
1

Variants of Jump Flooding Algorithm for Computing
Discrete Voronoi Diagrams

Guodong Rong Tiow-Seng Tan
School of Computing, National University of Singapore

{rongguod | tants}@comp.nus.edu.sg

Abstract

Jump flooding algorithm (JFA) is an interesting
way to utilize the graphics processing unit to efficiently
compute Voronoi diagrams and distance transforms in
2D discrete space. This paper presents three novel
variants of JFA. They focus on different aspects of JFA:
the first variant can further reduce the errors of JFA;
the second variant can greatly increase the speed of
JFA; and the third variant enables JFA to compute
Voronoi diagrams in 3D space in a slice-by-slice
manner, without a high end graphics processing unit.
These variants are orthogonal to each other. In other
words, it is possible to combine any two or all of them
together.

1. Introduction

Graphics hardware has been utilized to efficiently

and effectively compute Voronoi diagrams in discrete
space. Such a discrete Voronoi diagram, and the
related concept of discrete distance transform, have
many real-time interactive applications, such as motion
planning, object selection, mosaics, skeleton, feature
preserving evolution etc. (see [4], [13]). Moreover,
discrete Voronoi diagrams can be utilized to achieve
robustness in the computation of continuous Voronoi
diagrams [6].

Notable works using graphics hardware on
Voronoi diagrams include Hoff et al.’s paper [4] that
builds a cone for every input (point) site and renders
these cones to obtain the Voronoi diagram as the lower
envelop of these cones. Denny [2] presents a similar
method using a pre-computed texture in place of the
cone. This method is faster and produces more
accurate results; see also Strzodka and Telea’s work
[13]. Fischer and Gotsman [3] use planes tangent to a
paraboloid and thus avoid the errors caused by the
tessellation of the cones. All these algorithms run in
time linear to the size of the input. In other words,
their speeds reduce with the increase in the number of
sites.

Recent advances in the graphics processing unit
(GPU) allow programmed control of the graphics
pipeline; see [8] for a comprehensive survey. For our
purposes here, a GPU can be imagined as a collection
of processors working in parallel on all the pixels
(information) in a texture with resolution of n×n where
n is typically 512, 1024, or up to 4096 with current
state-of-the-art GPU. Such capability is used by Sigg
et al. [12] to compute distance transform (a concept
closely related to Voronoi diagram) in 3D space; see
also Sud et al.’s work [14]. These algorithms need
significant CPU effort to compute the bounding
volume of Voronoi cells, and their speeds are still
dependent on the size of the input sites.

Rong and Tan [9] introduce the jump flooding
algorithm (JFA) to compute Voronoi diagrams and
distance transforms in GPU. Unlike all previous work,
the speed of JFA is almost independent to the size of
the input sites. Specifically, given a collection of m
sites in a texture with a fix resolution, the time to
compute the Voronoi diagram of these sites is almost a
constant regardless of m. But, JFA is an approximate
algorithm and errors at pixels can occur; that is, some
pixels may not record the correct nearest sites after the
JFA computation. On the whole, the nice property of
being fast while not incurring many errors makes JFA
suitable to compute discrete Voronoi diagrams.

A similar idea extended to 3D space is proposed
by Cuntz and Kolb [1]. They solve the problem by
packing a 3D texture into a 2D one. Due to texture size
limit in the current GPU, they can handle only small
resolutions of 3D space.

In this paper, we propose three new variants of
JFA. They focus on different aspects of JFA: The first
variant can greatly decrease the rate of errors of JFA
with exactly the same computational cost of a previous
variant in [9]. The second variant can improve the
speed of JFA by more than 25% while maintaining
very low rate of errors. The last variant extends the
algorithm into 3D space in a slice-by-slice manner.
This is more efficient than the prior work of Sud et al.
[14] as the speed of JFA is almost independent to the

To appear in Proceedings of the 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD’07), July 9-12, 2007.

2

number of sites. All of these three variants are
orthogonal, so any two or all of them can be combined
with each other into a more powerful flooding solution.

