. Letm be the
smallest positive integer for which the following holds:

∃g : Fm → Fs.t.∀x, h ∈ Fm, t ∈ F

P
(g,d)
x,h (t) = g(x+ t · h) but deg(g) > d. (1)

Expressg in the form:

g(x1, . . . , xm) =

q−1
∑

i1=0

· · ·

q−1
∑

im=0

αi1,...,imxi1
1 · · ·xim

m .

(Notice that there existsα’s such that the above is true, and
these are unique.) Sinceg is not a degreed polynomial,
there existl and i1, . . . , im such that

∑m
j=1 ij = l > d

andαi1,...,im 6= 0. Let l be the largest integer with this
property. We consider the following cases:

Case:
∑m−1

j=1 ij > d: We show that this contradicts the
assumption thatm is the smallest integer for which
(1) holds. Foram ∈ F , let gam

: Fm → F be given
by gam

(x1, . . . , xm−1) = g(x1, . . . , xm−1, am). No-

tice first thatgam
satisfiesgam

(x+t·h) = P
(gam ,d)
x,h (t)

for all x, h ∈ Fm−1 andt ∈ F . This follows from the
fact thatP (gam ,d)

x,h (·) = P
(g,d)
x′,h′ (·) for x′ =< x, am >

andh′ =< h, 0 >. We now show that there existsam
such thatdeg(gam

) > d. Observe that the coefficient
for xi1

1 · · ·x
im−1

m−1 is
∑q−1

i=0 αi1,...,im−1,ia
i
m. This sum-

mation is a non-zero polynomial inam of degree less
thanq. Thus there must exist a pointam where the
summation is non-zero. This gives usam such that
gam

, a function ofm − 1 variables, satisfies (1). As
promised, this violated the minimality ofm.

Case:
∑m

j=2 ij > d: Similar to above.

Case: l =
∑m

j=1 ij < q: For a1, . . . , am ∈ F , let
ga1,...,am

: F → F be given byga1,...,am
(t) =

g(a1t, . . . , amt). The coefficient oftl in ga1,...,am
is

given by

∑

k1,...,km s.t. k1+...+km=l

αk1,...,km
ak1

1 · · · akm
m .



Since this expression is a polynomial in theaj ’s of
degree less thanq and is not identically zero, there
exist a1, . . . , am for which the coefficient oftl in
ga1,...,am

(t) is non-zero. But forx = 0 anda =<

a1, . . . , am >, we find thatP (g,d)
x,a ≡ ga1,...,am

. and
the fact thatga1,...,am

is not a polynomial of degreed
contradicts the conditions guaranteed in (1).

Case: None of the above: In this case we
have

∑m−1
j=1 ij ≤ d, im ≤

∑m
j=2 ij ≤ d and l ≥

q. Here we consider the functionga1,...,am−1,b(t) =
g(a1t, . . . , am−1t, b + t) and show that for some
choice ofa1, . . . , am−1 and b, the coefficient oftr

in ga1,...,am−1,b is non-zero, for somer in the range
[d + 1, q], of the formnps−1 +

∑m−1
j=1 ij . Such a

choice forr exists since the range[d + 1, q] contains
at leastq − d− 1 ≥ q/p = ps−1 elements.

We start with the observation that the coefficient of
tr in the functionga1,...,am−1,b(t) is the same as the
coefficient oftr in the formal power series expansion
of g with the formal substitutionsxi = ait andxm =
b + t. This is true because the formal power series
contains terms of degree at mostl andl satisfies the
condition: q + r > l. (Sincel = im +

∑m−1
j=1 ij ≤

im + r ≤ d+ r < r + q.)

