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Abstract—A Voronoi diagram of a set of sites partitions
a bounded space into regions of different areas. A capacity-
constrained Voronoi diagram is a partition in which the area for
each Voronoi region is predefined. In this paper, we present two
approaches for computing such capacity-constrained Voronoi
diagrams in continuous spaces. Our first approach is based
on ordinary (non-weighted) distance functions and achieves
the capacity constraint by a general optimization of the
site locations. Our second approach is based on weighted
distance functions and optimizes the weights of the sites. Both
approaches are iterative methods that start with an initial set
of sites and then optimize the area of one Voronoi region at
a time. As a consequence, the dimensionality of the individual
optimization problem is minimal, which enables a reliable and
fast convergence even for large sets of sites.

I. INTRODUCTION

A Voronoi diagram of a set of n sites partitions the
Euclidean space into n regions. The shapes of the regions
are depending on the neighbor topology according to the
Delaunay graph. The region areas are implicitly determined
by the distances between the neighboring sites. By addi-
tionally assigning a set of n weights to the set of sites, and
varying the distance function to incorporate these weights, it
is possible to influence the shape and especially the area of
the Voronoi regions. However, the actual areas of the regions
are still implicitly determined by the neighbor topology and
distances, and their exists no direct relation between the
locations and/or weights of the sites and the areas of the
resulting Voronoi regions.

In this paper, we are interested in Voronoi diagrams
in which the region areas are given as a constraint. This
means that the resulting areas for all regions are predefined,
and the locations and/or weights have to be determined in
such a way that these constraints are fulfilled. We call this
predefined region area the capacity of the site, and a Voronoi
diagram in which each regions has an area that is equal
to the capacity of the respective site a capacity-constrained
Voronoi diagram. The motivation for these diagrams is given
by applications in computer graphics [1] and information
visualization [2].

Generating such Voronoi diagrams with capacity con-
straints is an optimization problem of high dimensionality.
For ordinary (non-weighted) distance functions, the dimen-
sionality of the optimization problem is nd for n sites
in d-dimensional space, where the site locations are the
parameters that have to be optimized. For weighted distance

functions, the dimensionality is n with the site weights as
the optimized parameters.

Current algorithms for generating capacity-constrained
Voronoi diagrams are restricted to specific distance func-
tions, such as Aurenhammer et al. [3], Ohyama [4], and
Balzer and Heck [5] for power diagrams, or Reitsma et al. [6]
for multiplicatively weighted Voronoi diagrams. The latter
two are also restricted to discrete spaces with the drawbacks
of limited accuracy and missing geometric bisector represen-
tation.

In the following sections, we present two approaches
for computing capacity-constrained Voronoi diagrams in
continuous spaces. The first approach is based on ordinary
distance functions and optimizes the site locations to fulfill
the capacity constraint. The second approach is based on
weighted distance functions and optimizes the weights of
the sites. Both approaches are iterative methods which
optimize one Voronoi region at a time. As a consequence,
the dimensionality of the individual optimization problem is
minimal. This enables a reliable and fast convergence of the
optimization even for large sets of sites, especially for our
second approach which uses weighted distance functions.
Further note that our approaches are not restricted to specific
distance functions and can therefore be utilized for a variety
of different Voronoi diagrams.

The remainder of the paper is structured as follows:
Section II discusses the necessary theoretic background. Sec-
tion III presents our two approaches for the computation of
capacity-constrained Voronoi diagrams in continuous spaces.
Finally, a short conclusion is given in Section IV.

II. BACKGROUND

In this section, we provide the necessary theoretical back-
ground to the aspects of Voronoi diagrams that are consid-
ered in this paper. For the ease of exposition, we restrict
ourselves to the Euclidean plane, without loss of generality.
For a comprehensive overview of Voronoi diagrams and their
properties see [7], [8].

A. Ordinary Voronoi Diagrams

We consider a set S = {s1, . . . ,sn} of n points in the
Euclidean plane R2, and assume that 2 ≤ n < ∞. The n
points have the Cartesian coordinates (s11,s12), . . . ,(sn1,sn2)
and are distinct in the sense that (si1,si2) 6= (s j1,s j2) for i 6= j,
i, j ∈ In = {1, . . . ,n}. These points in the set S are the sites.
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Let x be an arbitrary point in R2 with coordinates (x1,x2).
The Euclidean distance between the point x and a site si ∈ S
is given by

dE(si,x) = ‖si− x‖=
√

(si1− x1)2 +(si2− x2)2. (1)