The rest of the paper is organized as follows.
Section 2 reviews the basic idea of JFA. Sections 3 to
5 introduce our three new variants. Section 6
concludes the paper with possible directions for future
work.

2. Review of JFA

Suppose we have a site s at pixel (x, y) in a texture

with resolution of n×n, and we want to pass its
information to all the other pixels in the texture. The
most straightforward way is to use the standard flood
filling algorithm. In the first pass, we pass the
information of s to its (maximum) eight neighbors at
positions (x+i, y+j) where i, j ∈ {–1, 0, 1}. These
neighbors continue to pass the information to their
neighbors in the later passes. This process continues
until all the pixels in the texture receive the
information of s. Figure 1(a) demonstrates this process
in an 8×8 texture with a site at the bottom-left corner.

Now suppose we have many sites in the texture,
and the information of every site is just its coordinate.
When all the pixels in the texture get the information
of the sites, each can use this information to choose the
nearest site to it. Thus, the Voronoi diagram can be
computed using this standard flood filling algorithm. A
simpler version of this idea is also presented in
Algorithm 4.14 in [7]. However, the number of passes
and thus time needed by standard flood filling
algorithm is linear to the resolution of the texture.

In the standard flood filling algorithm, the step
length in all the passes is always 1. So every pixel
effectively only propagates information of a site once
in the entire process. This is wasteful in the computing
power of GPU. To rectify this, we can vary (i.e. jump)
the step lengths in different passes to have the jump
flooding algorithm. In JFA, the step length in the first

pass is equal to half of the resolution. (In our
discussion, we always assume n is a power of 2; in
more general form, the step length of the first pass is

log 12 n −⎡ ⎤⎢ ⎥ for a resolution of n×n.) Then the step length
is halved in every pass until the step length of 1.
Formally, in a pass with step length of k, a pixel at the
position (x, y) passes its information to the pixels at the
positions (x+i, y+j) where i, j∈ {–k, 0, k}. This process
is shown in Figure 1(b) for the same configuration of
input site as in Figure 1(a). By using different step
lengths k, the number of passes needed by JFA is
reduced to logarithmic of n.

Same as the standard flood filling algorithm, JFA
can compute Voronoi diagram. Although JFA may
cause errors at pixels in the final result, as presented in
[9], the rate of such errors is very low, and not
noticeable to the naked eye. Besides Voronoi diagram
and distance transform, JFA has also been successfully
used to compute real-time soft shadows [10].

With this basic idea of JFA, we next present its
three new variants in the following three sections.

3. Variant 1: 1+JFA

During the process of JFA, an error occurs when
the correct site (the nearest site) is killed by other sites
en route during the flooding. According to Property 4
of JFA in [9], the necessary condition for two sites
meeting at a same pixel at step length of 2l is that the l
last bits (in binary encoding) of their x- and y-
coordinates are exactly the same. So if the very last bit
of the x- or the y-coordinate of a site s is already
different to that of another site t, these two sites do not
meet each other in any pixel in any pass before the
pass with step length of 1, and thus one cannot kill the
other.

This leads to the idea of the first variant, called
1+JFA. Before performing the standard JFA, we pass
the information of a site s at position (x, y) to its
(maximum) eight neighbors at positions (x+i, y+j)
where i, j∈ {–1, 0, 1}. This is equivalent to performing
a pass with step length of 1 before the standard JFA,
and leads to the name of 1+JFA. In effect, we have
made information of s available at pixels where their
last bit patterns of x- and y-coordinate cover all
possible combinations of 1s and 0s. This reduces the
chances of all the copies of s being killed by other sites
during flooding. The process of 1+JFA as compared to
that of the standard JFA is shown in Figure 2.

Note that this variant cannot totally eliminate all
the errors, because the other sites are also flooded by
one pixel to their neighbors before the standard JFA
and those neighbors together may kill, for example, all
the copies of s at different passes of flooding. Despite

(b)

k=4 k=1 k=2

k=1 k=1 k=1

Figure 1: Propagation of the content of a site
at the bottom-left corner by (a) standard flood
filling, and (b) JFA.

k=1 k=1 k=1 k=1

(a)

3

this, we observe very few errors generated by this
variant in our experiments; see Figure 3.