The coefficient oftr in the formal expansion is

∑

(

km

r −
∑m−1

i=1
ki

)

αk1,...,km

m−1
∏

i=1

a
ki
i b

∑

m

i=1
ki−r

where the summation ranges over all choices of
k1, . . . , km such thatr ≤

∑m
j=1 kj ≤ l. Thus coef-

ficient is a polynomial inaj ’s andb of degree at most
q in each variable. Moreover forkj = ij, the term
αk1,...,km

is non-zero and the term
(

km

r−k1−···−km−1

)

simplifies to
(

im
nps−1

)

which is also non-zero (by
Lemma 12). Thus the coefficient oftr is a non-zero
polynomial of maximum degree at mostq. Hence
there exists a choice ofa1, . . . , am−1 andb such that
the coefficient oftr is non-zero modulop.

We now obtain the contradiction in the usual way.
We observe thatga1,...,am−1,b ≡ P

(g,d)
x,h for x =<

0, . . . , 0, b > andh =< a1, . . . , am−1, 1 >. Thus
ga1,...,am−1,b should be a polynomial of degree at
mostd, contradicting the fact that the coefficient of
tr is non-zero.

3 Efficiency of the Lines test

The main theorem of this section is motivated by the fol-
lowing tester: The testerT is provided access to an oracle
for f : Fm → F and an augmenting oracleO : F 2m →
F d+1. The augmenting oracle takes as input the descrip-
tion of a line by the pairx, h ∈ Fm and provides the coef-
ficients of the “line polynomial”Px,h. The effect of Theo-
rem 13 is to show that the tester behaves as follows:

• If f is a degreed polynomial then there exists anO
such thatT f,O always accepts.

• If d(f, g) ≥ 1/4 for every degreed polynomialg,
then for every oracleO : F 2m → F d+1, T f,O rejects
with probability at least1/8− ǫ.

• T makes exactly one call to each oracle (i.e.,f and
O).

The consequences of this theorem are summarized in Sec-
tion 4.

Theorem 13 For everyǫ > 0, there existsc < ∞ such
that for all d ∈ Z+ if |F | ≥ cd then the following holds.
Given a functionf : Fm → F and degreed polynomials
{Px,h} such that:

Pr
x,h,t

[Px,h(t) 6= f(x+ t · h)] = δ ≤ 1/8− ǫ

there exists a degreed polynomialg such thatd(f, g) ≤ 2δ.

Our proof is based on the proof in [15] and borrows var-
ious ingredients from their technique. However our anal-
ysis seems to be simplify certain aspects of their proof by
introducing an inductive analysis to their proof. The im-
provement in the value ofδ is obtained by very careful
sampling of the underlying space and the application of
pairwise independent analysis to their space. The use of
pairwise independent analysis in low-degree testing seems
to be new.

In what follows we fix anǫ > 0. We assume thatc →
∞. Thus whenever the notationα = o(1) is used in what
follows, it implies thatα → 0 asc → ∞.

We start with a couple of definitions. Given a functionf :
Fm → F , let δf be defined as

δf = Pr
x,h

[

f(x) 6= P
(f,d)
x,h (0)

]

and letCorrf : Fm → F be the function defined by

Corrf (x) = pluralityh{P
(f)
x,h (0)}

2.

2Theplurality of a multiset is the most commonly occurring element
in the multiset. We use the word plurality as opposed to majority since



We start with a few basic facts aboutδf andCorrf .

Fact 14 For any functionf : Fm → F , and degreed
polynomials{Px,h : F → F}x,h∈Fm ,

Pr
x,h,t

[f(x+ t · h) 6= Px,h(t)] ≥ δf .

The above fact follows directly from the fact that for each
x, h P f,d

x,h minimizes (over randomt) the probability that
f(x+ t · h) 6= Px,h(t).

Lemma 15 ([11]) d(f,Corrf ) ≤ 2δf .

Lemma 16 ([11]) For all β > 0, if g is a degreed polyno-
mial such thatd(f, g) < 1/4− β, thenCorrf ≡ g.

We need a slightly stronger version of the above lemma for
our purposes which we prove next.

Lemma 17 For all β > 0, if g : Fm → F is a degreed
polynomial such thatd(f, g) < 1/2−β thend(Corrf , g) =
o(1).