If si ∈ S is the nearest site from x or one of the nearest sites
from x, we have the relation dE(si,x) ≤ dE(s j,x) for i 6= j,
j ∈ In. We call the points with the nearest site si, given by

VE(si) = {x | dE(si,x)≤ dE(s j,x), i 6= j, j ∈ In}, (2)

the ordinary Voronoi region associated with si, and the set
given by

VE(S) = {VE(s1), . . . ,VE(sn)} (3)

the ordinary Voronoi diagram generated by S. The bisector
of two regions VE(si) and VE(s j), with i 6= j, is the line
perpendicularly to the line segment sis j, formed by points
equidistant to both si and s j, and divides the plane in two
half-planes.

B. Weighted Voronoi Diagrams

In an ordinary Voronoi diagram of a set S of n sites it
is implicitly assumed that the sites are identical except for
their locations, or that each site has the same weight. As
an extension, a set of parameters W = {wi | i ∈ {1, . . . ,n}}
may be given. These parameters are the weights. By using
weighted sites, we can define weighted distances that are
used for generating weighted Voronoi diagrams V (S,W ).
The Voronoi regions V (si,wi) ∈ V (S,W ) not only depend
on the locations of the sites, but also on their weights,
where usually sites with larger weights form larger Voronoi
regions. Since the weighted distance allows many functional
forms, a wide variety of weighted Voronoi tessellations
exist, all having their own characteristics. In this paper,
we consider two types of weighted distance functions that
are especially suitable for computing capacity-constrained
Voronoi diagrams due to their connected regions.

1) Additively Weighted Voronoi Diagrams: An additively
weighted Voronoi diagram VAW (S,W ) is characterized by the
following AW distance function between a site si ∈ S with
its assigned weight wi ∈W and a point x:

dAW (si,wi,x) = ‖si− x‖−wi. (4)

The shape of the bisector between two sites si and s j varies
according to the parameter values α = ‖si− s j‖ and β =
wi−w j, where β ≥ 0 is assumed without loss of generality.
If 0 < α < β , the site si dominates the whole plane, and the
region of s j disappears. If α = β , the region of s j disappears
except for the half-line radiating from s j in the direction
from si to s j. Finally, if α > β , the bisector of VAW (si,wi)
and VAW (s j,w j) forms a hyperbolic curve with foci si and
s j. Note that if β = 0, the bisector again becomes a straight
line perpendicularly bisecting the line segment sis j through
its midpoint.

2) Power Diagrams: A power diagram VPW (S,W ), which
is also known as an additively weighted power Voronoi
diagram, is characterized by the following PW distance
function between a site si ∈ S with its assigned weight wi ∈W
and a point x:

dPW (si,wi,x) = ‖si− x‖2−wi. (5)

The bisector of two Voronoi regions VPW (si,wi) and
VPW (s j,w j) is a straight line. It corresponds to the line
perpendicularly bisecting the line segment sis j through the
point p∗i j given by

p∗i j =
‖s j‖2−‖si‖2 +wi−w j

2‖s j− si‖2 (s j− si). (6)

If ‖si−s j‖2 < w j−wi, then the site si does not reside within
its Voronoi region VPW (si,wi).

C. Centroidal Voronoi Diagrams

A centroidal Voronoi diagram is a Voronoi diagram in a
bounded space Ω ⊂ R2 with the property that each site si
coincides with the centroid of its Voronoi region V (si). The
centroid mi of a Voronoi region V (si) is calculated by

mi =

∫
V (si) xρ(x)dx∫
V (si) ρ(x)dx

, (7)

where ρ(x)≥ 0 is a given density function defined in Ω. In
other words, a centroid is the center of mass of a Voronoi
region with respect to the density function. The importance
of centroidal Voronoi diagram is founded on its relationship
with the energy function

F (S,V (S)) =
n

∑
i=1

∫
x∈V (si)

ρ(x)‖x− si‖2dx, (8)

where V (si) ∈ V (S) and si ∈ S. A necessary condition for
F to be minimized is that V (S) is a centroidal Voronoi
diagram of S.

A common approach to generate a centroidal Voronoi
diagram is to employ Lloyd’s method [9]. This algorithm
iteratively moves each site si ∈ S to the centroid mi of the
corresponding Voronoi region V (si) ∈ V (S) until the sites
meet some convergence criterion. Due to the fact that each
relocation of a site to its centroid reduces the energy in
Equation 8, the algorithm converges to a local minimum of
F , in which each site coincides with the centroid of its cor-
responding Voronoi region. For a comprehensive treatment
of the topic, we refer to [10].