It is very interesting to notice that although 1+JFA
is very similar to the variant JFA+1 [9], the rate of
errors of 1+JFA is far less than that of JFA+1. Since
the numbers of passes of 1+JFA and JFA+1 are the
same, their speeds are the same too. So 1+JFA is a
better algorithm than JFA+1 because of much smaller
rate of errors. In Figure 3, we can also see that the rate
of errors of 1+JFA is also less than that of the slower
variant, JFA+2 [9] for small number of sites.

4. Variant 2: Halving Resolution

In doubling a texture from n×n to 2n×2n, the

standard JFA needs an additional pass with step length
of n to reach among pixels further apart. Besides, each
pass now deals with 4 times the number of pixels, and
the speed is thus much slower than before. Turning this
into a positive way, if we can half the resolution
needed, the speed can improve accordingly. This is the
idea of the second variant as explained next.

Before starting JFA on a texture with resolution of
2n×2n, we sub-sample a square of 4 pixels into a
single pixel to result in a texture with resolution of n×n.
In the sub-sampling, if there is one or more sites in the

square of 4 pixels, we choose among them one as the
representative site. Next, JFA is applied on the texture
with resolution of n×n containing the representative
sites. After this is completed, we expand the texture
back to the original resolution of 2n×2n. In doing this,
one pixel (x, y) in the low resolution becomes 4 pixels
in the high resolution, and each of these 4 pixels
derives its nearest site from those sites represented by
the representative site at (x, y). With this, the edges
between two Voronoi cells generally form a staircase
(zigzag) shape. So, we need another pass of flooding
with step length of 1 to smooth the Voronoi edges.
Figure 4 shows the process of this variant for the same
configuration of input sites in Figure 2.

One important note is in order when performing
JFA in the low resolution. To compute distance from a
site to a pixel (and to select the nearest site), we must
still use the original coordinates in the high resolution.
This is because the sub-sampling may slightly change
the relative positions of the sites. Such a change, no
matter how small, may result in a significant change in
the final Voronoi diagram. This phenomenon is
illustrated in Figure 5.

However, there are cases that such situation is not
avoidable. For example, in Figure 5, suppose there is
also a site at the position of a’. After sub-sampling, we
only have a’, b and c. Many pixels belonging to the
Voronoi cell of a are in the Voronoi cell of either b or
c after the computation, and these are thus pixels with
errors. If the sites are uniformly distributed, this
situation occurs when the density is very high. So this
variant works better for cases with sparse distribution
of sites. In another view, if the density is too high, all
the Voronoi cells are small in size and some additional
passes can fix most of these errors too. On the whole,
this variant, when combined with other variants, may
not generate many errors while able to accelerate the
computation of flooding.

Figure 6 shows the comparison of the speed of this
variant with those of JFA and its other variants. It is
clear that this variant is the fastest. As we have
mentioned, this variant can be combined with the other

Figure 2: Comparison of processes of JFA and 1+JFA for 10 sites in a texture with resolution of
64×64. Upper row: the process of JFA. Lower row: the process of 1+JFA that has one additional
pass.

Figure 3: Errors of variants of JFA

0 2000 4000 6000 8000 10000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

er

ro
rs

sites

 JFA+1
 JFA+2
 1+JFA

4

variants (e.g. JFA+2) to reduce the rate of errors. In
our experiment on nVidia 6800 GPU, we obtain less
than 3 errors on average in a texture with resolution of
512×512 while still enjoy frame rate (of around 70fps)
better than that of the standard JFA (of around 55fps).

5. Variant 3: 3D Space

The idea of JFA can be easily extended into 3D

space, where every voxel looks for its (maximum) 26
neighbors to choose its nearest site. But, only the latest
GPU processors such as nVidia 8800 that have the
ability to write into 3D texture to support the
implementation of such an algorithm. Previous work of
Rong and Tan [9] can only use the CPU to simulate
JFA in 3D space to understand its performance. For
our work here, we show a way to adapt 2D JFA to
compute a 3D Voronoi diagram in a slice-by-slice
manner, without the need of writing into 3D textures.