Proof: Consider randomly chosenx, h ∈ Fm and the
line lx,h. Notice that this line represents a pairwise inde-
pendent collection of points fromFm. Thus with proba-
bility 1 − α, whereα = o(1), the number of points,y, on
lx,h such thatf(y) 6= g(y) is less than1/2 − ǫ/2 and in

such casesP (f,d)
x,h ≡ P

(g,d)
x,h .

Now con-
sider the setB = {x|P

(f,d)
x,h 6≡ P

(g,d)
x,h for a majority ofh ∈

Fm}. Based on the above argument notice that the fraction
|B|/|F |m is at most2α = o(1). But for x 6∈ B, we have
Corrf (x) = g(x).

The main lemma we prove is the following:

Lemma 18 ∀f : Fm → F s.t. |F | > 16/ǫ2 andδf ≤
1/8− ǫ, δCorrf < δf .

We defer the proof to the next subsection. We first show
why this suffices.

Proof of Theorem 13: We prove this theorem by induc-
tion of δ. (Observe that since we are talking of functions
over finite domains,δ can only take finitely many values.)
Say the theorem is true for functionsf, {Px,h} with

Pr
x,h,t

[Px,h(t) 6= f(x+ t · h)] < δ.

the latter could also be used to point to the (unique) elementthat occurs
with frequency more than half.

Now consider functionsf, {Px,h} with

Pr
x,h,t

[Px,h(t) 6= f(x+ t · h)] = δ.

For such af consider the functionCorrf . By Lemma 18,

Pr
x,h,t

[

P
(Corrf ,d)
x,h (t) 6= Corrf (x+ t · h)

]

= δCorrf < δf .

By induction there exists a degreed polynomial g such
that d(Corrf , g) ≤ 2δCorrf < 2δf . By Lemma 15
d(f,Corrf ) ≤ 2δf . Thusd(f, g) ≤ 4δf ≤ 4δ ≤ 1/2− 4ǫ.
By Lemma 17d(Corrf , g) = o(1). This in turn implies
that d(f, g) ≤ 1/4 − ǫ + o(1). By Lemma 16 we now
conclude thatCorrf = g implying thatd(f, g) ≤ 2δf .

3.1 Proof of Main Lemma

The proof of Lemma 18 relies on a minor strengthening of
the following lemma due to [13], which in turn improves
upon a similar lemma in [2].

Lemma 19 ([13]) For anyǫ > 0, if ri andcj are families
of degreed polynomials such that

Pr
i,j∈F

[ri(j) 6= cj(i)] ≤ 1/4− ǫ,

then there exists a bivariate polynomialQ of degreed in
each variable such that

Pr
i,j∈F

[ri(j) 6= Q(i, j) or cj(i) 6= Q(i, j)] ≤ 1/2− ǫ.

We first strengthen the conclusion obtained above slightly.

Lemma 20 Let ǫ ≥ d/|F | and Letri andcj be families of
degreed polynomials such that

Pr
i,j∈F

[ri(j) 6= cj(i)] ≤ 1/4− ǫ.

Then there exists a bivariate polynomialQ of degreed in
each variable such that

Pr
i∈F

[ri(·) 6= Q(i, ·)] ≤ 1/4

and Pr
j∈F

[cj(·) 6= Q(·, j)] ≤ 1/4.

Proof: This lemma follows in a straightforward manner
from Lemma 19. LetQ be the bivariate polynomial guar-
anteed by Lemma 19. We define thebad rowsand bad
columnsas follows. Let

Brow = {i ∈ F |ri(·) 6= Q(i, ·)} and letx = |Brow|/|F |.



Similarly let

Bcol = {j ∈ F |cj(·) 6= Q(·, j)} and lety = |Bcol|/|F |.