D. Capacity-Constrained Voronoi Diagrams

Consider a set S of n sites that determines a Voronoi
diagram V (S) in the space Ω⊆R2 with the density function
ρ(x)≥ 0,x∈Ω. The area of the Voronoi region V (si)∈V (S)
of a site si ∈ S is given by

|V (si)|=
∫

x∈V (si)
ρ(x)dx. (9)



(a) collinear sites (b) sites arranged in a regular grid (c) non-regularly distributed sites us-
ing the ordinary Euclidean distance

(d) non-regularly distributed sites us-
ing the weighted AW distance

Figure 1. Examples of capacity-constrained Voronoi diagrams for 25 sites. Each Voronoi region in these diagrams has the same capacity.

This Voronoi region area |V (si)| is denoted as the capacity
of si.

A set of parameters C = {ci | i ∈ {1, . . . ,n}} with 0 <
ci ≤∞ and ∑C =

∫
x∈Ω

ρ(x)dx may be given, which is called
the capacity constraint. A capacity-constrained Voronoi dia-
gram V (S,C) is a Voronoi diagram of S in Ω in which each
site si ∈ S has the corresponding capacity ci ∈ C. In other
words, a capacity-constrained Voronoi diagram V (S,C) with
n sites si ∈ S and a capacity constraint C with n parameters
fulfills the condition

n

∑
i=1

(|V (si)|− ci)
2 = 0. (10)

The space Ω can be bounded or unbounded as long as the
area of that space combined with the density function ρ is
equal to the sum of capacities in C. In this paper, we utilize
only bounded spaces without loss of generality, for which
each site has a finite capacity, to allow a clearer presentation
of the algorithms.

The concept of capacity-constrained Voronoi diagrams is
focusing on the resulting Voronoi regions rather then on
the underlying site locations. Its intention is to determine
partitions of given spaces that consist of compact regions
of predefined size. It is thereby not restricted to particular
spaces or distance functions.

Trivial examples for capacity-constrained Voronoi dia-
grams are sets of collinear sites as in Figure 1(a) or regular
lattices of sites as in Figure 1(b), both with equal capacities
for all sites. More relevant in practical applications are cases
with non-regular site distributions as shown in Figure 1(c)
and Figure 1(d), or with capacity constraints where each
Voronoi region has a different, individually defined, area.

III. COMPUTATION

The shapes and areas of the regions in a Voronoi diagram
are implicitly given by the neighbor topology and the
pairwise distances between these neighbors. Sites with no
nearby neighbors form larger regions than sites that are

closely surrounded by their neighbors. Weighted distance
functions allow to increase the area of a region by increasing
the weight of the respective site. Unfortunately, due to the
interdependency of the sites, there exists no direct relation
between the locations and/or weights of the sites and the
resulting Voronoi region areas. To generate a capacity-
constrained Voronoi diagram it is therefore necessary to
perform an iterative optimization of the site parameters
based on the difference between the actual areas of the
Voronoi regions and the given capacity constraint.

In this section, we present two approaches for computing
capacity-constrained Voronoi diagrams in continuous spaces.
Both methods are iterative algorithms that improve the
region area of one single site at a time, and converge towards
a stable state in which the capacity constraint is fulfilled. The
first approach is based on ordinary (non-weighted) distance
functions and modifies the locations of the sites. In contrast,
the second approach uses weighted distance functions and
modifies the weights of the sites.

A. Using Ordinary Distance Functions

The Voronoi region V (si) of a site si ∈ S in an ordinary
Voronoi diagram V (S) is solely determined by the rela-
tive location of all sites s j ∈ S that are neighbors to si.
The generation of a capacity-constrained ordinary Voronoi
diagram V (S,C) for n sites with their capacities in C in
the d-dimensional space Ω ⊆ Rd can be formulated as an
optimization problem in nd dimensions. The variables in
this optimization are the d-dimensional locations of all n
sites. The continuous function D that has to be minimized
is the total difference between the capacity constraint in C
and the actual areas of the Voronoi regions:

D (V (S) ,C) =
n

∑
i=1

(|V (si)|− ci)
2 with si ∈ S,ci ∈C. (11)

This function is equivalent to Equation 10. The global
minimum D = 0 is achieved if the Voronoi diagram V (S)



fulfills the given capacity constraint C. Such global min-
imum always exists, which is obvious if one considers a
collinear set of n sites for which a solution can easily be
found. Actually, there exists not only one set of sites in S
that fulfills the capacity constraint in C, but rather a large
number of variants for which D attains the global minimum.