According to Property 1 of JFA in [9], regardless
of where a site is, as long as it is not killed by other
sites en route, its information can reach all the pixels in

the texture after the pass with step length of 1. This
property suggests that it is not necessary to put the
sites at their original positions to perform JFA. In fact,
we can choose to put the sites at any positions
convenient to an application. (This may lead to
different rate of errors in the flooding.) We note that in
some sense, our variant 2 discussed in the last section
is of the same spirit; it can be seen as first shifting all
the sites to the positions with both x- and y-coordinates
are even numbers in the texture of original resolution,
and then performing JFA in the original texture for
these pixels only.

This understanding can help us to compute 3D
Voronoi diagram using JFA, in a slice-by-slice manner.
Suppose we want to compute the intersection of a slice
and the 3D Voronoi diagram. We first orthogonally
project all the sites onto this slice. At each pixel of the
slice, we record the original 3D coordinate of the site
projected to the pixel. If two or more sites projected to
a same pixel, only the coordinate of the nearest site is
recorded, because the Voronoi cells of the other sites
do not intersect this slice and these sites thus need not
appear in this slice for flooding. Next, we run JFA (or
its other variants) using these projected sites in the
slice while utilizing the original 3D coordinates
recorded to perform distance computation to find
nearest sites for each pixel.

Figure 5: Small change of the position of a site
site can lead to a big change of its Voronoi
cell. During the sub-sampling, a moves to a’
while b and c remain at their original positions.
The black lines show the Voronoi cell of a
before sub-sampling, and the red lines show
the Voronoi cell after. With our approach of
calculating distance using the coordinates in
the higher resolution, we still can obtain the
correct Voronoi cell of a.

a
a’

b

c

Figure 4: The process of variant 2 for 10 sites in a texture with resolution of 64×64. The input is as
shown on the leftmost picture. The second picture on the left is the input after halving the
resolution. The subsequent 5 pictures show the process of standard JFA working on the halved
resolution, and followed by the 2 pictures on restoring to the original resolution and smoothing
Voronoi edges.

Figure 6: Speeds of JFA and its variants

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

100

fra
m

es
 p

er
 s

ec
on

d

sites

 JFA
 JFA+1, 1+JFA
 Variant 2 with JFA
 Variant 2 with JFA+2

5

The rate of errors of the CPU simulation of JFA in
3D reported in [9] is shown again as the blue curve in
Figure 7. Compared with that, the result of this new
variant (Figure 7, black curve) generate more errors.
This is expected, since in this variant, JFA is
performed in a 2D texture, and the number of possible
paths for a pixel receiving the information of its
nearest site is far less than that of a real JFA in a 3D
space. So the chance of a nearest site killed by other
sites is accordingly higher. On the other hand, the red
curve in Figure 7 shows the rate of errors when this
variant is combined with 1+JFA. Again, the rate of
error is far less than that of the standard JFA. An
interesting observation is that the red curve almost
coincident with the blue curve now. In other words, we
now have a good substitute of the real JFA in 3D but
computing only in a slice-by-slice manner.

Since JFA is naturally capable of computing
Voronoi diagrams of generalized sites, we have also
applied this variant in computing 3D generalized
Voronoi diagrams. We have tested different types of
sites including points, line segments, splines, etc. One
interesting type of site is sphere. Voronoi diagrams of
spheres have many applications in various areas, such
as biochemistry [5]. Our variant can also handle this
type of sites. Figure 8 shows a screenshot of our
program using 50 spheres as the sites in a cube with
the resolution of 512×512×512.

6. Concluding Remarks

In this paper, we present three novel variants of

jump flooding algorithm to compute Voronoi diagrams
in both 2D and 3D space. All of these variants retain
the good property of JFA: their speeds are almost
independent to the input size.

The idea of putting sites at positions other than
their original ones discussed in the third variant is
interesting. This may help to find some special
artificial patterns to further reduce the rate of errors or
to obtain some interesting effects.