We count the number of points inBrow×(F−Bcol) which
satisfy ri(j) 6= cj(i). For each bad rowi , there are at
mostd points for whichri(j) = Q(i, j). All the remaining
points must lie on a bad column or must satisfyri(j) 6=
cj(i). Thus the fraction of violations in any bad row (from
the good columns) is at least(1 − d/|F | − y). Similarly
we count the violations in bad columns and good rows and
summing all theses violations we get:

1/4− ǫ
≥ Pri,j [ri(j) 6= cj(i)]
≥ (Pri [i ∈ Brow]

∗Prj [j 6∈ Bcol andcj(i) 6= ri(j)|i ∈ Brow])
+(Prj [j ∈ Bcol]
∗Pri [i 6∈ Brow andcj(i) 6= ri(j)|j ∈ Bcol])

≥ x(1 − y − d
|F | ) + y(1− x− d

|F | ).

We now use the fact thatx, y ≤ 1/2 and thatǫ ≥ d/|F |, to
reduce the above tox ≤ 1/4 andy ≤ 1/4.

We are now almost ready to prove Lemma 18. We first
prove a variant and then show how it implies the final re-
sult.

Lemma 21 If δf ≤ 1/8− ǫ, then forx, h1, h2 chosen uni-
formly at random fromFm,

Pr
x,h1,h2

[

P
(f,d)
x,h1

(0) 6= P
(f,d)
x,h2

(0)
]

≤ 4αδf whereα = 4
ǫ2|F | .

Proof: Pick x, h1, h2, h3 at random fromFm and con-
sider the set of points{x+ ih1+ jh2+ ijh3|i, j ∈ F}. We
partition this set in two ways - by “rows” and by “columns”
as follows. Fori ∈ F let rowi = {x+ih1+jh2+ijh3|j ∈
F}. Similarly for j ∈ F let colj = {x + ih1 + jh2 +
ijh3|i ∈ F}. Notice that each row and column is a line
from the spaceFm. We first observe that these are actually
random lines (Here we call the distribution of lines picked
by choosing a linelx,h by pickingx, h ∈ Fm uniformly
and randomly, to be theuniformdistribution over lines.)

Claim 22 For i1 6= i2 ∈ F , the rowsrowi1 androwi2 are
independently and uniformly distributed over lines inFm.
(Similarly for the columns.)

Letm(i, j) = f(x+ ih1+ jh2+ ijh3). Further letri(·) =
P

(f,d)
x+ih1,h2+ih3

(·) andcj(·) = P
(f,d)
x+jh2,h1+jh3

(·). For a line
lx,h from Fm, defineδ(lx,h) to bePrt∈F [f(x + th) 6=

P
(f,d)
x,h (t)]. Notice thatEx,h[δ(lx,h)] = δf . The pairwise

independence of the lines implies that the collection of real
numbers{δ(rowi)}i∈F is a pairwise independent collec-
tion of variables taking values from[0, 1] with expectation
δf . The second moment method thus allows us to estimate
the mean of this sample and shows that:

Pr
x,h1,h2,h3

[

∑

i

δ(rowi)/|F | ≥ 1/8− ǫ/2

]

≤ αδf (1− δf ) whereα =
4

ǫ2|F |
. (2)

A similar analysis applied to the columns yields:

Pr
x,h1,h2,h3





∑

j

δ(colj)/|F | ≥ 1/8− ǫ/2





≤ αδf (1− δf ) whereα =
4

ǫ2|F |
. (3)

By combining (2) and (3) yields that with probability all
but at most2αδf over four tuples(x, h1, h2, h3) we have,
Pri,j∈F [ri(j) 6= cj(i)] ≤ 1/4− ǫ. This allows us to apply
Lemma 20 to claim that for at least3/4 fraction of thei’s,
ri(·) ≡ Q(i, ·) (and similarly for the columns).

Once again, we use pairwise independence to show that

Pr
x,h1,h2,h3

[{i ∈ F |ri(0) 6= m(i, 0)}

≥ (1/8− ǫ/2)|F |]

≤ αδf (1− δf ) whereα =
4

ǫ2|F |
. (4)

Pr
x,h1,h2,h3

[{j ∈ F |cj(0) 6= m(0, j)}

≥ (1/8− ǫ/2)|F |]

≤ αδf (1− δf ) whereα =
4

ǫ2|F |
. (5)

Thus we now see that with probability at least1 − 4αδf
all the events in (2), (3), (4) and (5) hold. In this case
m(i, 0) = Q(i, 0) for at least3/4 − 1/8 + ǫ fraction of
i ∈ F , which implies thatc0(·) = Q(·, 0). Thus we have
P

(f)
x,h2

(·) = c0(·) = Q(·, 0). SimilarlyP (f)
x,h1

(·) = Q(0, ·).