The minimization of the continuous function D can be
performed with general optimization techniques that use
the site locations as the parameter vector of dimensionality
nd. The drawback of such direct minimization approach is
that for large sets of sites the high dimensionality of the
parameter vector entails a prohibitive runtime and numerical
problems during the optimization. This problem of the high
dimensionality of the optimization can be remedied by not
optimizing all site locations at once, but rather iteratively
optimizing just one site location at a time. This reduces
the dimensionality of an optimization step from nd to d,
where d—the dimension of the space Ω—is usually small,
and does not depend on the number of sites. Ultimately, this
iterative improvement of single site locations is equivalent
to the optimization of all sites at once. The only difference
is that the iterative approach subdivides the full optimization
into smaller fragments, which are easier to solve. The result
is the following approach for the computation of a capacity-
constrained ordinary Voronoi diagram, which is outlined in
Algorithm 1.

The input for the algorithm is a set S of n sites, a set
C of n associated capacities, and a d-dimensional space Ω.
The result of the algorithm is a capacity-constrained ordi-
nary Voronoi diagram V (S,C) in Ω with D(V (S),C) = 0.
Initially, the Voronoi diagram V (S) is computed with the
given sites in S. This diagram is then iteratively optimized
towards D = 0 by performing the following steps in each
iteration:

1) A set I := {1, . . . ,n} is initialized, which represents the
indices of the sites in S that have not been optimized
in this iteration.

2) While the set I is not empty, which means that there
are sites that have not been optimized in this iteration:

a) Choose the site si with index i ∈ I for which
|V (si)|− ci is minimal for all the sites that have
not been optimized in this iteration. The site si
is thereby the smallest non-optimized site in this
iteration with respect to its intended capacity ci.

b) Minimize D (V (S) ,C) by adjusting the loca-
tion of si and simultaneously recomputing the
Voronoi diagram V (S).

c) Remove index i from the set I, which indicates
that si has been optimized in this iteration.

3) If none of the site locations has changed during this
iteration, then the optimization converged to a stable
state, and the algorithm terminates.

The priority for the sites implemented in step 2(a) and

Algorithm 1: Using Ordinary Distance Functions

Input: Sites S = {s1, . . . ,sn},
Capacity constraint C = {c1, . . . ,cn},
d-dimensional space Ω with ∑C =

∫
x∈Ω

dx

Output: Capacity-constrained ordinary Voronoi
diagram V (S,C)

Compute the Voronoi diagram V (S);1

repeat2

stable := true;3

Initialize a set I := {1, . . . ,n};4

while I 6= /0 do5

Choose the site si with i ∈ I,si ∈ S and6

|V (si)|− ci <
∣∣V (s j)

∣∣− c j for each
j ∈ I, j 6= i,s j ∈ S;
Minimize D (V (S) ,C) by adjusting the7

location of si and recomputing the Voronoi
diagram V (S);
if the location of si changed then8

stable := false;9

Remove i from I;10

until stable = true ;11

line 6 in Algorithm 1 significantly improves the convergence
of the algorithm. The reason for this is that a site with
an undersized Voronoi region just has to identify the most
oversized and/or least undersized neighboring site, and then
directly moves into this direction thereby increasing its own
area and decreasing the other’s area. In contrast, a site with
an oversized region must avoid other sites to decrease its
area. Rather, oversized regions have to wait until undersized
regions indirectly decrease them. Hence, prioritizing the
sites with undersized regions effectively moves them towards
oversized regions which profit thereof later in the iteration.

The minimization in step 2(b) and line 7 in Algorithm 1
can be performed by any optimization algorithm that works
on function samples. A good choice is the Downhill simplex
method [11] because it reliably minimizes the function
locally around a given starting location, which is preferably
the current site location. Furthermore, it is not necessary that
the minimization for each individual site is performed until
it finds a local minimum. Rather, a few minimization steps
are sufficient, which results in a much shorter runtime than
performing a complete minimization.

Due to the fact that the given space Ω may be bounded,
it is possible that some resulting site locations are not in
Ω if the minimization is solely based on Equation 11. This
can be avoided by adding a penalty to site locations that are
not in Ω. Good results were generated by using a penalty
function P1 that is applied to the currently optimized site



si and then added to the value of D with

P1(si) =

{
0 if si ∈Ω,
(‖si−Ω‖ci)

2 if si /∈Ω
. (12)

This function adds a capacity-dependent penalty to D based
on the distance of the site location to Ω.