For computing Delaunay triangulation (the dual
graph of Voronoi diagram) in the continuous space, we
are investigating the use of these JFA variants to build
a fast program. The challenge includes converting
intermediate solution (of Voronoi diagram) in the
discrete space to final solution (of Delaunay
triangulation) in the continuous space. Our aim is to
understand how well this approach can perform as
compared to existing good sequential programs such as
triangle [11] in a 2D continuous space. We keep
further updates on JFA and its applications at
http://www.comp.nus.edu.sg/~tants/jfa.html.

Acknowledgements

We would like to thank Iestyn Bleasdale-Shepherd

for his suggestion and contribution to the study of
Variant 2. This research is supported by the National
University of Singapore under grant R-252-000-254-
112.

References

[1] Cuntz, N. and Kolb, A. 2006. Fast Hierarchical 3D

Distance Transforms on the GPU. Technical report,
Institute for Vision and Graphics, University of Siegen,
Germany.

[2] Denny, M. 2003. Algorithmic Geometry via Graphics
Hardware. PhD Thesis. Universität des Saarlandes,
Germany.

[3] Fischer, I. and Gotsman, C. 2006. Fast approximation of
high order Voronoi diagrams and distance transforms on
the GPU. Journal of Graphics Tools, 11(4), 39–60.

[4] Hoff, K., Culver, T., Keyser, J., Lin, M. and Manocha,
D. 1999. Fast Computation of Generalized Voronoi

Figure 7: Errors of variant 3 (summing all
errors of the 512 slices) in a space with
resolution of 512×512×512.

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

12000

14000

er
ro

rs

#sites

 Variant 3 with JFA
 Variant 3 with 1+JFA
 CPU simulation

Figure 8: Screenshot of the program
computing 3D Voronoi diagram using 50
spheres as sites.

6

Diagrams Using Graphics Hardware. In Proceedings of
ACM SIGGRAPH 1999, 277–286.

[5] Kim, D.-S., Kim, D. and Cho, Y. 2005. Euclidean
Voronoi Diagrams of 3D Spheres: Their Construction
and Related Problems from Biochemistry. Lecture
Notes in Computer Science, vol. 3604, 255–271.

[6] Matuura, S and Sugihara, K. 2004. Use of Discrete
Topology for the Construction of Generalized Voronoi
Diagrams. In Proceedings of International Symposium
on Voronoi Diagrams in Science and Engineering
(ISVD’04), 153–163.

[7] Okabe, A., Boots, B. and Sugihara, K. 1992. Spatial
Tessellations: Concepts and Applications of Voronoi
Diagrams. John Wiley & Sons Ltd.

[8] Owens, J., Luebke, D., Govindaraju, N., Harris, M.,
Krüger, J., Lefohn, A. and Purcell, T. 2007. A Survey of
General-Purpose Computation on Graphics Hardware.
Computer Graphics Forum, 26(1), 80–113.

[9] Rong, G. and Tan, T.-S. 2006. Jump Flooding in GPU
with Applications to Voronoi Diagram and Distance
Transform. In Proceedings of ACM Symposium on
Interactive 3D Graphics and Games, 109–116.

[10] Rong, G. and Tan, T.-S. 2006. Utilizing Jump Flooding
in Image-Based Soft Shadows. In Proceedings of ACM
Symposium on Virtual Reality Software and Technology,
173–180.

[11] Shewchuk, J. 1996. Triangle: Engineering a 2D quality
mesh generator and Delaunay triangulator. In Applied
Computational Geometry: Towards Geometric
Engineering, M. Lin and D. Manocha, Eds., vol. 1148
of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, May, 203–222.

[12] Sigg, C., Peikert, R. and Gross M. 2003. Signed
distance transform using graphics hardware. In
Proceedings of IEEE Visualization, 83–90.

[13] Strzodka, R. and Telea, A. 2004. Generalized Distance
Transforms and Skeletons in Graphics Hardware. In
Proceedings of EG/IEEE TCVG Symposium on
Visualization, 221–230.

[14] Sud, A., Govindaraju, N., Gayle, R., and Manocha, D.
2006. Interactive 3D Distance Field Computation using
Linear Factorization. In Proceedings of ACM
Symposium on Interactive 3D Graphics and Games,
117–124.