ThusP (f)
x,h2

(0) = P
(f)
x,h1

(0) = Q(0, 0).

Proof of Lemma 18: We start with the following obser-
vation:

∀x, Pr
h2

[

pluralityh1
{P

(f,d)
x,h1

(0)} 6= P
(f,d)
x,h2

(0)
]

≤ Pr
h1,h2

[

P
(f,d)
x,h1

(0) 6= P
(f,d)
x,h2

(0)
]

.



We prove the above by running two different probabilis-
tic experiments. Say, a bag has a number of colored balls,
with the distribution of the number of balls of each color
being known. In the first game we nominate a color and
then pick a random ball and we lose if the color of the ran-
domly chosen ball is different from the nominated one. In
the second game we pick two balls (with replacement) at
random from the bag and lose if the balls have different
colors. It is clear that in the first game the best choice is to
deterministically pick the most often occuring color in the
bag, while the second game corresponds to a mixed strat-
egy for nominating the color in the first game. Thus we are
no more likely to lose in the first game than in the second.
The inequality above represents this analysis, with theh’s
corresponding to the balls andP (f,d)

x,h (0)’s corresponding
to their colors.

We now use the inequality above as follows:

Ex

[

Pr
h2

[

Corrf (x) = pluralityh1
{P

(f,d)
x,h1

(0)}

6= P
(f,d)
x,h2

(0)

]]

≤ Ex

[

Pr
h1,h2

[

P
(f,d)
x,h1

(0) 6= P
(f,d)
x,h2

(0)
]

]

.

In turn this implies

δCorrf = Pr
x,h2

[

Corrf (x) 6= P
(f,d)
x,h2

(0)
]

≤ Pr
x,h1,h2

[

P
(f,d)
x,h1

(0) 6= P
(f,d)
x,h2

(0)
]

.

By Lemma 21 the last quantity above is bounded by4αδf .
Thus if we choose|F | to be sufficiently large (strictly
greater than(16/ǫ2)) then we get the conclusionδCorrf <

δf .

4 Conclusions

Here we list the two main consequences of Theorem 13.
The first is a straightforward corollary of the efficiency of
the lines test and talks about the local testability property
of the Polynomial-Line Codes (see Definition 10).

Theorem 23 The Polynomial-Line Codes are(2, 1/8− ǫ)
locally testable.

By applying Theorem 13 to the task of constructing ef-
ficient probabilistic verifiers, we get small “transparent”
proofs with low query complexity. The transparent proofs
so obtained are only slightly super-quadratic (n2+ǫ-sized -
wheren is the size of traditional proof) in the length of the

traditional proofs and the verifier probes them in at most
165 bits and always accepts correct proofs, while reject-
ing incorrect theorems with probability1/2. To be able to
lay out precise bounds on the size of the proof, one needs
to be careful about the model of computing used to define
the size of a proof. The model we use here is the same
as that used by [13]. In fact our verifier uses theirs as a
black box and then builds upon it. In addition to the use
of such size-efficient proof systems our construction also
use many ingredients from the query-efficient proofs of
[7]. The recursion mechanism of [2] plays a central role
in the combination of the various proof systems used here.
The final ingredient in the proof system is the randomness-
efficient parallelization protocol of [1] (which is where the
efficiency of the tester of [14] plays a role). Details of the
construction will be available in the full paper.

Last we would also like to mention two interesting ques-
tions that may be raised about locally checkable codes.

1. Does there exist a family of good(2, 1/2) locally-
checkable codes?

2. Does there exist such a family of codes with constant
alphabet size?
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