Another effect of the presented algorithm is that some-
times two or more neighboring sites are moved very close
together, almost having the same site location. This occurs if
neighboring sites possess regions that are much larger then
their desired capacity. Then the minimization moves these
sites closer together, and as result, their combined region
area is reduced. Even though such Voronoi diagrams are
still valid and fulfill the capacity constraint, the resulting
close sites are often unfavorable with regard to the intended
application. This problem is remedied by applying another
penalty P2 to the currently optimized site si that is then
added to the value of D with

P2(si) =
n

∑
j=1

{
0 if i = j or δ >= 1,
(1−δ )cic j if i 6= j and δ < 1,

with δ =
‖si− s j‖√

ci + c j

(13)

This function adds a capacity-dependent penalty if the site
is very close to another site, and no penalty if the site does
not have nearby neighboring sites.

The convergence of the minimization can be guaranteed
if the minimization algorithm in step 2(b) and line 7 does
not increase the value of D . It is not guaranteed that the
algorithm terminates in a global minimum. However, during
extensive tests, the algorithm always terminated in the global
minimum D = 0, and never in a local minimum D > 0. If
it happens that a local minimum with D > 0 is achieved,
it should be sufficient to move all sites that do not fulfill
their capacity constraint to new random locations within
Ω, and then to proceed with the minimization. If these
potential cases of local minima are neglected, the algorithm
shows clear logarithmic convergence towards D = 0. This
convergence is preserved if one or both of the penalty
functions P1 and P2 are utilized.

Two examples for capacity-constrained ordinary Voronoi
diagrams generated with Algorithm 1 are given in Figure 2.
The diagram in example (a) consists of 20 sites with equal
capacities, whereas the diagram in example (b) consists of
100 sites with different capacities. The computation of ex-
ample (a) is further illustrated in Figure 10 at the end of the
paper by a sequence of iterations. The development of the
capacity error D of these two examples is given in Figure 3,
showing a clear logarithmic convergence. The computation
of the example with 20 sites required 35 iterations in less
than 5 seconds on Intel Core 2 hardware, computing more
than 21000 function samples of D for the minimization in
step 2(b), including the update of the Voronoi diagram for

(a) 20 sites with equal capacities (b) 100 sites with different capacities

Figure 2. Capacity-constrained ordinary Voronoi diagrams computed
with Algorithm 1. The traces illustrate the site movements during the
computation.
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Figure 3. Development of the function D for each iteration of the examples
in Figure 2.

each sample and the extraction of the individual polygons.
The computation time for the necessary 245 iterations for the
100 sites example was approximately 16 minutes, computing
more than 3.2 million function samples.

The convergence and the result of an individual compu-
tation depends on the initial distribution of sites. We can
use this to our advantage if all sites have similar capacities.
In this case, we can at first generate an approximation
of a centroidal Voronoi diagram with a few iterations of
Lloyd’s method, and then use the resulting sites as the
initial set for the computation of a capacity-constrained
ordinary Voronoi diagram. The result of this combination
is usually a homogeneous distribution of sites that all reside
near the centroids of their corresponding Voronoi regions.
Additionally, the convergence of the algorithm is greatly
improved by this variant due to the fact that a centroidal
Voronoi diagram is a good first approximation of a capacity-
constrained ordinary Voronoi diagram with equal capacities.
An example for the development of a Voronoi diagram
with this variant of our algorithm is given in Figure 4(a).
Unfortunately, the same effect cannot be observed for sets of
sites with differing capacities because of their dissimilarity
to centroidal Voronoi diagrams.



(a) 20 sites with equal capacities (b) 20 sites with different capacities

Figure 4. Capacity-constrained ordinary Voronoi diagrams with 20 sites
that used centroidal Voronoi diagrams as initial sets of sites for the
computation.

The values for the computation time of the presented ex-
amples show that the computation of a capacity-constrained
ordinary Voronoi diagrams is very expensive. Especially
large sets of sites, with many thousands or even millions of
sites are beyond computational feasibility. The main reason
for this is that each function sample during the minimization
consists of the update of one site in the Voronoi diagram
with O(logn) and the evaluation of the area of each Voronoi
region with O(n). Hence, the resulting computational time
complexity for one single function sample is O(logn + n).
The time complexity for a complete iteration is O(n2 +
n logn).

B. Using Weighted Distance Functions

The Voronoi region V (si,wi) of a site si ∈ S in a weighted
Voronoi diagram V (S,W ) is determined by the relative
location of all sites s j ∈ S that are neighbors to si. The
distance function that determines the neighbor topology
and forms the bisectors additionally incorporates a weight
wi ∈W for each site si ∈ S. Thus, the set W of weights offers
an additional degree of freedom to control the resulting
Voronoi regions.

The incorporation of a weight parameter in the distance
computation for a weighted Voronoi diagram V (S,W ) can
have many functional forms. The common distance functions
either use an additive or a multiplicative weight term.
Instances for the first type are the AW and PW distance
functions presented in Section II. An example for the latter
type is the multiplicatively weighted Voronoi diagram that
uses the distance function dMW (si,wi,x) = 1

wi
‖si−x‖,wi > 0.

Other weighted Voronoi diagrams can either be reduced to
these two types, or at least possess similar characteristics.
At the bottom line, all weighted distance functions allow to
increase or decrease the area of a Voronoi region by solely
increasing and/or decreasing the weight of the respective
site. The modification of the site locations is typically not
necessary to achieve a given capacity constraint [3], [5].

The advantage of distance functions with additive weights
is that they result in connected Voronoi regions, whereas
multiplicative weight terms often generate disconnected re-
gions.

The generation of a capacity-constrained weighted
Voronoi diagram V (S,W,C) for n sites with their respective
weights in W and their capacities in C in the d-dimensional
space Ω ⊂ Rd can be formulated as an optimization prob-
lem in n dimensions. The variables in this optimization
are the weights of all n sites. The continuous function
D(V (S,W ),C) that has to be minimized is equivalent to the
function for the ordinary case in Equation 11. A weighted
Voronoi diagram V (S,W ) that fulfills the given capacity
constraint C is achieved if D = 0, representing the global
minimum of D . Similar to ordinary distance functions, such
global minimum can be determined by general optimization
methods that work on function samples. Here, the same
problem occurs as for ordinary distance functions: For large
sets of sites the high dimensionality of the parameter vector
entails a prohibitive runtime and numerical problems during
the optimization.

The solution to this problem of high dimensionality for
the optimization can again be remedied by not optimizing all
site weights at once, but rather iteratively optimizing just one
site weight at a time. In contrast to the algorithm for ordinary
distance functions, we optimize the following function D ′

during each minimization of one single site:

D ′ (V (S,W ) ,C, i) = (|V (si,wi)|− ci)
2 . (14)

This reduces the dimensionality of an optimization step from
n to 1.

The minimization of D ′ for a single site si ∈ S is
performed by adjusting the weight wi ∈W . For analyzing
the correlation between a weight w that is associated with
a site si, and the area of the resulting Voronoi region
V (si,w) ∈ V (S,W ) in a bounded continuous space Ω, we
consider the capacity error

δc(w, i) = |V (si,w)|− ci. (15)

It becomes apparent that this capacity error δc is a continu-
ous function with three characteristic intervals, illustrated
in Figure 5. In the first interval w ∈ (−∞,a], the site si
is dominated by the other sites s j ∈ S, i 6= j, thus the
Voronoi region V (si,w) disappears. The capacity error in this
interval is constant with δc(w, i) =−ci. In the second interval
w ∈ (a,b), the Voronoi region of the site si occupies some
part but not the whole area of Ω. In this interval, δc(w, i) is
monotonically increasing, and passing its root δc(w, i) = 0.
In the third interval w ∈ [b,∞), the site si dominates the
whole bounded space Ω, having a constant capacity error of
δc(w, i) = |Ω|− ci.

This behavior of the capacity error is in general inde-
pendent of the utilized distance function. The lower bound
for the capacity error is always δc = −ci and the upper
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Figure 5. Correlation between the weight w of a site si and the resulting
capacity error δc(w, i). The weights of all other sites s j ∈ S, i 6= j remained
fixed.

bound is always δc = |Ω|−ci. Of course, the actual weights
a and b that determine the intervals highly depend on the
utilized distance function, and on the individual locations
and weights of the other sites. For example, the plots in
Figure 5 were generated in a square with edge length 1000
using a set of 10 random sites. The weights of all sites
s j other than si were w j = 0. The actual interval bounds
for the AW distance function were at aAW ≈ −200 and
bAW ≈ 626, and for the PW distance function they were at
aPW ≈−89860 and bPW ≈ 538067.

The global minimum of D ′ is achieved if the capacity
error for each site is zero, δc(wi, i) = 0. Hence, we have
to find the root of the function δc for each site, which is
simple due to its predictable behavior. A good method for
finding the root of δc is the false position method, which
reliably converges towards δc = 0 at a faster rate than the also
reliable bisection method. In contrast, methods that utilize
the function’s gradient, such as the Newton’s method or the
secant method, are not sufficient due to the constant values
of δc(w, i) for w ≤ a and w ≥ b with respect to Figure 5.
The result is the following approach for the computation of
capacity-constrained weighted Voronoi diagrams, which is
outlined in Algorithm 2.

The input for the algorithm is a set S of n sites, a set
C of n associated capacities, and a d-dimensional space Ω.
The result of the algorithm is a set W of n weights that de-
termines a capacity-constrained weighted Voronoi diagram
V (S,W,C) in Ω with D(V (S,W ),C) = 0. The algorithm
starts with the initialization of the set W of n weights with
wi = 0, wi ∈W . Then, the initial Voronoi diagram V (S,W )
is iteratively optimized towards the capacity constraint C by
adjusting the weights of the sites one at a time. The weight
adjustment for each site si is performed by finding the root w
of the function δc via the false position method. This root w
is then assigned to the weight wi. The overall algorithm stops
if the weight of not even one site can be further improved.

The convergence of the algorithm is not guaranteed due to
the fact that the optimization is based on the per site function

Algorithm 2: Using Weighted Distance Functions

Input: Sites S = {s1, . . . ,sn},
Capacity constraint C = {c1, . . . ,cn},
d-dimensional space Ω with ∑C =

∫
x∈Ω

dx

Output: Capacity-constrained weighted Voronoi
diagram V (S,W,C)

Initialize a set of n weights W := {0, . . . ,0};1

repeat2

stable := true;3

foreach site si ∈ S do4

Find the weight w such that δc(w, i) = 0 via the5

false position method;
if wi 6= w then6

stable := false;7

wi := w;8

until stable = true ;9

D ′, and not on the global function D . Thus, the improvement
of the capacity error for one site may result in a higher
deterioration of the capacity error of another site, which
increases the value of D . However, similar to the algorithm
for ordinary distance functions, we could not observe cases
where the algorithm did not converge to the global minimum
D = 0. Rather, the expansion and contraction of the regions
always combined in a way that consistently reduced the
overall capacity error towards the global minimum.

Four examples of capacity constrained weighted Voronoi
diagrams generated with Algorithm 2 are presented in Fig-
ure 6. Two of them are based on 20 sites with equal capaci-
ties, and the other two are based on 100 sites with different
capacities. The computation of the lower left example is
further illustrated in Figure 11 at the end of the paper.
In the AW distance function results, the elongated Voronoi
regions emerge du to the fact that the sites always reside
within their corresponding Voronoi regions. In contrast, the
results using the PW distance function exhibit much more
compact Voronoi regions, but the sites do not necessarily
reside within their corresponding regions. The development
of the function D that lead to these result is shown in
the top row of Figure 8. These plots clearly illustrate the
superlinear convergence of D throughout the computation
using Algorithm 2. An overview of the computation time,
the number of iterations, the number of necessary Voronoi
diagram updates for evaluating δc during the root finding,
and the minimum and maximum weights of the results are
presented in Figure 9. Note, that the much larger computa-
tion time for the AW distance function examples is reasoned
by the hyperbolic bisectors of the resulting regions. Most of
the computation time was used to extract these hyperbolic



A
W

di
st

an
ce

fu
nc

tio
n

PW
di

st
an

ce
fu

nc
tio

n

20 sites with equal capacities 100 sites with different capacities

Figure 6. Capacity-constrained weighted Voronoi diagrams computed with
Algorithm 2.

bisectors and intersect them with the bounding polygon.
The computation of capacity-constrained Voronoi dia-

grams in Algorithm 2 is solely based on the modification
of the weights of the sites. Hence, elongated regions appear
in the case of the AW distance function, and sites that do
not reside within their corresponding Voronoi region appear
in the case of the PW distance function. Even though such
Voronoi diagrams are valid and fulfill the capacity constraint,
they may be unfavorable with regard to the intended applica-
tion. The solution to both problems is to additionally modify
the locations of the sites to achieve more homogeneous
distributions. Here, the best results are achieved if the sites
reside in the centroids of their corresponding regions. In such
case, the resulting diagram becomes a centroidal capacity-
constrained Voronoi diagram.

A straightforward approach to achieve the additional
constraint of centroidal sites is to directly integrate Lloyd’s
method into Algorithm 2. We therefore insert the additional
step of relocating the site si to the centroid mi of the
corresponding region V (si,wi) between line 4 and 5 of the
algorithm. The advantage of this additional relocation step is
that the sites will now be homogeneously distributed within
the underlying space. The disadvantage is that this additional
operation deteriorates the convergence of the algorithm. A
small site location change may entail a couple of other
relocations that result in a dramatic increase of the value of
D . Nevertheless, experiments showed that the algorithm still
exhibits a reliable convergence towards the global minimum
D = 0.
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Figure 7. Centroidal capacity-constrained weighted Voronoi diagrams
computed with the centroidal variant of Algorithm 2.

Four examples for the generation of centroidal capacity-
constrained Voronoi diagrams are presented in Figure 7.
These examples are based on the same data as the previ-
ous four examples, whereas, in contrast, their computation
now included the additional site relocation step. All four
examples exhibit homogeneous site distributions with very
compact Voronoi regions, and sites that always reside in
the region centroids. An overview of the computation time,
the number of iterations, et cetera, is given in Figure 9.
By analyzing the development of the function D for these
four examples in Figure 8, it becomes apparent that during
the first part of the computation, the centroidal variant
converges faster than the original non-centroidal algorithm.
Furthermore, during these iterations, the permanent change
of site locations results in an alternation of the value of D . In
the second part, the distribution becomes stable, sometimes
with a last large change of various site locations that results
in a major increase of D . Afterwards, the distribution is
stable, only minor site location changes occur, and the
weights are adjusted until the capacity constraint is finally
fulfilled, showing a slightly slower convergence than the
original non-centroidal algorithm.

The computation times of the examples in this section
are significantly smaller than those of the ordinary dis-
tance function examples in the previous section. Actually,
the weighted approach even allows to generate capacity-
constrained Voronoi diagrams for large datasets with thou-
sands or even millions of sites. For example, the computation
of a dataset with one million sites of equal capacity using
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Figure 8. Development of the function D for each iteration in the weighted examples in Figure 6 and Figure 7.

dataset computation time iterations Voronoi updates minimum weight maximum weight
AW, 20 sites, equal capacities 4 sec 387 28,379 −322 300
PW, 20 sites, equal capacities 0.1 sec 90 8,364 −138,646 136,133
AW, 100 sites, different capacities 152 sec 1921 527,475 −414 291
PW, 100 sites, different capacities 5 sec 532 141,572 −101,732 −61,562
centroidal, AW, 20 sites, equal capacities 3 sec 219 17,474 −53 22
centroidal, PW, 20 sites, equal capacities 0.2 sec 196 13,284 −22,045 −14,685
centroidal, AW, 100 sites, different capacities 96 sec 988 352,274 −50 2
centroidal, PW, 100 sites, different capacities 7 sec 882 238,472 −6,951 19

Figure 9. Overview of the computation time, the number of iterations, the number of necessary Voronoi diagram updates during the root finding, and the
minimum and maximum weights of the results for all weighted examples.

the PW distance function was performed in less than one
day. The reason for this significantly reduced computational
effort is the simplification of the optimization from a func-
tion for all sites to a much simpler function for just one
single site. The resulting optimization for one single site
is reduced to a simple root finding that only incorporates
the update and extraction of one single Voronoi region. The
computational time complexity for this operation is O(logn),
reasoned by the update of the Voronoi diagram. The time
complexity for a complete iteration is O(n logn). In contrast,
the ordinary case included the extraction of all Voronoi
regions in the diagram with a computational time complexity
of O(logn+n) for a single function evaluation.

IV. CONCLUSION

We presented two approaches for the generation of
capacity-constrained Voronoi diagrams in continuous spaces
based on ordinary and/or weighted distance functions. Even
though we cannot present a proof for the convergence
of these algorithms, our experiments showed their reliable

convergence towards arbitrarily precise capacity-constrained
Voronoi diagrams. The computational complexity class of
our approaches is O(n2) for the ordinary case, and O(n logn)
for the weighted case. Unfortunately, the iterative structure
of our algorithms and the costly function evaluation actually
results in a high computational effort for large sets of
sites. However, especially our weighted approach enables the
generation of capacity-constrained Voronoi diagrams with
thousands or even millions of sites. In future work, we will
try to further improve the runtime of our algorithms, and
evaluate the application of other ordinary and/or weighted
distance functions.
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